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In this material, we show the EM method [3] which is basically used to produce co-
clusters as described in Sec.2.2, and its modified versions to cope with various domains used
in the experiments (Sec.4).

A EM method

As described in Sec.2.2, suppose we obtain the (classifier) weight WWW on R×R, actually
WWW ∈ ℜL×L

+ by finely partitioning the domain space R into L bins. Let xi ∈ ℜd represent

the quantitative data at the i-th bin, and it is augmented as x̃i j =
[xi
x j

] ∈ ℜ2d to represent
the i, j-th joint bin corresponding to the element Wi j on R×R. We normalize the weight
by WWW ←WWW/∑L

i j Wi j such that it is regarded as the probability distribution, p(x̃i j) � Wi j, to
which the EM method is applied.

Given the number of co-clusters D, the EM method [3] is applied on the probability
distribution WWW as follows.

Algorithm 1 : EM method

Input: WWW ∈ℜL×L
+ , D

1: Initialize α(0)
k ∈ℜ, μ(0)

k ∈ℜ2d , Σ(0)
k ∈ℜ2d×2d (k = 1, ..,D), t = 0

2: repeat

3: γi jk = α(t)
k N (x̃i j ; μ(t)

k ,Σ(t)
k )

∑D
k α(t)

k N (x̃i j ; μ(t)
k ,Σ(t)

k )
, ∀i, j,k

4: α(t+1)
k = ∑L

i j Wi jγi jk, ∀k
5: μ(t+1)

k = 1
α(t+1)

k

∑L
i j Wi jγi jkx̃i j, ∀k

6: Σ(t+1)
k = 1

α(t+1)
k

∑L
i j Wi jγi jk

{
x̃i j−μ(t+1)

k

}{
x̃i j−μ(t+1)

k

}�
, ∀k

7: t← t +1
8: until convergence

Output: Nk(x1,x2) = N
([ x1

x2

]
; μk, Σk

)
with αk (k = 1, ..,D)

The EM method produces the cluster component functions Nk(x1,x2) with their prior
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weights αk which are subsequently used to determine the discriminative co-clusters gk as
shown in (3) of the paper. Note that N (x̃ ; μ , Σ) indicates the Gaussian distribution function
with the mean μ and the covariance matrix Σ.

B EM method on symmetric domain

In the experiment on cancer detection (Sec.4.1), we consider the symmetric co-occurrences
to render the rotation invariance, which results in the symmetric (classifier) weight Wi j =
Wji,∀i, j.

The EM method is modified for such a symmetric weight (probability distribution) WWW as
follows.

Algorithm 2 : EM method on symmetric domain

Input: WWW ∈ℜL×L
+ , D

1: Initialize α(0)
k ∈ℜ, μ(0)

k ∈ℜ2d , Σ(0)
k ∈ℜ2d×2d (k = 1, ..,D), t = 0

2: α(0)
D+k = α(0)

k , μ(0)
D+k = flip(μ(0)

k ), Σ(0)
D+k = flip(Σ(0)

k ) (k = 1, ..,D)
3: repeat

4: γi jk = α(t)
k N (x̃i j ; μ(t)

k ,Σ(t)
k )

∑2D
k α(t)

k N (x̃i j ; μ(t)
k ,Σ(t)

k )
, ∀i, j,k

5: ᾱk = ∑L
i j Wi jγi jk, ∀k

6: μ̄k = 1
ᾱk

∑L
i j Wi jγi jkx̃i j, ∀k

7: Σ̄k = 1
ᾱk

∑L
i j Wi jγi jk

{
x̃i j− μ̄k

}{
x̃i j− μ̄k

}�
, ∀k

8: α(t+1)
k = 1

2 {ᾱk + ᾱD+k} , k = 1, · · · ,D
9: μ(t+1)

k = 1
2 {μ̄k +flip(μ̄D+k)} , k = 1, · · · ,D

10: Σ(t+1)
k = 1

2

{
Σ̄k +flip(Σ̄D+k)

}
, k = 1, · · · ,D

11: α(t+1)
D+k = α(t+1)

k , μ(t+1)
D+k = flip(μ(t+1)

k ), Σ(t+1)
D+k = flip(Σ(t+1)

k ), k = 1, · · · ,D
12: t← t +1
13: until convergence

Output: Nk(x1,x2) = N
([ x1

x2

]
; μk, Σk

)
+N

([ x1
x2

]
; flip(μk), flip(Σk)

)
with αk (k = 1, ..,D)

The function flip flips a vector or a matrix symmetrically: for aaa,bbb ∈ℜd ,AAA,BBB,CCC ∈ℜd×d ,

flip
([aaa

bbb

])
=

[
bbb
aaa

]
, flip

([
AAA BBB

BBB� CCC

])
=

[
CCC BBB�
BBB AAA

]
.

To cope with the symmetric weight, the cluster components are (temporarily) doubled in
symmetric forms using the flip (lines 2, 11 and Output). The lines 8 ∼ 10 are applied for
numerical stability.

C EM method on circular domain

In the case that the primitive quantitative data are gradient orientations (Sec.4.2), the (clas-
sifier) weight WWW is obtained on the circular domains (orientations) of 2π cycle. In order to
cope with the circularity, we modify the EM method as follows.
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Algorithm 3 : EM method on circular domain

Input: WWW ∈ℜL×L
+ , D

1: Initialize α(0)
k ∈ℜ, μ(0)

k ∈ℜ2d , Σ(0)
k ∈ℜ2d×2d (k = 1, ..,D), t = 0

2: repeat

3: γi jk = α(t)
k Ncirc(x̃i j ; μ(t)

k ,Σ(t)
k )

∑D
k α(t)

k Ncirc(x̃i j ; μ(t)
k ,Σ(t)

k )
, ∀i, j,k

4: α(t+1)
k = ∑L

i j Wi jγi jk, ∀k
5: μ(t+1)

k = arg
{

1
α(t+1)

k

∑L
i j Wi jγi jkexp

(
ix̃i j

)}
, ∀k

6: Σ(t+1)
k = 1

α(t+1)
k

∑L
i j Wi jγi jk

{
x̃i j

circ−− μ(t+1)
k

}{
x̃i j

circ−− μ(t+1)
k

}�

7: t← t +1
8: until convergence

Output: Nk(x1,x2) = Ncirc

([ x1
x2

]
; μk, Σk

)
with αk (k = 1, ..,D)

We assume that the clusters are localized, not spreading over whole of the circular do-
main. On that assumption, the clusters can be approximated by Gaussian distribution locally
around the mean (mode). It should be noted that such pairs of circular data form the distri-
bution on a torus [2], not a sphere, and the clustering using von Mises-Fisher distribution [1]
can not be directly applied. The main differences from Algorithm 1 are lines 5 and 6 accord-
ing to the circularity. The functions exp and arg operate on each element:

exp(iaaa) =

⎡

⎣
exp(ia1)

...
exp(iad)

⎤

⎦ , arg{exp(iaaa)}=

⎡

⎣
arg{exp(ia1)}

...
arg{exp(iad)}

⎤

⎦ =

[ a1
...

ad

]

,

where i indicates the imaginary unit. The operator circ−− is modified minus so as to fit the
circular domain:

a circ−− b =

⎧
⎨

⎩

a−b−2π if a−b > π
a−b if |a−b|< π
a−b+2π if a−b <−π

.

Thus, Ncirc is also a modified Gaussian distribution function using circ−−1:

Ncirc(x̃; μ , Σ) =
1

√
(2π)2d |Σ| exp{−1

2
(x circ−− μ)�Σ−1(x circ−− μ)}.
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1Strictly speaking, Ncirc is not probability density function since
∫ Ncirc(x̃; μ,Σ)dx̃ �= 1 on this circular domain,

but we adopt this simply modified form due to computational convenience.


