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Abstract—The partial pattern matching is fundamental for
pattern recognition to compare the pair of input patterns by
exploiting the common features shared by those patterns while
excluding the irrelevant ones. In this paper, for the pattern match-
ing, we propose a novel method of smoothly structured sparse
canonical correlation analysis, called S®CCA. The proposed
method works on the feature matrix composed of a (local) feature
dimension and an array dimension. In the framework of CCA,
the method provides map weights along the array dimension to
depict the parts that exhibit the common/similar features across
the pair of feature matrices. By introducing the appropriate
regularization into CCA, the map weights are optimized so as to
be both smooth and localized, i.e., structured sparse. Thereby, the
common features are effectively detected by the smooth and well-
localized weights to improve the matching performance. In the
experiments on pattern matching as well as classification based
on the matching, the proposed method produces the favorable
performance compared to the other methods.

I. INTRODUCTION

In pattern recognition, pattern matching is an important
task to compare pair of data, such as for measuring the
pair-wise similarity. The data, e.g., time-series sequences and
two-dimensional images, usually contain the irrelevant and
unessential patterns as backgrounds. Hence, in the pattern
matching, it is demanded to extract the essential parts that are
common/similar across the pair of pattern data to be compared,
while excluding the other irrelevant parts. In that sense, we
address the problem of partial pattern matching in this paper.

The conventional way for pattern matching is to compute
the similarity between the pair of feature vectors based on a
certain type of metric; the simplest one is Euclidean distance
in the Gaussian kernel similarity [1]. And, the methods of
metric learning [2], [3] including PCA and LDA [4] would
provide the discriminative metric for the matching. Those
methods assume that the input pattern data is represented in the
form of a single feature vector, retaining the characteristics of
the essential patterns while possibly eliminating the irrelevant
ones. In order to extract such favorable feature vectors, it is
required to roughly detect and segment out the essential part of
interest by preprocessing. In contrast, we deal with the feature
arrays that considerably contain the irrelevant patterns as well
as the target one; the feature arrays that we use in this paper are
formulated in a matrix form (two-way). Those feature matrices
are found in many cases; for example, image pixels and local
feature vectors extracted at spatio-temporal (grid) points in
images/motion sequences as shown in Fig. 1.

The partial pattern matching is also related to the co-
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Fig. 1. Examples of the feature matrix. The local feature vectors are extracted
from (a) an image and (b) a motion sequence to form the matrix.

segmentation in the literature of image segmentation [5], [6].
The co-segmentation methods treat the local features extracted
at (super-)pixels individually so that the discriminative clas-
sifier is applied to those feature vectors. In this study, we
focus on the unsupervised matching between the (weighted)
sum of the local feature vectors over the local region where
the common/similar patterns are found in the pair of data.
The operation of summation is typically employed in the
histogram-based feature extraction, such as HOG [7] and
GLAC [8], and the aggregated features are so discriminative
(and salient) as to increase the similarity across the pair of
patterns with robustness to noise.

In this paper, we propose the method of smoothly struc-
tured sparse canonical correlation analysis (S?CCA) for partial
pattern matching. The proposed method operates on the pair
of feature matrices comprising feature dimension (row) and
array dimension (column), and in the framework of CCA it
produces map weights along the array dimension to indicate
the sub-regions (parts) exhibiting the common/similar pattern
shared by the pair of the features. The map weights are
optimized so as to be both smooth and localized, i.e., structured
sparse, by introducing the appropriate regularizations into the
CCA framework, which is our main contribution. As described
above (and in Fig. 1), the array dimension in the feature matrix
is often related to the physical coordinates, such as the spatio-
temporal positions. Hence, the parts shared by the feature
matrices should be distributed smoothly, not scattered, and
be well-localized. This fact leads to that the map weights are
subject to both the smoothness and the structured sparseness
regularizations as shown in Fig. 2; the smoothness would
improve the false negatives by enhancing the consistency of
near-by weights, while the structured sparseness would exclude
the false positives due to well-localization.

From the viewpoint of matching via CCA, Conrad and
Mester [9] applied the method of CCA to compute the pixel
correspondence across the pair of images. The method exhaus-
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Fig. 2. Effect of smoothly structured sparseness. Each symbol represents the
local feature and ‘4’ is degraded from ‘X’. In this example, the shared pattern
is ‘O x (O---’ marked by red color. (a) The simple sparse regularization
would produce individual pattern matching. (b) The smoothness regularization
corrects false negatives (‘(Q’), (c) while that of the structured sparseness
enhances the locality with excluding false positives (‘X”). (d) The combination
of those two types of regularization can provide the smoothly localized weights
enhancing the consistency. This figure is best viewed in color.

tively constructs the pixel correspondence through the CCA
transformations, which is quite different from our method. Our
proposed method can produce the map weights that are directly
construable since the weights are activated on the shared parts
due to the smooth localization. On the other hand, Chen et
al. [10] have proposed the method of structured sparse CCA.
It is closely related to our method in that the sparse CCA
is developed, but the method deals with the specific problem
for expression quantitative trait loci (eQTLs) mapping. Our
method is formulated in the general form of CCA, including
the method [10] as the special case.

II. PROPOSED METHOD

In this section, we detail the proposed method, smoothly
structured sparse CCA (S2CCA), for partial pattern matching.
We first formulate the partial pattern matching in the frame-
work of CCA, and then extend the CCA by introducing the
regularizations to produce the smoothly localized map weights
which contribute to improve the partial matching.

A. Pattern Matching by Canonical Correlation Analysis

The problem of partial pattern matching that we consider in
this paper is formulated as follows. Suppose the input pattern
data are represented by the two-way feature arrays (matrices)
of X € R>™ and Y € R?*™ comprising d-dimensional local
feature vectors in their columns with the number of features m
and n as shown in Fig. 1. The task of partial pattern matching is
to detect the regions (parts) in the arrays such that the features
summed over the region are similar across the two arrays,
which is simply described by

Xwy =z ~ y=Yuwy, (D

similar
where wx € R™ and wy € R"™ are the map weights
used for summation. Thus, the matching task is cast into the
optimization of wx and wy so as to produce the feature
vectors & and y which are close to each other.

We measure the similarity between « and y based on
the angle, inducing the following optimization problem with
respect to wx and wy:

x'y
min arccos ———, s.t. x=Xwx,y=Y wy, 2)
wix wy ][]l
o1
& min - || Xwx — Ywyl|?, st |Xwx||*=|Ywy|*=1.
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The formulation (3) is equivalent to CCA [11], [12] and further
reduced into

1 1
min —w ' Aw, s.t. inBw =1, 4)
where
A XX -X'Y] [ Kx —Kxy )
“|-Y'X Y'Y | |-K}y Ky |’

[XTX 0 _|Kx O _ |wx
P R ] e
In this CCA, the map weights are optimized by solving the
generalized eigenvalue problem of (4); Aw = A,;,, Bw. Note

that the method is straightforwardly kernelized by applying the
kernel trick [13] to the Gram matrices K x, Ky and Kxy.

B. Smoothly Structured Sparse CCA (S>CCA)

CCA (4) optimizes the map weights by greedily minimiz-
ing the angle, equivalently Euclidean distance, in disregard
of any prior knowledge about the weights. As described in
Sec.I, the feature arrays X and Y are often extracted from
the physically regularized domain, such as spatio-temporal
domain (Fig. 1). Thus, we propose the method to effectively
incorporate the inherent physical structure into the above-
defined framework by utilizing the two types of regularization;
namely, the map weights are optimized so as to be both smooth
(Sec.II-B1) and localized (structured sparse) (Sec.II-B2).

1) Smoothness Regularization: The map weights wx and
wy are occasionally connected to physical coordinates; e.g.,
those weights work on spatio-temporal positions. In such cases,
it is useful to take into account the physical relationships
among the weight components as regularization in order to
facilitate the partial matching. For instance, in the case of
time-series signal sequences, the extracted local features are
not independently drawn but naturally have continuity between
adjacent features, expecting smooth weights w along the time
axis. Such smooth weights would correct the false negatives in
matching (Fig. 2). In this study, we introduce the smoothness
regularization defined in the convex form as follows.

Smooth weights are generally obtained via minimizing the
Laplacian,

I(w) = / | Aw(p) Pdp, ™

where p denotes the physical position over which the weights
are defined; e.g., for temporal sequence p = ¢,

w) = | = w1 + 2wy — wipa ®)
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and for 2-dimensional images p = [z, y] ",
l(w) = Z | = Wym1y—1 — 2Wy—1,y — Wy—1,y41
@y
- wa7y_1 + 12wx7y - 211)337314,_1 (9)
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These Laplacian costs are written in the convex form I(w) =
w ' Lw where the matrix L is determined according to the
forms of Laplacian (8, 9). The smooth weights are obtained
by introducing the smoothness regularization into (4) as

1 1 1
min inAw + -w' Lw, s.t. inBw =1, (10)
w
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where the Laplacian regularization is represented by the matrix
nxLx 0

L= 11

[ 0 ny LY:l ’ (i

with the regularization parameters nx and 1y for wx and wy.

2) Structured Sparseness Regularization: The partial
matching seeks for the parts which coincide across the pair of
the feature arrays. That is, the optimized weights wx and wy
are demanded to be well localized, assigning non-zeros to only
the local parts in the weights and zeros to the others. Such kind
of locality has been discussed in the structured sparseness [14].

Jenatton et al. [14] proposed the method to induce
structured sparseness by considering overlapped mixed-norm
(Lo /L2, 0 < a < 2) regularizations in the form of

Qw) =" [|dC ow|3}=, (12)

GeG

where o denotes the Hadamard product, d€ is the coefficient
vector to describe the structured pattern GG, and G indicates
the set of those patterns. Note that the structured patterns G
are overlapped to induce the structured sparseness as shown
in Fig. 3; for details of d“, refer to [14]. To aggressively
impose sparseness on the weights, we employ a = 0.5 in this
study, though it results in the non-convex optimization. While
the conventional way to provide component-wise sparseness
is given such as by L regularization, the regularization (12)
renders the sparseness that is localized in the structured form,
e.g., rectangles or segments.

Finally, we obtain the formulation for SSCCA by

1 1
min §wTA'w + §wTLw + pxQUwx) + py Qwy), (13)
w

1
s.t. ngBw =1, (14)

where px and py are the regularization parameters regarding
wyx and wy, respectively. The proposed method produces
the map weights wx and wy which are favorably smooth
and localized; the combination of the smoothness and the
structured sparseness enhances the locality of the weights
suppressing the scattered weights (see Fig. 2). The efficient
optimization approach for (13) is proposed in the next section.

III. OPTIMIZATION

The main concern in the optimization (13) is how to deal
with the sparseness regularization (12) as well as the norm
constraint (14).
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Fig. 3. Examples of overlapped patterns for the structured sparseness.

A. Structured sparseness regularization

First, we address the regularization {2(w) which is difficult
to directly treat. For optimization, we resort to Lemma 3.1
in [15]: for any vector y € RP,

1 P y2- 1
. } : J
= min — — + =28, 15
”yHa zeRin 1zj 2” Hﬁ (15)

where the a-norm ||yl = {37 |y:|*}* and 8 = ;2. The
optimizer is uniquely attained as

zi =y lylle™ =1, .0 (16)

Based on (15), by introducing the auxiliary variables zx €
le’x‘ and zy € R‘f’y' where |Gx| and |Gy| indicate the
numbers of patterns in Gx and Gy, the formulation (13) can
be transformed into

. 1 T px 1d“x o wx|l3
. z:r[rzuTnzT]T i (A+ L)yw + > Z Cx
’ Xy Gx€Gx X
Px Py [d9Y cwyl3  py
+ o lzxlls + 5 Y T + Sollzvlss
2 2 Gy €Gy ZYY 2
a7
1
s.t. 5uﬁBw =1, (18)
which is further rewritten to
1 .
min jw'{A + L+ diag([px G py 6] w
X Y
+ Elllzxlls + B llav s, (19)
1
s.t. §wTBw =1, (20)
;)2
where (x; = ZGXGGXJGGX —ox U =1.,m) ¢y; =
(d9Y)? *
> Gy eGy jeCy ;571, (j =1,..,n). The variables w and z =
[2%,2y]" are alternately optimized by fixing the other in an

iterative manner.

B. Norm constraint

Under the norm constraint of (20), the objective cost
(19) can be minimized via solving the generalized eigenvalue
problem. It, however, suffers from large computation cost
especially through the iterative optimization in which the
generalized eigenvalue problem is solved many times. We
circumvent it based on the fact that in (19) only the minimum
eigenvalue/eigenvector is required at the optimum. Thus, we



employ the conjugate gradient (CG) method [16] for efficiently
computing the extreme eigenvalue/eigenvector.

By fixing z (and (), the optimization (19) under (20) is
transformed into the following unconstrained problem w.r.t w;
. w' Cw
N wT Bw’ @D
where C = A + L + diag([px ¢, py¢y] ). The method of
CQG efficiently solves such an unconstrained problem and it is
noteworthy that in this optimization the step size is analytically
computed [16] without applying the exhaustive line search
such as Armijo rule [17]. The algorithm of the CG is shown
in Algorithm 1. Note that the CG gives the global optimum
corresponding the minimum eigenvalue/eigenvector.

As a result, the whole procedure for optimizing (13) is
presented in Algorithm 2. In this procedure, the time consum-
ing process is the optimization of (21) and it is efficiently
performed by applying the CG (Algorithm 1) instead of the
standard solver of the generalized eigenvalue problem.

C. Technical Tips

In the case that the scales (norms) of the feature ar-
rays X and Y are highly biased, the regularization terms
regarding both smoothness and sparseness are also biased;
e.g., the map weights become small on the feature array that
has a large norm, consequently diminishing the effects of
those regularizations. For fairly imposing the regularizations
on both X and Y, we normalize the arrays by the matrix
spectral norm; Kx + Kx/|Kxlls, Ky + Ky/||Ky|ls.
Kxy + Kxy /| Kx|s||Ky|s where || - ||s indicates the

spectral norm, i.e., the maximum singular value of the matrix.

Next, we mention the regularization parameters nx, 1y, px
and py. In the smoothness regularization, the parameters 7x
and 7y are balancing the matrices Kx, Lx and Ky, Ly, re-
spectively. To fairly consider the balance independently of the
norm (scale) of those matrices, we transform the parameters to
i |\HI§\|\‘S it actually results in 7) = n||L||s since the matrix
K is normalized as described above, and in this study we set
7 = 1 to equally balance those matrices Kx and Lx (or
Ky and Ly). As to the structured sparseness regularization,
we can not estimate the scale of the regularization term in
advance, since it is not simply described by the quadratic
form (see (12)). Hence, we utilize the initial solution of w to
roughly assess those scales. The initial solution wy is obtained
by applying Algorithm 1 to C = A + L under p = 0,
and then the regularization parameters are transformed into
p="1 {Q(wj; O)gg(w”)} and p is empirically determined, say

p=10in this study.

The above-mentioned technical tips are useful for facili-
tating the parameter setting which is an exhaustive procedure
depending on the data.

IV. EXPERIMENTAL RESULTS

We apply the proposed method to the pattern matching in
static images (Fig. 1a) and motion sequences (Fig. 1b) as well
as the classification of the motions.

Algorithm 1 : CG for min,, 2-S%

T Bw

[Initialization] wg: random vector such that 'wOT Bwg =1,
)\0 = ’LUJC’LUO, go = C’u]() - )\OB'IUO, Po = 4o, i =0.
repeat

[step size 0]

Tcpla b _ sz’ Cc= TBI)’L’ d = p;er’Lr
Nid—b+y/(Nid— b)2 4(bc—ad)(a— )\c))
0= 2(bc—ad)
[update] R
Ny — . . . — Wit1
w1+1 = w; + 5171, wz+1 - \/m
i1 = w1 Cwiy, giv1 = Cwiyr — i1 Bwiga,
Pi+1 = gi+1 + Ypi where v = %,
141+ 1.

until convergence
[Output] w;: the optimized welght vector,
A;: the minimum cost of % Cuw

w! Bw"
Algorithm 2 : S3CCA
[Initialization] wy = arg min,,, 71"15;4;31” by Algorithm 1,
1 =0.
repeat
[Optimize z]
290 = 9% 0w, [ 0w )" (Gx € G,
2" = [[d9Y owy 3wy )] (Gy € Gy).

[Optimize w]

(dC_"x)z

CX = {ZGxe(er,jer ]GX }] 1’
<d("’§>

CY = {ZGy€Gy ,JEGY }] 1’

C-A+L +dlag<[pxc§§7pycy1 ).
Wit1 = argming, by Algorithm 1.
141+ 1.
until convergence
[Output] w; = [wi,wy ]’

wTBw

: the optimized map weights.

A. Static Images

The task is to detect the partial patterns that are shared
by the pair of input images. The images are defined in two
dimensions (z-y) over which the map weights are defined, and
thus the feature array is formulated as feature-vs-position by
unfolding the two-dimensional position into one-dimensional
sequence via the raster scan (Fig. 1a).

1) Synthetic Image: We synthesized the pair of image
patterns of 15 x 20 x 500 and 20 x 30 x 500 pixels assuming
that 500-dimensional features are extracted at each pixel in the
images of 15 x 20 and 20 x 30 pixels; the patterns are shown
in Fig. 4. Thus, we perform the partial matching between the
feature arrays X € R500%300 and Y* € R590%600 Fig, 5 shows
the map weights optimized by various methods; conventional
CCA (p = 11 = 0), smooth CCA (SCCA) (p = 0,7 = 1),
structured sparse CCA (S2CCA) (p = 10,7 = 0), and
the proposed S3CCA (p = 10,4 = 1). We can see that
S3CCA produces the favorable map weights that are activated
only in the region of the common patterns, while the other
methods are highly affected by the noise; in particular, the
weights by CCA are quite scattered, making no sense for
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Fig. 4.  Synthetic image data. The bright rectangles which are common
patterns appear every two features with white noise. The feature matrix is
constructed by unfolding each of image frame into a vector form.

CCA SCCA S?CCA Ss3cca
- v - v smooth
- - v v sparse
‘; ﬂr:ﬂ: +
g - i i .
= e l*
e |
P ——— S
~ ] |:"E 0
; 0
< LB
E T

Fig. 5. Pattern matching on synthetic image data. The map weights w x and
wy are depicted in pseudo colors. This figure is best viewed in color.

matching. By comparing S3CCA to SCCA and S2CCA, it is
demonstrated that the combination of the smoothness and the
structured sparseness works quite well for partial matching. As
to computation time, in S3CCA, the CG method (Algorithm 1)
takes 0.4 sec, while the generalized eigenvalue solver requires
3.6 sec on Core-i7 2.9GHz PC.

2) Realistic Image: Next, we applied the proposed method
to the partial matching between the realistic images (from
UIUC car image dataset [18]) that contain car as common
patterns. Those images are of 175 x 90 and 260 x 195 pixels.
In this task, it should be noted that unlike the ordinary car
detection, there is no prior knowledge; that is, we do not
know what and where the target is in advance. The GLAC
local image features [8] are extracted at dense grid points in
6 pixel step with the scale of 6 pixels, producing 364 and
1302 points in respective images; we follow the setting of
the feature reported in [8] to obtain 324-dimensional GLAC
feature vectors, the feature arrays of X € R324x364 apd
Y < R324%1302 The obtained map weights are shown in
Fig. 6, demonstrating that S3CCA can detect the car even
though neither the target category (car) nor the detector is
given. This is because the features belonging to the car regions
are salient and shared by the feature arrays X and Y.

B. Motion Sequences

We conducted two types of experiments using motion
sequences in Weizmann action dataset [19]; one is the motion
matching as in the image matching, and the other is the
classification of motions based on the similarity computed via
the matching. The Weizmann dataset [19] contains nine types
of human action; running, walking, jumping jacks, jumping
forward, jumping in place, galloping sideways, waving two

CCA

Fig. 6. Pattern matching on car image data. The map weights are depicted in
pseudo colors and overlaid on the images. This figure is best viewed in color.

sequence 2

[ | | [l
[ | | i
I »|I i _
9

]
1
1
|
running jumping waving
nning i
two hands

o
I
i
| |

bending 1 1jumping |
! Iforward !
| | |
i 1
|
|
|
|
|

sequence 1
WS e =
i

i

jumping

in place

i |
galloping
sideways

i ]

S3CCA

s2ccaA

CCA

1-3

Fig. 7. Motion matching on Weizmann action dataset. The map weights w x
and wy are shown as the time-series sequence.

hands, waving one hand, and bending, which are performed
once by each of nine subjects. In these experiments, we ex-
tracted the frame-based motion features by CHLAC [20] from
the motion sequence to form the feature matrix X € R?*1xT
where T indicates the number of frames in the sequence.

1) Motion Matching: We concatenated all the motion se-
quences of the nine actions performed by the subject 2 and
compared it to the sequence of the action of waving two hands
by the subject 1. In this experiment, the map weights are
obtained as the 1-dimensional time-series sequence and the
results are shown in Fig. 7. The proposed S*CCA produces the
favorable weights that detect the common action of waving two
hands. Note that the map weights are zeros on the irrelevant
actions that are not shared in those two sequences.

2) Motion Classification: The proposed S?CCA can be
utilized for classification as follows. The two motion sequences
are compared via the partial matching and their similarity is
defined by the “canonical angle”, 6 = cos™ ! {w Kxywy},
where wx and wy are the map weights produced by S?CCA.
Obviously, the sequences of the high affinity exhibit small
angle § ~ 0. We classify the input sequence by k-NN, say
k = 3, utilizing the canonical angles as the similarity measure.

For comparison, we also applied the methods of mutual
subspace method (MSM) [21] and constrained mutual sub-



TABLE 1. MOTION CLASSIFICATION PERFORMANCE ON WEIZMANN

DATASET.
Method acc. (%)
Dollar et al. [24] 86.7
Jhuang et al. [25] 98.8

Wang and Mori [23] 100

MSM [21] 80.47
CMSM [22] 73.51
S3CCA 82.94
kernel MSM [21] 96.30
kernel CMSM [22] 97.53
kernel S3CCA 100

space method (CMSM) [22], both of which employ the similar
classification approach as described above; those methods
are based on the canonical angles between the subspaces.
In this experiment, we additionally applied the kernel-based
S3CCA that is developed by applying kernel tricks to the
Gram matrices Kx, Ky and Kxy in (5, 6). We employed

2
the Gaussian kernel k(z, y) = exp(f%), where o is the
standard deviation computed in the dataset.

The performance is evaluated by leave-one-subject-out as
in [23]; the sequences of eight subjects are used for training
and those of the remaining subject are for test, which is
repeated for all nine subjects. The averaged classification accu-
racy is measured and shown in Table I. The proposed method
produces the perfect classification results as the other state-of-
the-art work [23] does. Compared to MSM and CMSM using
the same CHLAC features as ours, the proposed method can
favorably improve the performance. The smoothly localized
map weights exploit the essential motion patterns that are
common in the pair of sequences, excluding the other irrelevant
parts, to enhance the discriminativity of the similarities used
in k-NN classification. It is demonstrated that the S?*CCA
contributes to the classification as well as the partial matching.

V. CONCLUSION

We have proposed the method of smoothly structured
sparse CCA (S3CCA) for partial pattern matching. The pro-
posed method works on the pair of feature arrays and pro-
duces the map weights which indicate the parts exhibiting the
common pattern across those feature arrays. By introducing
the appropriate regularizations, the map weights are optimized
so as to be both smooth and localized, i.e., structured sparse,
which effectively contribute to correct false negatives while
suppressing the false positives. In the experiments on pattern
matching for 2-dimensional static images and 1-dimensional
motion sequences as well as the motion classification, the
proposed method produces favorable performance compared
to the other methods.
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