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In this paper, we propose a motion recognition scheme based on a novel method of motion feature
extraction. The feature extraction method utilizes auto-correlations of space–time gradients of three-
dimensional motion shape in a video sequence. The method effectively exploits the local relationships
of the gradients corresponding to the space–time geometric characteristics of the motion. For recognizing
motions, we apply the framework of bag-of-frame-features, which, in contrast to the standard bag-of-fea-
tures framework, enables the motion characteristics to be captured sufficiently and the motions to be
quickly recognized. In experiments on various datasets for motion recognition, the proposed method
exhibits favorable performances as compared to the other methods, and faster computational time even
than real time.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

Motion recognition has attracted a great deal of attention in re-
cent decades and is important for numerous applications, such as
video surveillance, man–machine interface, and analysis of sports
motion. Significant research efforts in computer vision community
have been made to categorize human actions and gestures in video
sequences. With the development of the image recognition tech-
niques, methods for recognizing motions have also progressed
and produced promising results in recent years.

While conventional methods have used ad hoc knowledge based
on human body parts (for a survey, refer Gavrilla, 1999), recent
studies have employed statistical approaches without such knowl-
edge. By regarding a motion image sequence as three-way data in
the space–time (XYT) domain, the methods that are applied to
(two-way) image recognition have been naturally generalized to
motion recognition (Dollar et al., 2005; Jhuang et al., 2007; Laptev
et al., 2008; Kobayashi and Otsu, 2009; Blank et al., 2005; Kim
et al., 2007). The motion is explicitly dealt with as space–time
shape by Blank et al. (2005) who extracted human silhouettes from
motion images.

In particular, the bag-of-features framework (Csurka et al.,
2004) has been successfully applied to motion recognition (Dollar
et al., 2005; Laptev et al., 2008; Wong and Cipolla, 2007) as well as
image recognition (Bosch et al., 2007). In that framework, the rec-
ognition of motion relies on local features which are based on sim-
ple histograms of spatial gradient orientations (HOG) (Dalal and
Triggs, 2005) and space–time derivatives (Dollar et al., 2005; Zel-
ll rights reserved.
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nik-Manor and Irani, 2006). These local features cannot fully cap-
ture the space–time shape of the motions and do not have much
discriminative power. Therefore, in the bag-of-features framework,
the motion is represented as ensembles of numerous local features
extracted around the space–time interest points which are spar-
sely detected by, e.g., a Harris-Laplace detector (Laptev, 2005) or
a nonnegative matrix factorization (NMF) like detector (Wong
and Cipolla, 2007). The sparse interest points, however, are not suf-
ficient to characterize the motion (Dollar et al., 2005; Willems
et al., 2008; Ballan et al., 2009), since densely detected interests
points (like grid points) improve the performance of image classi-
fication (Tuytelaars and Schmid, 2007; Bosch et al., 2007). In mo-
tion images, the higher dimensionality due to the three-way data
increases the number of interest points even for the sparse detec-
tion, which requires a larger computational cost for quantizing the
local features into words, and the denser detection becomes less
feasible.

We propose a novel motion feature extraction method and an
effective and high-speed motion recognition scheme based on
these features. The feature extraction method exploits the local
relationships (co-occurrence) among space–time gradients in the
XYT domain, by developing the gradient local auto-correlation for
image recognition (Kobayashi and Otsu, 2008) to extract space–
time motion features. The local relationships correspond to geo-
metric characteristics, i.e., gradients and curvatures, which are fun-
damental properties of space–time motion shape. For motion
recognition, we utilize the frame-based features which are ex-
tracted from sub-sequences sampled at dense (grid) time points
along the time axis. In this approach, referred to as the bag-of-
frame-features approach, the frame-based features sufficiently
characterize the motion in the spatial domain in contrast to the lo-
cal features, and the motion in the entire sequence is described by
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mailto:takumi.kobayashi@aist.go.jp
mailto:otsu.n@aist.go.jp
http://dx.doi.org/10.1016/j.patrec.2012.01.007
http://www.sciencedirect.com/science/journal/01678655
http://www.elsevier.com/locate/patrec


T. Kobayashi, N. Otsu / Pattern Recognition Letters 33 (2012) 1188–1195 1189
the densely sampled features along the time axis. The bag-of-
frame-features approach is effective and fast due to the reduced
computation of the frame-based features achieved by applying
integral histograms (Porikli, 2005) and the small number of the
sampling points placed only along the time axis without a require-
ment for time consuming interest point detection.

This paper has the following three main contributions: (1) to
propose a novel motion feature extraction method, (2) to demon-
strate the favorable performance of the proposed method for mo-
tion recognition on various datasets as compared to the other
methods, and (3) to exhibit much faster computational time even
than real time. In particular, the proposed motion features are
based on co-occurrence histograms of the space–time 3D gradient
orientations and they are employed for frame-based features to
densely characterize the motion in contrast to recent works which
sparsely describe the motions by using simple occurrence histo-
gram of gradient orientations. To facilitate the implementation,
we explicitly describe the practical details of the proposed method,
such as parameter settings.

The rest of the paper is organized as follows: the next section
describes details of the proposed motion feature extraction meth-
od. Then, we describe the scheme to recognize motion using the
features in Section 3. In these sections, we also describe implemen-
tation details, such as parameter values, of the proposed method as
practical issues. In Section 4, the experimental results for motion
recognition are shown. Finally, Section 5 contains our concluding
remarks.

2. Feature extraction

First, we describe the method for extracting features of motion
in the space–time domain. The image feature extraction method in
(Kobayashi and Otsu, 2008) is developed to deal with space–time
volume in an image sequence, and we call the proposed method
space–time auto-correlation of gradients (STACOG). STACOG extracts
the local relationships, such as co-occurrence, among the space–
time (three-dimensional) gradients by means of the auto-correla-
tion functions regarding the space–time orientations and the mag-
nitudes of the gradients. The local relationships are closely related
to the local geometric characteristics of space–time motion shape.
In addition, STACOG has the property of shift-invariance which is
desirable for recognition.

2.1. Space–time gradient

The space–time (three-dimensional) gradient vector is calcu-
lated by derivatives (Ix, Iy, It) of motion image volumes I(x,y, t) at
Fig. 1. (a) The space–time (three-dimensional) gradients are described by the gradient m
orientation coding is based on bins (denoted by black dots) on a hemisphere, ignoring op
types along the latitude: static bins (blue) and dynamic bins (red). (For interpretation of t
of this article.)
each space–time point in an image sequence. As shown in
Fig. 1(a), the gradient vectors can be geometrically represented
by the magnitudes m ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I2
x þ I2

y þ I2
t

q
and two types of angle: spa-

tial orientation h = arctan(Ix, Iy) in an image frame and temporal
elevation / = arcsin(It/m) along the time axis, where the functions
arctan and arcsin output the angles within [0,2p) and [�p/2,p/2],
respectively. The space–time orientation of the gradient defined by
these two angles is coded into B orientation bins on a unit sphere
by voting weights to the nearest bins (Fig. 1(b)). Then, the orienta-
tion is finally described by a B-dimensional vector h, called space–
time orientation coding (STOC) vector. The STOC vector h consists
of the weights voted to B bins and is sparse: The number of non-
zero elements is at most four (see Fig. 1(a)).

Practical issue. For coding the gradients, we consider a hemi-
sphere ignoring the opposite directions of the gradients. Thus, bins
are located on the hemisphere as follows. Four orientation bins
along the longitude are arranged on each of five layers along the
latitude, and one bin is located at pole. Thus, there are a total of
B = 21 bins, as illustrated in Fig. 1(b).

2.2. Definition of STACOG

The Nth order auto-correlation function for the space–time gra-
dients is defined by using the magnitude m and the STOC vector h
of the gradients as follows:

RNða1; . . . ;aNÞ ¼
Z

w½mðrÞ; . . . ;mðr þ aNÞ�hðrÞ � � � � � hðr þ aNÞdr;

ð1Þ

where ai are displacement vectors from the reference point
r = (x,y, t), w is a weighting function, and � denotes the tensor prod-
uct of the vector. In the tensor products, there are a few non-zero
components associated to the gradient orientations of the neighbors
indicated by ai. Thus, Eq. (1) extracts the local relationships such as
co-occurrence of space–time gradients (Fig. 2(a)).

We restrict the parameters such that N 2 {0,1}, a1x,y 2 {±Dr,0},
a1t 2 {Dt,0}, w(�) �min(�), as in (Kobayashi and Otsu, 2008). For
the displacement interval, we use different parameters, Dr and
Dt, in the spatial and temporal axes, respectively. For the spatial
axes, the interval along the x-axis is made equal to that along the
y-axis because of isotropy in the XY plane. On the other hand, the
temporal interval Dt may be different from the spatial interval
Dr because the resolutions of space and time may differ. With re-
spect to the weight function w, we adopt min in order to suppress
the effect of isolated noise on surrounding auto-correlations.

Consequently, we obtain the following practical formulation of
STACOG:
agnitude m and STOC vector h which codes the gradient orientations (/,h). (b) The
posite directions along the longitude. The orientation bins are categorized into two
he references to color in this figure legend, the reader is referred to the web version



Fig. 2. STACOG exploits the local relationships of the gradient pairs (a) defined by the configuration patterns (b).

1 Pixel values belonging to moving objects fluctuate along the time-axis, resulting
the corresponding space–time gradients being oriented along the time-axis to a

rtain degree, whereas the orientations in static regions remain on XY plane.
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0th order : F0 ¼
P

r
mðrÞhðrÞ; ð2Þ

1st order : F1ða1Þ ¼
P

r
min½mðrÞ;mðr þ a1Þ�hðrÞhðr þ a1ÞT : ð3Þ

Note that the tensor product of two vectors simply equals to outer
product (�T denotes transpose) and the features F0, F1 are actually
vectorized. There are 13 configuration patterns of (r,r + a1) after
eliminating duplicated ones, as shown in Fig. 2(b). For the first-or-
der features F1, we calculate the outer product of the STOC vector
pairs indicated by the configuration patterns and sum them over
the space–time region with the magnitude-based weights. Despite
the high dimensionality of STACOG features (d = B + 13B2), the re-
quired computational cost is low due to the sparseness of STOC vec-
tor h. Namely, the operations in Eqs. (2) and (3) are applied only to a
few (at most, four) non-zero elements of the vector h.

Practical issue. As to displacements, Dr/Dt is closely connected
to velocity of target motion. We set Dt = 1, i.e., temporally adjacent
auto-correlation to cope with faster motions, and Dr 2 {1, . . . ,8} in
which the three most discriminative ones are selected in the later
process, as described in Section 3.3. Note that the displacements
are limited to local neighbors since local gradients are assumed
to be highly correlated.

2.3. Discussion of STACOG

2.3.1. Statistical property
The zeroth-order features F0 in Eq. (2) are equivalent to a histo-

gram of the space–time gradient orientations which is similar to
SIFT (Lowe, 2004), HOG (Dalal and Triggs, 2005) widely used in im-
age recognition and 3D-SIFT (Scovanner et al., 2007). Such histo-
gram indicating simple occurrence is an approximation
(quantization) of the orientation probability distribution over
space–time region. In the proposed method, the point is that we
extract the first-order features F1 in Eq. (3) corresponding to a joint
(co-occurrence) histogram of the space–time orientations of local
gradient pairs, which is a natural extension of the standard orien-
tation histogram. These first-order features are an approximation
of the joint probability distribution of the local orientation pairs
like co-occurrence matrix (Haralick et al., 1973) and color correlo-
grams (Huang et al., 1997).

2.3.2. Geometrical property
From the geometrical perspective, in the first-order features F1,

the combinations (co-occurrences) of the gradient pairs quantize
and patternize the three-dimensional curvatures of the space–time
shape, as shown in Fig. 2(a), while the zeroth-order features F0

characterize only the gradients similarly to 3D-SIFT (Scovanner
et al., 2007). The gradients and the curvatures extracted by the zer-
oth-order and the first-order features are fundamental geometric
characteristics of the space–time motion shape. Along the time
axis, these geometric characteristics also correspond to velocity
and accelerations of motion. Note that STACOG can simply extract
such geometric features via space–time gradients without explic-
itly extracting silhouettes (Blank et al., 2005).

2.3.3. Dynamic and static components
The space–time orientations of the gradients seamlessly reflect

dynamic and static situations along the latitude (Fig. 1(b)),1 and cor-
respondingly the STOC vectors h contain dynamic and static compo-
nents which are caused by the motion and the static figures, such as
background, respectively. Consequently, in STACOG features, the
zeroth-order features F0 can be categorized into two types, dynamic
and static, while the first-order features F1 are also categorized into
the following three types: The first type is derived from dynamic
motion only (correlation of dynamic � dynamic components in h).
The second type is derived from the relationship between dynamic
motion and static figure (dynamic � static correlation). Finally, the
third type is derived from static figures only (static � static correla-
tion). Thus, both the dynamic and static information is extracted
by STACOG in a unified manner. For motion recognition, however,
the static features in F0 and the static � static ones in F1 might be
unnecessary and can be eliminated since these features do not con-
tain any information about the motion itself. On the other hand, all
types of feature would be useful for tasks that simultaneously re-
quire information about motion and static objects, such as scene
understanding. We demonstrate how these types of feature compo-
nent contribute to performance in the experiments of motion recog-
nition (Section 4.1).

2.3.4. Comparison to related work
The proposed method is closely related to the method of

(Kobayashi and Otsu, 2009) which also extracts auto-correlations
in space–time domain, although the information to be correlated
is different. For extracting motion information, 0/1 (static/dy-
namic) scalar values extracted by frame-differencing and binariza-
tion are only used in (Kobayashi and Otsu, 2009), while space–time
gradient vectors, especially their orientations (h), are used in the
proposed method. Thus, the auto-correlation function itself is dif-
ferently defined based on tensor products in Eq. (1). The gradient
vectors provide richer information for motion recognition, effi-
ciently describing the geometrical characteristics of motion shape
as follows.

In (Kobayashi and Otsu, 2009), the geometrical characteristics
are captured only by the point configuration defined by mask
patterns as shown in Fig. 3(b), and the variations of the character-
istics solely rely on those of the mask patterns. However, it is dif-
in
ce



Fig. 3. Comparison of the proposed method and (Kobayashi and Otsu, 2009).

Fig. 4. An overview of bag-of-frame-features for motion recognition.
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ficult to capture all variations of local geometry by using such dis-
crete and finite mask patterns. On the other hand, in STACOG, even
by using quantization of continuous gradient orientations, detailed
local geometric characteristics can be efficiently captured. It is
quite advantageous for extracting motion features which contain
the various geometrical characteristics in three dimensions. In
addition, the relationship of even two gradients in Eq. (3) can ex-
tract the characteristics of curvatures unlike (Kobayashi and Otsu,
2009) which requires the relationship among three points for cap-
turing them (Fig. 3).

The proposed method is naturally extended from (Kobayashi
and Otsu, 2008) which is based on spatial gradients for image rec-
ognition. In this paper, we define auto-correlation in space–time
domain in a unified manner, directly utilizing three-dimensional
(quantized) orientations and the magnitudes of space–time gradi-
ents. The other related works also employ gradient-based features
for characterizing motions; Wong and Cipolla (2005) extract the
orientations of the 2D spatial gradients on the motion history
images (Bobick and Davis, 2001), and Zelnik-Manor and Irani
(2006) construct histograms of the respective 3D space–time gra-
dient component values (Ix, Iy, It) for motion features. While these
methods extract the motion features densely in the whole image
frames or the space–time volume, in recent years, it becomes pop-
ular to extract motion features sparsely at interest points (local cu-
boids) in the framework of bag-of-features (Csurka et al., 2004).
Dollar et al. (2005), Wong and Cipolla (2007) directly use, as fea-
ture vectors, 3D gradient component values in the cuboids at inter-
est points, Laptev et al. (2008) employ histograms of spatial
gradient orientations (HOG) together with those of optical flow ori-
entations (HOF), and Ballan et al. (2009) construct histograms of
space–time gradient orientations h in the spatial domain and /
along the time axis, respectively. Scovanner et al. (2007) consider
histograms of the two orientations h, / of the space–time gradi-
ents, called 3D-SIFT, which we also employ as primitive STOC vec-
tor h in this study (Section 2.1).

Space–time gradients, especially their orientations, extract geo-
metrical characteristics of the space–time motion shape in an essen-
tial manner as described in Section 2.3.2. In this paper, the temporal
aspect, static or dynamic, of the space–time gradient orientations is
discussed in Section 2.3.3 and its contribution to the performance
is experimentally illustrated in Section 4.1. It should be noted that
we consider the co-occurrence histogram of the space–time gradient
orientation pairs in the local neighborhood, while the above-men-
tioned methods are based on a simple occurrence histogram of the
gradient orientations. Such co-occurrence effectively encodes
space–time geometrical characteristics as described in Section 2.3.2,
attaining high discriminative power, which is advantageously uti-
lized for the subsequent frame-based motion features described in
the next section. These points are our main contribution.

3. Bag-of-frame-features scheme

For recognizing motions, we employ the framework of bag-of-
frame-features taking advantage of discriminative power of STACOG
features. In contrast to sparse representation in standard bag-of-
features (Dollar et al., 2005; Scovanner et al., 2007; Ballan et al.,
2009), this method captures the characteristics of motion suffi-
ciently (densely), and in addition it enables fast computation for
motion recognition. This method is based on frame-based STACOG
features sampled at dense (grid) time points along the time axis.
Such densely sampled frame-based features characterize the
motion sufficiently in the space–time domain and there are fewer
sampling points only along the time axis than interest points in
standard bag-of-features. We then apply feature transformation,
which is simply Fisher discriminant analysis (FDA) in this paper,
to enhance the discrimination between recognition classes while
excluding the irrelevant variations, such as background noise,
included in these features. The feature vectors are embedded into
a lower-dimensional space via FDA and then are quantized into
motion words at quite low computational cost due to the low
dimensionality. An overview of this framework is shown in Fig. 4.

3.1. Frame-based features

The frame-based STACOG features in Eqs. (2) and (3) are ex-
tracted by summing up over the full space–time region within a
sub-sequence of D time duration (frames). Such frame-based STA-
COG features are more global and sufficiently contain motion char-
acteristics in contrast to the sparse representation using local
features (Laptev et al., 2008; Dollar et al., 2005). We densely sam-
ple the frame-based features at every R frames along the time axis
with various time durations D. By exploiting the multiple features
of various D, a degree of time-scale variation is allowed. The den-
sely sampled features sufficiently describe the characteristics of
the motion in temporal domain without the time-consuming inter-
est point detector (Laptev, 2005), and the number of the features is
smaller than that of the local features at space–time interest
points. In addition, shift-invariance in both the spatial and the tem-
poral domains are rendered by STACOG and the grid time sam-
pling, respectively. The frame-based STACOG features are finally
normalized by separately applying SIFT-like normalization (Lowe,
2004; Dalal and Triggs, 2005) to the zeroth-order features F0 and
to the first-order ones F1 with the respective threshold values s0

and s1.
Practical issue. We use parameter values D 2 {10,20,30} and

R = 2. One-dimensional integral histograms (Porikli, 2005) along
the time-axis are applied to calculate the frame-based features in
a computationally efficient manner. In particular, for on-line recog-
nition, frames are successively inputted and frame-based STACOG
features are calculated incrementally. The threshold values of the
normalization are s0 = 0.03 for the zeroth-order and s1 = 0.005 for
the first-order features.

3.2. Motion words

We construct motion word clusters by clustering the frame-
based feature vectors and then assign these words (cluster IDs)
to the features. For motion classification, it is desirable that the
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clusters of motion words discriminatively represent motions, and
thus we simply apply the Fisher discriminant analysis (FDA) (Duda
et al., 2001) to all frame-based features in a learning phase. FDA
analytically constructs the lower-dimensional space having a
dimensionality of C � 1, where C is the number of recognition clas-
ses. In the FDA space, discrimination between classes is enhanced,
which makes motion word clusters more favorable, i.e., discrimina-
tive, with regard to recognition, while suppressing the irrelevant
variations, such as background noise.

Then, k-means clustering is applied to the feature vectors
embedded into the FDA space, and motion word clusters are ob-
tained. In this paper, in order to avoid bias with respect to the
number of samples in each class, the clustering is performed for
respective classes; k clusters are constructed in each class and all
kC clusters are employed for the motion words. Then, we assign
weighted motion words to each frame-based feature as follows
(like soft quantization (Philbin et al., 2008)). By considering n near-
est neighbor cluster centers to describe the feature, the weights xi

(i = 1, . . . ,n) are defined as

x̂i ¼
1 ði ¼ 1Þ
d1
di
ði > 1Þ

(
; xi ¼

x̂iPn
j¼1x̂j

¼
Q

l–idlPn
j¼1

Q
l–jdl

; ð4Þ

where di is the distance to the ith nearest center, and x̂i is the distance
ratio based on the nearest (i = 1) distance, which is then normalized
to xi. Unlike (Philbin et al., 2008) using the weight exp(�di/r), Eq.
(4) is based on simple calculation without exp and has only one
parameter n. Note that the above soft assignment of the motion
words to the frame-based features requires little computational cost
since the dimensionality of the FDA space (C � 1) is far lower than
that of the original feature space (B + 13B2) and the number of ex-
tracted features is small. Finally, a motion in a video sequence is de-
scribed as a histogram of the motion words by gathering the assigned
weights x, and the histogram vector is normalized in L2-norm.

Practical issue. The number of clusters for each class is k = 10,
and so the dimensionality of the final motion word histogram is
10C for recognizing C classes. The number of nearest neighbor clus-
ter centers in Eq. (4) is set to n = 3. These parameter values have
been determined empirically to yield favorable performances.

3.3. Classification

For fast computation, we apply linear classification learnt by
support vector machine (SVM) (Vapnik, 1998) and a one-against-
all approach to handle multi-class recognition.

We have no prior knowledge about the spatial displacement
interval Dr, and the number of Dr used must be as small as possible
in view of the computational load. Therefore, in the learning phase,
the optimal intervals are automatically selected as follows. For
each Dr 2 {1, . . . ,8}, the motion word histograms (2RkC) are sepa-
rately constructed by repeating the processes in Sections 3.1 and
3.2. We refer to the histogram associated with each Dr as a channel.
These channels (histograms) are concatenated into a vector whose
dimensionality is 8kC. For automatically selecting optimal chan-
nels, we apply the zero-norm SVM (Weston et al., 2002) to the con-
catenated vectors in the learning phase. The zero-norm SVM yields
sparse weights for each channel and the channels to which non-
zero weights are assigned are considered as the optimal (most dis-
criminative) ones for recognition. In this paper, we select three
optimal channels, and apply the linear classifier described above
to the vector into which the optimal channels are concatenated.

4. Experiments

We conducted motion recognition experiments to evaluate the
performance of the proposed method by using various datasets
(Fig. 5): three human action datasets (KTH, Weizmann and Holly-
wood2), one human gesture dataset (RWC), and one hand gesture
dataset (Cambridge). All of the sequences in the datasets are down-
sampled into a half spatial resolution. For fair comparison, we em-
ployed the standard experimental protocols as in the other works.
Details about the datasets and the protocols are given below.

KTH human action: The KTH human action dataset (Schuldt
et al., 2004) contains six types of human action; walking, jogging,
running, boxing, hand waving, and hand clapping, which are per-
formed several times by 25 subjects under four different condi-
tions: outdoors, outdoors with scale variation, outdoors with
different clothing, and indoors. In all conditions, the background
is homogeneous (Fig. 5(a)). We follow the original experimental
setup of Schuldt et al. (2004) (1-shot): the sequences of 16 subjects
are used for training, and the remaining sequences of 9 subjects are
used for testing. The performance is evaluated based on the aver-
age accuracy over action categories.

Cambridge hand gesture: The Cambridge hand gesture dataset
(Kim et al., 2007) contains nine hand gestures defined by three
primitive hand shapes and three primitive motions, which are per-
formed 10 times by two subjects under five different illumination
conditions with a homogeneous background (Fig. 5(b)). We use the
sequences acquired under the plain illumination condition for
training and those under the remaining four conditions for the test.

Weizmann human action: The Weizmann human action data-
set (Blank et al., 2005) contains nine types of human action; run-
ning, walking, jumping jacks, jumping forward, jumping in place,
galloping sideways, waving two hands, waving one hand, and
bending, which are performed once by each of nine subjects. The
background has non-homogeneous texture (Fig. 5(c)). We evaluate
the performance by employing the scheme of leave-one-subject-
out in (Wang and Mori, 2009); the sequences of eight subjects
are used for training and those of the remaining subject are for
testing, which is repeated for all nine subjects.

RWC human gesture: The RWC human gesture dataset (Hay-
amizu et al., 1996) contains 17 types of human gesture; up, down,
right, left, front, beyond, square, pointing at ‘‘this’’, this size, me,
pointing left, pointing right, turn clockwise, turn counterclockwise,
stop, expand, and reduce. Each of these gestures is performed four
times by 48 subjects. This is a large dataset captured indoors with a
homogeneous background (Fig. 5(d)). The performance is evalu-
ated by using the leave-one-subject-out scheme.

Hollywood2 human action: The Hollywood2 human action
dataset (Marszalek et al., 2009) contains 12 types of human action
collected from 69 movie films (Fig. 5(e)); driving car, eating, fight-
ing, running, answering the phone, getting out of the car, shaking
hand, hugging, kissing, sitting down, sitting up, and standing up.
In the motion images, multiple persons are shown against clut-
tered backgrounds with the large intra-class variability of action
classes. This is a challenging dataset for action recognition. We fol-
low the experimental protocol in (Wang et al., 2009): ‘‘clean’’
(manually annotated) training and test sets are used, and the per-
formance is evaluated by mean average precision rate (mAP) over
action categories.

For the proposed method, we used the parameter settings de-
scribed as practical issues in this paper. Note that such parameter
settings were empirically determined so as to produce favorable
performances, especially on KTH dataset.

4.1. Performance analysis on the KTH dataset

First, using the KTH dataset, we analyze the performance of the
proposed method in various settings.

Gradient: Gradient computation is the first processing step that
may affect the final performance. We applied three types of 3-D
derivative filter: Sobel, one-dimensional derivatives (1d-dev;



Fig. 5. Example images of the datasets.
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[�1,0,1]), and Roberts filters. As shown in Table 1(a), the 1d-dev
filter is the most effective, as in HOG (Dalal and Triggs, 2005),
whereas Roberts filter is least effective. The 1d-dev and Sobel filter,
which are somewhat larger filters, can capture rather faster mo-
tions in contrast to the compact Roberts filter.

STACOG components: We evaluate the several types of STACOG
components (Section 2.3.3): dynamic and static in the zeroth-order
features, and dynamic � dynamic, dynamic � static, and static � -
static in the first-order features. Note that the number of static (ori-
entation) bins in the STOC vector h is four, and the other bins are
regarded as dynamic ones, as shown in Fig. 1(b). For the evaluation,
we sequentially exclude static-related feature components, and the
results are shown in Table 1(b). The right column shows the perfor-
mance by using all types of feature components, while the left one
shows the performance by only dynamic components. As expected,
the features of static in the zeroth order and static � static in the
first order, capturing only static figures, are redundant, thereby
slightly worsening the performance, whereas those of dynamic � -
static contribute to the performance improvement by extracting
the relationship of dynamic and static parts of the human body.
The combination of dynamic components including dynamic � -
static is found to be optimal for motion recognition.

Spatial interval Dr: The spatial displacement interval Dr is
dependant on the target scale. The performances for various Dr
are shown in Table 1(c) as compared to the combination of three
Dr optimally selected by zero-norm SVM (Weston et al., 2002) as
described in Section 3.3. The result of the optimal combination is
slightly superior to that of Dr = 7 which is the best result among
Dr = 1, . . . ,8. More importantly, there is no need to manually tune
Dr when we use the automatic selection.

Motion word: The effectiveness of the motion words in the FDA
space is shown in Table 1(d), compared to standard motion words
in original feature space. By applying FDA, the performance is
greatly improved. Note that the computational cost for assigning
motion words is also decreased due to the dimensionality reduc-
tion by FDA as described in Section 3.2.

Optical flow: In addition, we compare STACOG to the features
of auto-correlations of optical flow that we newly propose here
for the comparison. The optical flow, a popular method for motion
feature extraction, is expressed as a two-dimensional vector at
each pixel, and we code the vector into eight orientation bins as
in Section 2.1. The local relationships of the optical flow pairs
can be exploited by Eqs. (2) and (3) in which the coded flow orien-
tations and the flow magnitude are substituted for the STOC vector
h and the gradient magnitude m, respectively. We refer to this
method as space–time auto-correlation of flows (STACOF). As
shown in Table 1(e), STACOG using the space–time gradient is
superior to STACOF. STACOF focuses only on movements (corre-
sponding to dynamic � dynamic in STACOG) of subjects, whereas
STACOG additionally consider dynamic � static, as described above.
In addition, the magnitude of the flow is coded in the temporal ele-
vation / of the space–time gradients, while STACOF reduces the
magnitude to just a weight for the auto-correlation. Moreover,
the computed optical flow is not so reliable due to image noise,
whereas STACOG is stable by using the gradient magnitudes as
weights, which are roughly related to the confidence weights in
the optical flow. The results in Table 1(e) indicate that the funda-
mental space–time gradients are more suitable for extracting mo-
tion features.

Running Time: The computational time for each process of the
proposed method is shown in Table 1(f). The method requires only
0.3 s per video sequence, each of which contains about 95 frames
(about 4 s at 25fps) on average, by using Xeon 3 GHz PC and Matlab
(except for feature extraction implemented by mex-C). This is 10
times faster even than real time. From the qualitative viewpoint,
it can be said that the method is faster than the other state-of-
the-art methods based on the standard bag-of-features scheme
because, as described in Section 3, the proposed method



Table 2
Comparison with the other methods on various datasets.

(a-1) KTH dataset (1-shot)

Method acc. (%)

Schuldt et al. (2004) 71.7
Kobayashi and Otsu (2009) 88.0
Laptev et al. (2008) 91.8
Wang et al. (2009) 92.1
Ballan et al. (2009) 92.1
Ours 95.6

(a-2) KTH dataset (Leave-one-out)

Dollar et al. (2005) 81.2
Niebles et al. (2006) 81.5
Wong and Cipolla (2007) 86.7
Kobayashi and Otsu (2009) 90.7
Wang and Mori (2009) 91.2
Bregonzio et al. (2009) 93.2
Liu and Shah (2009) 94.2
Ours 96.2

(b) Cambridge dataset (%)

Method Set1 Set2 Set3 Set4 Avg.

Niebles et al.
(2006)

70 57 68 71 66

Kobayashi
and Otsu
(2009)

82 76 70 82 78

Kim et al.
(2007)

81 81 78 86 82

Ours 94 84 82 96 89
Ours (sobel) 94 87 91 95 92

(c) Weizmann dataset

Method acc. (%)

Scovanner et al. (2007) 82.6
Dollar et al. (2005) 86.7
Ballan et al. (2009) 92.4
Riemenschneider et al. (2009) 96.7
Kobayashi and Otsu (2009) 98.8
Jhuang et al. (2007) 98.8
Wang and Mori (2009) 100
Ours 100

(d) RWC dataset

Method acc. (%)

Ishihara and Otsu (2004) 95.7
Kobayashi and Otsu (2009) 95.9
Ours 98.1

(e) Hollywood2 dataset

Method mAP (%)

Kobayashi and Otsu (2009) 26.3
Marszalek et al. (2009) 35.5
Wang et al. (2009) 47.7
Ours 45.7

Table 1
Performance analysis of the proposed method in various settings by using the KTH
dataset (1-shot).

(a) Gradient computation

Filter Sobel 1d-dev Roberts

Accuracy (%) 94.1 95.6 91.8

(b) STACOG components

0th dynamic U U U

static U

dynamic � dynamic U U U

1st dynamic � static U U

static � static U

Accuracy (%) 92.8 95.6 94.6

(c) Spatial interval Dr

Dr Accuracy (%)

1 94.0
2 93.9
3 93.3
4 93.3
5 93.2
6 93.7
7 94.2
8 93.7
opt. 95.6

(d) Motion word

Motion word in FDA in original space

Accuracy (%) 95.6 82.2

(e) Optical flow

Method Space–time gradient Optical flow

Accuracy (%) 95.6 90.7

(f) Average running time per video sequence

Process Feature Motion word Classify Total

Time (s) 0.273 0.0406 0.000174 0.314
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unnecessitates time-consuming detection of numerous interest
points which consequently yields exhaustive processes for a large
amount of local feature extractions and visual word assignments.
The method could be made to perform several times faster still
by using parallel or multi-thread programming since the processes
using the three selected Dr are completely parallel for each Dr and
the STACOG feature extraction process can also be parallelized for
image data.

4.2. Comparison with the other methods

Next, we compare the performance of the proposed method to
those of the other methods on the five datasets. Note that the same
parameter setting is used in the proposed method over all these
datasets, except that we use larger time grid interval of R = 5 for
large datasets (KTH, RWC and Hollywood2) due to memory storage
and use full eight channels of Dr = 1–8 for Hollywood2 to slightly
improve the performance (�1%). In addition, unlike in (Jhuang
et al., 2007; Wang and Mori, 2009), preprocessing, such as back-
ground subtraction, was not applied to motion sequences. On
KTH, we additionally employed the leave-one-subject-out
(Table 2(a-2)) as well as 1-shot evaluation.

Table 2 shows the performance results; for the other methods,
we show the performances reported in the reference papers. The
proposed method yields favorable performances on most datasets,
as compared to the other methods. Note that the proposed method
exhibits the superior performance on the KTH dataset which is
widely used to evaluate the performance of motion recognition.
The proposed method also produces impressive results on the
other datasets captured in various situations, such as textured
backgrounds (Weizmann), large recognition classes (RWC), and
illumination changes (Cambridge). In addition, these results show
that the proposed method is applicable to low-resolution video se-
quences since all sequences are actually down-sampled to half
size. These results demonstrate that the proposed method com-
prising co-occurrence histograms of space–time gradient orienta-
tion pairs and its (dense) frame-based features is quite effective
for motion recognition, compared to the other gradient-based
methods such as 3D-SIFT by Scovanner et al. (2007) and HOG+HOF
by Laptev et al. (2008) which characterize motions by using
sparsely extracted gradient-based local features, i.e., simple occur-
rence histogram of gradient orientations.
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On the Hollywood2 datasets, the irrelevant information derived
from the cluttered background is inevitably included in the frame-
based features. The performance of the proposed method is de-
graded, but it is close to that of (Wang et al., 2009) (Table 2(e))
since FDA effectively suppresses the effects of such irrelevant
information. The performance might be improved, for example,
by employing the other discrimination method (e.g., mutual sub-
space method (Fukui and Yamaguchi, 2003)) or applying the STA-
COG features to the local descriptors in (Wang et al., 2009).

5. Conclusion

We have proposed a method for extracting motion features and
thereby have provided an effective and high-speed method of mo-
tion recognition. The proposed feature extraction method is based
on local auto-correlations of the space–time gradients and effec-
tively captures the geometric characteristics, such as curvatures,
of space–time motion shape. The motion is recognized in the
framework of bag-of-frame-features, which can sufficiently (den-
sely) extract the motion characteristics in a computationally effi-
cient manner, unlike standard bag-of-features which describes
the motion sparsely. In experiments on motion recognition using
various datasets, the proposed method exhibited favorable perfor-
mances, as compared to the other methods. In addition, the results
were obtained with less computational load and much faster than
real time.
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