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ABSTRACT

Classification of environmental sounds is a fundamental pro-
cedure for a wide range of real-world applications. In this pa-
per, we propose a novel acoustic feature extraction method for
classifying the environmental sounds. The proposed method
is motivated from the image processing technique, local bi-
nary pattern (LBP), and works on a spectrogram which forms
two-dimensional (time-frequency) data like an image. Since
the spectrogram contains noisy pixel values, for improving
classification performance, it is crucial to extract the features
which are robust to the fluctuations in pixel values. We ef-
fectively incorporate the local statistics, mean and standard
deviation on local pixels, to establish robust LBP. In addi-
tion, we provide the technique of L2-Hellinger normalization
which is efficiently applied to the proposed features so as to
further enhance the discriminative power while increasing the
robustness. In the experiments on environmental sound clas-
sification using RWCP dataset that contains 105 sound cat-
egories, the proposed method produces the superior perfor-
mance (98.62%) compared to the other methods, exhibiting
significant improvements over the standard LBP method as
well as robustness to noise and low computation time.

Index Terms— environmental sound, classification,
spectrogram, local binary pattern

1. INTRODUCTION

In daily life, there are a variety of sounds generated by not
only human but also the environmental objects. Those en-
vironmental sounds contain rich information for understand-
ing the surrounding situations; for example, door knocking
sounds imply that someone comes to the house. Thus, the
recognition of the environmental sounds endows a wide range
of real-world applications, such as acoustic surveillance.

While the methods for classifying speech and music have
been intensively developed for decades, those for the envi-
ronmental sounds are studied with keen attention in recent
years [1, 2, 3, 4]. The environmental sounds are different
from the speech and music in that the acoustic signals are not
stationary nor well-structured; characteristics in these types
of sounds are discussed in [5]. Therefore, the conventional

speech recognition methods might not be suitable for the en-
vironmental sounds [1, 2, 6], and much research effort has
been made especially on the feature extraction that effectively
characterize them.

Cowling et al. [1] extensively investigated various types
of acoustic features as well as classification methods, con-
cluding that the continuous wavelet transform with dynamic
time warping produces the promising performance. Wavelet
packet analysis is applied to extract acoustic feature in gen-
eralized sound classification [7]. Recently, the method of
matching pursuit that sparsely decomposes the signal by us-
ing over-complete dictionaries has been successfully applied
to classify the environmental sounds [2, 5]. As in the match-
ing pursuit, the non-negative matrix factorization (NMF) also
works on sparse factorization of signals with learning the dic-
tionary; Cotton and Ellis [8] employ the NMF to construct
acoustic event-based patch features from a spectrogram. Ye
et al. [3] utilize the acoustic subspace extracted from sound
clips in the kernel-based framework.

On the other hand, once an acoustic signal is trans-
formed into a spectrogram which forms two-dimensional
(time-frequency) data like an image, the visual recognition
methods are applicable to extract the acoustic features. Guo
et al. [6] extract the time-frequency intersection patterns from
the spectrogram similarly to image projection profile. Dennis
et al. [4] establish the moment-based spectrogram features.

In this study, we propose a novel method to extract acous-
tic features from a spectrogram. The proposed method is
based on the image recognition technique, local binary pat-
tern (LBP) [9], to capture (local) characteristics on the spec-
trogram. The LBP method exhibits high discriminative power
for classifications, but it is highly affected by the fluctuations
in pixel values, though Costa et al. [10] employ the LBP for
music genre classification. Thus, we effectively incorporate
the local statistics, mean and standard deviation on local pix-
els, into the LBP so as to improve the robustness to those
fluctuations frequently observed in the spectrogram images.
The proposed statistics-based LBP efficiently exploits the lo-
cal geometric characteristics in the spectrogram for classify-
ing the environmental sounds with high robustness. In addi-
tion, the technique of L2-Hellinger normalization is applied
to the proposed features so as to further enhance the discrim-
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inative power as well as robustness. The proposed method
is tested on RWC dataset that contains 9,772 samples in 105
environmental sound categories, exhibiting favorable perfor-
mance compared to the other methods.

2. ACOUSTIC FEATURE EXTRACTION

The LBP [9] has produced promising performance especially
in image classifications. We develop it by incorporating the
local statistics to establish the acoustic feature extraction
method that is robust to fluctuations on an audio spectro-
gram. In the followings, let the spectrogram be represented
by the image I(r), r = [t, f ] on the time-frequency (dis-
crete) domain; the pixel value I(r) indicates the power of the
frequency f at the time t.

2.1. Proposed method

By incorporating statistics of local pixel values into LBP, the
local patterns are effectively characterized with robustness to
fluctuations in pixels. The LBP [9] always categorizes the lo-
cal patterns into one of the (binary) codes, no matter how the
patterns are less significant. That is, the coding procedure in
the LBP takes into account only the magnitude relation be-
tween the pixel values in disregard of the difference (margin)
between them. However, the fluctuations on the pixels whose
values are close to each other easily change the binary code,
breaking up the magnitude relation. Thus, the binary codes
on those pixels of small margins are vulnerable to pixel fluc-
tuations, resulting in unstable LBP features.

In this study, we exploit the local statistics of pixel values
for extracting the stable features with high robustness to the
fluctuations, as shown in Figure 1. As in LBP, the proposed
method operates on a local patch; let c ∈ R

2 denote the center
position in the patch and L be the set of pixels in the local
patch centered at c. First, the mean pixel value in the local
patch, μc = Er∈L{I(r)}, is employed for partitioning the
pixel values into binary codes.

∀r ∈ L, code(r;μc) =
{

1 if I(r) > μc

0 if I(r) ≤ μc
. (1)

Thresholding by the mean μc is robust to local variations in
contrast to the standard LBP that directly employs the center
pixel value I(c) as the threshold. Note that in (1) the center
pixel c is also encoded and the feature dimensionality results
in 2|L|; there are binary states in each of |L| pixels.

Next, we measure the significance of the local pat-
tern based on the standard deviation in the patch, σc =√

Er∈L{(I(r) − μc)2}. The standard deviation is regarded
as the averaged margin between the pixel values and the
mean μc. The local pattern of large σc is stable since the
magnitude relation in (1) is rarely broken up by the fluctua-
tions (Figure 2). Therefore, the standard deviations reflect the
significances of the local patterns and we employ them for
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Fig. 1. Proposed method. Each local patch (a) is encoded into
binary code (b) by comparing to the mean (μ=52) and votes
the weight of σ=31 to the pattern code histogram (c).
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Fig. 2. Local statistics. The black dot indicates the pixel value
in the local patch. The pattern of the large standard deviation
σ is stable since the magnitude relation to the mean μ is rarely
broken up by fluctuations in pixel values.

weighting the binary codes. In the proposed method, the local
patch is scanned over the region of interest D to accumulate
the weight σc of the binary patterns into the histogram which
is the final feature vector describing the image region D;

xi =
∑
c∈D

[[code(L;μc)= i−1]]σc, i∈{1, · · · , 2|L|}. (2)

where xi is the i-th proposed feature, code is the coding op-
erator (1) to produce |Nc| bit code on the basis of μc (see
Figure 1), and [[·]] indicates the identity function that equals
to 1 if the equation in the brackets holds and to 0 otherwise.
Through weighting by the standard deviation, the significant
patterns are favorably counted, while the less-significant ones
hardly contribute to the feature.

2.2. Properties of the proposed method

The proposed feature is robust to (constant) additive varia-
tions as in LBP since the local magnitude relations between
pixel values and the mean are also invariant to such variations.
On the other hand, the multiplicative variation slightly affects
it via the weighting by the standard deviation. Those varia-
tions, however, are suppressed by applying the normalization
described in the next section.

The proposed method effectively extracts the geometrical
characteristics on the spectrogram. From geometrical view-
point, the two-dimensional spectrogram is composed of gra-
dients (lines) and curvatures (corners). Those fundamental
characteristics are represented by the local binary patterns de-
scribing how the pixel values are distributed in the local patch.
The patterns are weighted by the standard deviation in a man-
ner similar to interest point detectors [11] that pick up the ge-
ometrically distinct points. Thus, the geometrical character-
istics, not only lines but also corners, are efficiently exploited
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Fig. 3. Distribution on the proposed features normalized by
(a) L2 normalization and by (b) L2-Hellinger normalization.

by the proposed method, which enables us to discriminatively
distinguish the two-dimensional spectrogram.

2.3. L2-Hellinger normalization

The proposed method produces the histogram feature which
is regarded as a discrete probability distribution over the bi-
nary patterns. The Hellinger (Bhattacharya) kernel is effec-
tive for measuring the similarity between probability distri-
butions [12]. Such kernel can be embedded in a (linear) dot
product of the feature vectors normalized by the following
L2-Hellinger normalization [13]; x̂ =

√
x

‖x‖1
. Note that the

proposed features are non-negative and the normalized fea-
ture vector x̂ has a unit L2 norm (‖x̂‖2 = 1); linear SVM ef-
fectively works on the features that have a unit L2 norm [14].

The L2-Helinger normalization enhances the discrimina-
tive power of the features. In the proposed method, only a
small amount of binary patterns are activated with high signif-
icance (σ), which results in peaky feature distribution around
zero; Figure 3a shows the distribution of a certain compo-
nent of the features simply normalized in a unit L2 norm. By
applying the L2-Hellinger normalization, the feature distribu-
tion becomes favorably dispersed as shown in Figure 3b, and
thereby the features can be classified more discriminatively.

3. SOUND CLASSIFICATION SCHEME

In this section, we describe the procedure to classify the envi-
ronmental sounds by using the proposed features; the overall
flow is shown in Figure 4.

An input acoustic signal is first processed by applying
short term Fourier transform (STFT) with time window of
the length τ to produce the spectrogram. The time-frequency
spectrogram is viewed as the 2-D image on which we extract
the proposed features (Section 2.1) at each frequency bin via
summation along the time axis, i.e., by setting Df =

{
r =

(t′, f ′)
∣∣∀t′, f ′ =f

}
to produce frequency-wise feature vector

x(f) in (2). The temporal information is marginalized out in
order to make the feature invariant to temporal shift, while
the local patterns characterize the local temporal dynamics
which are effective clues to classify the non-stationary sound.

To reduce the frequency dimensionality, we subsequently ap-
ply the simple filter banks that are equally spaced along the
frequency axis. Suppose we have K filter banks denoted by
ωk(f), k = 1, ..,K, and the acoustic features are obtained as

x̄k =
∑

f

ωk(f)x(f), x̄ = [x̄�
1 , · · · , x̄�

K ]�. (3)

Then, L2-Hellinger normalization (Section 2.3) is applied to
x̄, followed by the linear SVM classification [15]. To cope
with the multi-class problems, the one-versus-rest classifica-
tion approach is employed in this study.

4. EXPERIMENTAL RESULTS

We evaluate the performance of the proposed method on envi-
ronmental sound classification by using RWCP dataset [16].

The RWCP dataset [16] contains 9,772 sound clips in 105
categories, such as hand clapping and bell ringing; there are
some similar sound categories, e.g., three types of phone bell,
which makes the classification quite challenging. The acous-
tic signals are recorded by 48kHz with 16bit resolution; the
averaged recording length is about 1 sec. We set the analysis
window length in STFT by τ = 512 frames (about 10 msec)
with half overlapping, and we use K = 50 filter banks. The
performance is measured by classification accuracy averaged
over 10-fold cross validations.

4.1. Performance analysis

We first investigate the effect of the settings in the proposed
method on the classification performance.
Local patch L. The size of local patch L defines the local
patterns that we extract and consequently the dimensional-
ity of the features. The performance results on various patch
sizes are shown in Table 1. We can see that the performance
increases along the frequency axis more than along the time
axis. This result shows that the local relationship among the
frequencies is more important for classifying the environmen-
tal sounds. On the other hand, too large local patch deterio-
rates the performance, since the feature of such patch captures
too detailed variations of spectrogram patterns, degrading the
generalization performance. The dimensionality of the fea-
ture is exponential with respect to the area size of the patch,
and the patches whose area sizes are around 9 pixels exhibit
better performance. The best performance is obtained on 2×4
(time × freq.); in the following experiments, we use the local
patch of 2 × 4.
Normalization. We then compared the L2-Hellinger nor-
malization to the other types of normalizations; L1 and L2

normalizations. The performance comparison is shown in Ta-
ble 2a. The L2-Hellinger significantly improves the perfor-
mance by enhancing the discriminative power of the feature
as described in Section 2.3. The commonly used L2 normal-
ization outperforms L1, but is inferior to L2-Hellinger.
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Fig. 4. Overview of the sound classification scheme. In classification, ω and b are learned by linear SVM.

Table 1. Performances on various local patch sizes. Hori-
zontal and vertical axes mean the time and frequency, respec-
tively The best performance is is 98.62% at 2×4 (time×freq.).

time �

fr
eq

ue
nc

y

�

N/A 88.68 95.24 96.62 97.15
96.30 97.73 98.27 98.26 98.07
97.20 98.29 98.30 98.23 97.88
97.44 98.62 98.22 98.00 97.31
97.94 98.47 98.22 97.20 96.42

Table 2. Performance results on RWC dataset.
(a) Normalization

Normalization L1 L2 L2-Hellinger
Acc. (%) 92.29 96.34 98.62

(b) Comparison
Method Ours LBP Spectrogram Ye et al. [3]

Acc. (%) 98.62 87.83 91.28 94.41

(c) Averaged computation time per sound clip which is 853 msec on
an average

Procedure Spectrogram (STFT) Feature Classification
time (msec) 4.11 9.55 0.35

4.2. Comparison to the other methods

Next, the proposed method is compared to the other meth-
ods; the standard LBP features, spectrogram features aver-
aged over the time axis, and the method proposed by Ye et
al. [3] who reported the performance on the whole set of 105
classes. The performance results are shown in Table 2b. Some
other works have also reported the classification performance
on the RWCP dataset, but they used the subset of the dataset;
e.g., the works of [5, 6, 17, 18] reported around 90% only
on 10 ∼ 20 sound categories, and Dennis et al. [4] exhibited
the performance of 98.1% which is close to our result though
their method was evaluated only on 60 categories, half sub-
set of ours. Therefore, we can say that the proposed method
achieves the state-of-the-art performance on the whole RWCP
dataset. Table 2b also shows the proposed method signif-
icantly outperforms the method of LBP, demonstrating that
the local statistics incorporated into the proposed method are
quite effective for classification.
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Fig. 5. Robustness to noise in sound signals.

4.3. Robustness to noise

Finally, we show the robustness of the methods to noises. The
RWCP dataset is recorded in clean setting suppressing noise.
We added the noise signals of “factory (floor1 and floor2)” in
NOISEX’92 dataset to the original sound signals in RWCP
dataset with various noise intensities (denoted by dB). The
performance results are shown in Figure 5. As the signals are
more noisy, the performances are accordingly degraded. In
the proposed method, however, the performances are stably
high with the low performance decay, while the LBP is sig-
nificantly affected by the noise. These results show that the
proposed method is robust to noise in signals while producing
high performances.

The computation time is shown in Table 2c on 3.33GHz
Xeon PC using MATLAB. The computation time required in
the feature extraction is quite low, which contributes to speed
up the whole procedure for classifying the sounds.

5. CONCLUSION

In this paper, we have proposed the novel method to extract
acoustic features for classifying the environmental sounds.
The proposed method characterizes a spectrogram, which
forms two-dimensional data like an image, by means of LBP.
We effectively incorporate the local statistics in the spec-
trogram, mean and standard deviation on local pixels, to
improve the robustness of LBP-based features to fluctuations
in pixel values. We also provided the effective normalization
technique, L2-Hellinger, for enhancing discriminative power
and robustness of the proposed features. In the experiments
on environmental sound classification using RWCP sound
dataset, the proposed method exhibited the state-of-the-art
performance compared to the other methods, demonstrating
the robustness to noise and low computation time.
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[17] Héctor Lozano, Inmaculada Hernáez, Artzai Picón,
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