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Abstract

We propose a method to extract image features based on effective higher-order co-
occurrences. The proposed method constructs the co-clusters to discriminatively quan-
tize joint primitive quantitative data, such as pair-wise pixel intensities, unlike the stan-
dard co-occurrence methods that utilize simple clusters trained in an unsupervised man-
ner for quantizing point-wise data. The discriminative co-clusters effectively exploit the
co-occurrence characteristics even by a fewer number of cluster components, resulting
in low-dimensional co-occurrence features. By taking advantage of those discriminative
co-clusters, the co-occurrence features can be extended to the higher-order co-occurrence
features of feasible dimensionality. The higher-order co-occurrence captures richer in-
formation in image textures by extracting relationships in multiplets more than only dou-
blets (pairs). In the experiments on image classifications for cancer cells and pedestrians,
the proposed method exhibits favorable performances compared to the other methods,
even to the standard co-occurrence based methods.

1 Introduction

Image classification is important to tackle a variety of real-world problems such as com-
puter aided diagnosis and image surveillance, and much research effort has been made in the
computer vision community. A feature extraction is especially a fundamental procedure to
improve the performances of the image classification. It is necessary to extract characteris-
tics of target objects and textures with retaining robustness to irrelevant variations derived
from environmental changes, such as changes in illumination or target position.

Histogram-based feature extraction methods have exhibited promising performances,
e.g., SIFT [11], HOG [5], color histogram [15, 18] and bag-of-feature (BoF) [4]. Those
methods statistically extract image features by measuring occurrences of the qualitative data
(referred to as symbols in this paper) in the form of histograms; examples of the symbols
are gradient orientation bins in SIFT and HOG, indexed colors in the color histogram and
visual words in BoF. The statistical features are robust to noises and they are fed into sub-
sequent classification methods, such as SVM [19], for accomplishing the image classifi-
cation. Beyond the histogram-based methods considering occurrences, co-occurrence fea-
ture extraction methods have also attracted keen attentions thanks to the superior perfor-
mances [6, 7, 8, 9, 10, 17, 23, 24]. The methods statistically describe the image by using
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co-occurrences of symbols on pair-wise pixels, while the histogram-based methods men-
tioned above are based only on the point-wise occurrence. The co-occurrence can capture
the richer information, i.e., joint information of the symbols, and the occurrence features are
regarded as the marginal ones of the co-occurrence features from the probabilistic viewpoint.
The co-occurrence features that exploit the local pixel pairs also retain the shift invariance as
in the histogram-based features, which is favorable to image classifications.

For extracting the co-occurrences, it is common to transform the quantitative data into
qualitative data (symbols) by means of quantization (clustering) at first, as is the case with the
histogram-based methods; for example, continuous gradient orientation is coded into orien-
tation bins [8, 17], RGB colors are indexed [7] and local features are categorized into visual
words [10, 24], although a few works [1, 13] attempt to directly code joint pairs of local
features for BoF. The quantization process taken over from the histogram-based methods is
given a priori in an ad-hoc manner based on prior knowledge regarding the point-wise statis-
tics of the quantitative data, not pair-wise data. Therefore, the obtained qualitative symbols
are not necessarily suitable to characterize the co-occurrence. And, the co-occurrence fea-
tures have been computed based only on pair-wise symbols and higher-order co-occurrences
beyond pair-wise ones have been rarely considered so far due to exponential increase of
the dimensionality; even 10 types of symbol produce 104 dimensionality for the quadruplet
co-occurrence.

In this paper, we propose a method to extract higher-order co-occurrence image fea-
tures. The proposed method is built upon the co-clusters discriminatively quantizing pair-
wise quantitative data, in contrast to the standard methods that utilize simple clusters of
point-wise data trained in an unsupervised manner. The discriminative co-clusters directly
capture the statistical characteristics, i.e., co-occurrence, of pair-wise data, and effective co-
occurrence features are extracted by using even a small number of the co-clusters, which
results in low dimensionality. Thus, we can develop the higher-order co-occurrence feature
of feasible dimensionality based on co-occurrences of quadruplets which are pairs of pair-
wise data represented by the discriminative co-clusters. The higher-order co-occurrences
exploit richer information in image textures by taking into account of higher-order relation-
ships in multiplets more than doublets (pairs) and contribute to improve the performance of
image classifications.

2 Discriminative co-clusters for co-occurrence features

2.1 Standard co-occurrence features

Co-occurrence features first appeared in the work by Haralick et al. [6] which character-
izes image textures by gray-level co-occurrence matrix (GLCM). Recently, the standard
co-occurrence features are founded on the qualitative data (symbols); gradient orientation
bins [8, 17], indexed colors [7] and visual words [10, 24]. These methods first cluster
(quantize) primitive quantitative data, e.g., gradient orientations, RGB colors and local fea-
tures [11], into those symbols and then measure the co-occurrences among them. The co-
occurrences of the primitive quantitative data as in GLCM [6] are considered to be sensitive
to the irrelevant variations derived from noise. Through the process of information reduction
by quantizing the quantitative data, the resultant features are robust against such variations,
improving the classification performances.

In summary, we mathematically describe the process to construct the standard co-occurrence
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Figure 1: Examples of cluster assignment functions fi.
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(a) Standard co-occurrence using fi (b) Proposed co-occurrence using gk
Figure 2: Procedures to extract co-occurrence features.

features as follows. Let R be the quantitative data space1, xppp ∈ R be the quantitative data
at pixel position ppp in an image plane. We introduce the function fi(x) : R→ ℜ+ to assign
x ∈R with the membership to the i-th cluster (i = 1, · · · ,C), as shown in Fig. 1. Note that we
generally consider the soft assignment by fi, not only hard assignment fi : R→ {0,1}. The
cluster assignment functions fi are usually determined a priori or in an unsupervised manner
such as by applying k-means or EM method. The co-occurrence features are defined by

MMM =

{
∑

{ppp,qqq}∈N

ω(ppp,qqq) fi(xppp) f j(xqqq)

}
i, j=1,··· ,C

∈ ℜC×C, (1)

where N indicates the set of local neighbor pairs; e.g., N = {(ppp,qqq)
∣∣‖ppp− qqq‖ = Δ} where

Δ is the displacement interval for local neighborhoods. In this paper, unlike the legacy co-
occurrences [6, 7], we introduce the weighting function ω on pixel pairs, the actual form of
which is practically defined depending on the task (see Sec.4) as in [8].

2.2 Discriminative co-clustering

We consider the following general form for extracting the co-occurrence features:

MMM =

{
∑

{ppp,qqq}∈N

ω(ppp,qqq)gk(xppp,xqqq)

}
k=1,··· ,D

∈ ℜD, (2)

where we introduce the function gk(xppp,xqqq) : R×R→ ℜ+ to assign the pair (xppp,xqqq) with the
k-th cluster (k = 1, · · · ,D) in the joint space R×R, called co-cluster. The formulation (1)
is the special case of (2) since (2) corresponds to (1) in the case that the co-clusters can be
factorized by gk(xppp,xqqq) = fi(xppp) f j(xqqq) with D =C2. The formulation (1) using the factorized
cluster assignment functions assumes that the primitives xppp,xqqq act independently, although
those local neighborhoods actually work on each other. The general form (2) naturally copes

1For example, R = [0,1] for pixel intensities, and R = [0,2π) for gradient orientations.
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Figure 3: Construction of discriminative co-clusters gk.

with such mutual interferences by using the co-cluster assignment function gk in the joint
space R×R. The primitive co-occurrence on R×R of highly correlated pairs can not be
efficiently characterized by using the factorized functions fi, while even small number of
the joint functions gk can exploit it effectively. The procedure to extract the proposed co-
occurrence features by using gk is illustrated in Fig. 2 with comparison to that of the standard
co-occurrences (Sec.2.1).

We determine the function gk in a discriminative manner. Suppose a two-class problem of
images In with the class label yn ∈{+1,−1}. From the image In, we first extract primitive co-
occurrence features M̃MMn on R×R as in GLCM [6]; in practice, the space R which is usually
continuous is finely partitioned into (large number of) L bins, resulting in M̃MMn ∈ ℜL×L. Then,
the linear SVM [19] is applied to those (M̃MMn,yn) in order to produce the classifier weight
WWW = ∑n βnynM̃MMn on R×R, actually WWW ∈ ℜL×L, where βn are the Lagrange multipliers in
SVM. The classifier weight exploits the discriminative information: the positive weights
in WWW contribute to ’+1’ class, while the negative ones to ’-1’ class. Finally, we perform
clustering on the weight matrix WWW to produce the co-cluster assignment function gk which is
determined as the membership function to the k-th (co-)cluster on R×R. We separately treat
the weight WWW in terms of its sign (positive/negative) as the positive weight WWW+ = max(WWW ,0)
and the negative WWW− = max(−WWW ,0), WWW = WWW+ −WWW−, and apply the clustering method to
those respective weights as follows.

Though any kinds of clustering methods like mean shift [3] and quick shift [20] are
applicable, in this study we adopt the EM method based on the mixture of Gaussian distri-
bution because the method provides soft membership to the clusters with a free parameter
of the number of clusters. Soft assignment would reduce the quantization errors, improv-
ing the classification performances [16]. The parameter for the number of clusters easily
controls the dimensionality of the resultant co-occurrence features. Whilst, the other meth-
ods, mean shift [3] and quick shift [20], work for hard segmentation with the bandwidth
parameter instead of the number of clusters. By applying the EM method [22] to the re-
spective weights WWW+/− regarded as probability densities, we obtain the cluster component

(Gaussian) functions N+/−
k with the prior weights α+/−

k , which are gathered into the set of
{Nk,αk,ρk}k=1,··· ,D where ρk ∈ {ρ+,ρ−} indicates the prior either of positive ρ+ or nega-
tive ρ−. The function gk is finally determined by

gk(x1,x2) =
ρkαkNk(x1,x2)

∑k ρkαkNk(x1,x2)
, ∀x1,x2 ∈R, (3)

which is the posterior probability at (x1,x2), resulting in the normalized gk: ∑k gk(x1,x2) = 1.
Clusters in the positive and negative weights are integrated via the priors ρ+/− and we set
them to ρ+ = ρ− = 0.5 in this study. The above-mentioned procedure to construct the
discriminative co-clusters gk is illustrated in Fig. 3.

In the standard method (Sec.2.1), the cluster assignment functions fi are given simply by
clustering point-wise quantitative data samples, i.e., (point-wise) primitive occurrences, in an
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Figure 4: Higher-order co-occurrence.

unsupervised manner. The primitive occurrences, however, do not have enough discrimina-
tive power. On the other hand, the primitive co-occurrences are more discriminative than the
occurrences, and thus the well-localized classifier weights are obtained. Our contributions
are 1) to consider co-occurrences from the top for quantization and 2) to discriminatively
construct co-clusters based on the (initial) classification weight by the linear SVM. A few
BoF methods [1, 13] consider the clustering of joint pairs of local features, but the clusters
are constructed in an unsupervised manner.

3 Higher-order co-occurrence features

The co-cluster assignment functions gk discriminatively characterize joint (pair-wise) quanti-
tative data, and then we obtain the co-occurrence features (2) of usually lower dimensionality
D than C2 of the standard features (1) using the factorized functions fi f j. This is because the
function gk can naturally cope with the joint relationship of correlated data at once without
assuming factorization fi f j. Based on such fact, we further develop the higher-order co-
occurrence features on the multiplets more than doublets (pairs). In this paper, we consider
the co-occurrence of quadruplets which are pairs of pair-wise data.

The proposed higher-order co-occurrence features are defined by

HHH =

{
∑

{ppp,qqq,rrr,sss}∈Q

ω(ppp,qqq, rrr, sss)gk(xppp,xqqq)gl(xrrr,xsss)

}
k,l=1,··· ,D

∈ ℜD×D, (4)

where Q indicates the quadruplets. In this higher-order co-occurrence, it is important how
to determine the quadruplets Q, forms of which could be combinatorially increased. Co-
occurrences are based on pairs which are oriented in various directions as shown in Fig. 4a,
and we configure the quadruplets, the pairs of pairs, in the form of cross as shown in Fig. 4b
in order to extract diverse characteristics in image textures; the pairs in the cross are maxi-
mally (orthogonally) separated.

The procedure to extract the higher-order co-occurrence features is illustrated in Fig. 4c.
The formulation (4) is similar but one-order higher than that of the standard co-occurrence
(1) (Fig. 2a) by replacing the functions fi, f j with gk,gl , point-wise data xppp,xqqq with pair-
wise data (xppp,xqqq),(xrrr,xsss), and thus doublets (pairs) of elements (xppp,xqqq) with the quadru-
plets (xppp,xqqq,xrrr,xsss). In the proposed features, the co-occurrences are computed by the his-
togram on gk in (2) and the higher-order co-occurrences are given by the co-occurrence on
gkgl in (4). In case that we use the standard co-occurrences fi f j for this higher-order co-
occurrence, the dimensionality of the resultant feature is significantly large, C4, which is
infeasible from the practical viewpoint. In addition, the higher dimensionality would cause
over-fitting to the training samples, degrading the performance. In the proposed method, by
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utilizing smaller number of the discriminative co-clusters, the dimensionality of the higher-
order co-occurrence feature is feasibly low with capturing the relationships in the quadru-
plets to extract the discriminative higher-order information in the image textures. Note that
the features in (4) are finally fed into the classification method, apart from the initial classi-
fication by linear SVM in constructing co-clusters gk (Sec.2.2).

4 Experimental results

We apply the proposed method to two image classification tasks: cancer detection and pedes-
trian detection which result in binary (two class) classifications as cancer vs. non-cancer and
pedestrian vs. non-pedestrian. For discriminative co-clusters (Sec.2.2), we apply the EM
method to the positive weight WWW+ and negative WWW− with the half number of D, respectively;
e.g., in the case of D = 20, we obtain respective 10 co-clusters from positive and negative
weights. In these experiments, the (higher-order) co-occurrence feature matrices MMM (HHH) are
unfolded into vector forms normalized in unit L2 norm and classification is finally performed
by applying linear SVM [19] to the feature vectors.

4.1 Cancer detection

First, for computer-aided diagnosis (CAD), we conducted the experiment on cancer detection
by using a high-resolution biopsy image including stomach cancer cells which metastasized
to lymph nodes. The biopsy image is obtained by H&E staining and tissues are stained
by violet blue or light red as shown in Fig. 7. The original huge image of 21168×14992
pixels is split up into six sub-images of the identical size (7056×7496) and the pixel-wise
labels indicating cancerated regions are correspondingly given by the expert pathologists.
The features are extracted on the running windows of 200×200 pixels shifted by 100 pixels;
namely, such patches of 200×200 pixels are treated as the input images In with the label
yn = sign(Eppp∈patchyppp), the sign of the mean label within the patch. We conducted six-fold
cross validations by using those six sub-images and measured the performances of equal
error rate (EER).

A preprocessing is applied to extract the foreground (lymph nodes) region by eliminating
background pixels based on the prior knowledge as in [23]. The background where tissues
are absent are not stained, resulting in white colors, and such regions are irrelevant to cancer
detection. Since the biopsy images are stained mainly by red and blue colors via H&E,
the remaining green channel is useful only to distinguish the background regions by simple
thresholding: the threshold value is 200 in this study. The foreground/background at the
pixel ppp is indicated by l f (ppp) = 1/0, and for feature extraction, the weighting functions are
defined as ω(ppp,qqq) = l f (ppp)l f (qqq) in (2) and ω(ppp,qqq, rrr, sss) = l f (ppp)l f (qqq)l f (rrr)l f (sss) in (4), which
makes us compute the features only on the foreground regions. Then, the R-B channels are
reduced into gray-scale by applying PCA to the foreground pixels, and the gray-scale values
are finely partitioned into 100 levels (L = 100 in Sec.2.2).

The neighborhoods N for computing the co-occurrence are defined by N = {(ppp,qqq)
∣∣‖ppp−

qqq‖ = Δ} where Δ indicates the displacement interval. Since the cells are arbitrarily oriented
in the biopsy images, it is useful to extract the rotation-invariant features by symmetrizing
the co-occurrence matrix features, MMM + MMM�. The classifier weight WWW in constructing the
discriminative co-clusters gk (Sec.2.2) is thus symmetric as shown in Fig. 5. The EM method
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Figure 5: Classifier weights for the discriminative co-clusters.

Method disc. CoF+HoCoF CoF [23] [15] [2]
EER (%) 94.29 93.03 91.60 89.29

Table 1: Comparison to the other methods.

is slightly modified to cope with the symmetry2 and to produce symmetric discriminative co-
clusters gk (Fig. 5).

For various intervals Δ ∈ {2, · · · ,30}, the performance results are shown in Fig. 6a:
disc. CoF stands for the discriminative co-occurrence features using gk in (2), disc. HoCoF
for the higher-order co-occurrence features using gkgl in (4), and disc. CoF+HoCoF indi-
cates the concatenated features of the discriminative co-occurrence features and the higher-
order co-occurrence ones, where we use D = 20 co-clusters. For comparison, we also ap-
plied the standard co-occurrence feature (1) [23] with fi constructed by applying EM on the
gray-scale pixel intensities, which is denoted by CoF with the number of clusters C. The
performances of the standard CoF degrades as the interval Δ increases, while the proposed
method produces stably high performances. As shown in Fig. 5, the co-occurrences of the
near-by pixels are simply concentrated along the diagonal, while separated pixels form more
complicated co-occurrences. The standard CoF based on fi f j cannot capture such compli-
cated co-occurrence characteristics of larger Δ, deteriorating the performance. The proposed
method effectively exploit them by using the discriminative co-clusters. Note that the di-
mensionality of CoF with C = 10 clusters is 55 by considering symmetry, compared to only
20 in disc. CoF with D = 20 co-clusters.

We then investigate the effect of the number of discriminative co-clusters D on the per-
formance of disc. CoF+HoCoF. The results are shown in Fig. 6b. In the case of only six
discriminative co-clusters, the performances are slightly degraded since such co-clusters are
too few to characterize the discriminative co-occurrences, but the performances are greatly
improved by using sufficient number of co-clusters.

Finally, the performance of the proposed method is compared to those of the other meth-
ods; color coherent vectors [15] which is extended from color histogram, and the generic fea-
ture for cancer detection [2]. For the proposed method disc. CoF+HoCoF and the method
CoF [23], all the features of various Δ’s are concatenated into the (long) feature vector.
The results are shown in Table 1. The proposed method produces superior performances to
the others by effectively exploiting the discriminative co-occurrence characteristics. Fig. 7
shows the classification (detection) results by the proposed method in pseudo colors. The
results are quite similar to the ground truth labels given by the expert pathologists, demon-
strating that the proposed method can efficiently facilitate the inspection which has been
exhaustively performed by hand.

2see supplementary material for details.
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Figure 7: Detection results. In each block, left: biopsy image, middle: labels for cancer (red)
and normal (blue), right: classification outputs by the proposed method in pseudo colors.

4.2 Pedestrian detection

Next, we evaluated the performances of the proposed method on pedestrian detection by us-
ing the Daimler Chrysler pedestrian benchmark dataset, created by Munder and Gavrila [14].
The dataset is split into five disjoint sets, three for training and two for test. Each set has
4,800 positive (pedestrian) and 5,000 negative (non-pedestrian) images of 18×36 pixels, as
shown in Fig. 10. We measure the equal error rate according to the standard protocol for the
dataset, training on two out of three training sets at a time and testing on each of the test sets.

We follow the approach to classify pedestrian images by utilizing orientations of image
gradients [5, 8]. Namely, in this experiment, the primitive quantitative data are gradient
orientations, θ = arctan(∂xI,∂yI) where ∂xI,∂yI are derivatives of an image I along x- and
y-axes, respectively. Such quantitative representation differs from the pixel intensities in
that the orientation is cyclic in θ ∈ [0,2π), and for constructing discriminative co-clusters
(Sec.2.2), we slightly modify the EM method so as to cope with the cyclic orientations3;
the obtained co-clusters gk are shown in Fig. 8. The subsequent procedures in the proposed
method, however, are the same as in the cancer detection (Sec.4.1) using the pixel intensities.

In a preprocessing, the derivatives are computed by applying Roberts filters to provide
the gradient orientation θ and magnitude w =

√
∂xI2 +∂yI2 at each pixel. The gradient ori-

entation is finely partitioned into 90 bins (L = 90 in Sec.2.2), and the gradient magnitude
w(ppp) is used for the weighting in the feature extraction; ω(ppp,qqq) = min[w(ppp),w(qqq)] in (2)
and ω(ppp,qqq, rrr, sss) = min[w(ppp),w(qqq),w(rrr),w(sss)] in (4) for suppressing isolated noises [8]. In
the pedestrian detection, pedestrians are usually upright in images and the object orientation
could be a clue for classification. Therefore, the co-occurrence is computed by using various
displacement directions, N = {(ppp,qqq)|qqq− ppp = ΔΔΔ} where ΔΔΔ ∈ {(2,0),(2,2),(0,2),(−2,2)}.
The discriminative co-clusters are obtained for the co-occurrences of respective displace-
ments, and they are asymmetric as shown in Fig. 8; note that they are cyclic along the both
axes. In addition, as in [8, 11], the images (18×36 pixels) are spatially partitioned into 3×4
bins for extracting the parts-based features.

3see supplementary material for details.
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Figure 8: Classifier weights for the discriminative co-clusters.
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Method disc. CoF+HoCoF disc. CoF CoF [8] HOG [5] [12] [14] [21]
EER (%) 94.32 93.80 93.68 86.41 89.25 89.82 91.10

Table 2: Comparison to the other methods.

Fig. 9 shows the performance of the proposed method disc. CoF+HoCoF by varying
the numbers of co-clusters, D = 10 ∼ 40. Smaller number of co-clusters D = 10 are not
sufficient to exploit the characteristics of such complicated weights as shown in Fig. 8, while
the performances are improved on larger numbers of co-clusters D ≥ 20.

Then, we show the pairs (doublets) and quadruplets that highly contribute to positive
classification for pedestrian in Fig. 10; the pairs are indicated by the (magenta) lines and
the quadruplets are by the (cyan) cross lines. In the pedestrian image, the primary pairs and
quadruplets are mainly located around the head, shoulder and foots (Fig. 10a). This shows
that the proposed method extracts pedestrian-specific characteristics. The non-pedestrian
image that is misclassified has also such pairs and quadruplets on the parts which are similar
to the foots and shoulder of the pedestrian (Fig. 10b).

The performance of the proposed method is compared to those of the other methods in
Table 2; for comparison, we applied the standard co-occurrence method [8] which prede-
fines fi of bilinear interpolated nine orientation bins, and HOG features [5], and in the other
methods [12, 14, 21], we show the performances reported in the respective reference papers.
We used disc. CoF+HoCoF with 40 co-clusters (D = 40), which is half number of clusters
used in the standard CoF [8] with nine orientation bins producing 81 types of fi f j. The
proposed method produces favorable performances compared to the others, demonstrating
that the discriminative and higher-order co-occurrences are also effective to the quantitative
data of (cyclic) image gradient orientations.

5 Conclusion

We have proposed the method to extract image features based on effective higher-order co-
occurrences. The proposed method first constructs the discriminative co-clusters to directly
quantize pair-wise quantitative data in the joint space, whereas the standard methods uti-
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lize simple clusters produced in an unsupervised manner for quantizing point-wise data.
By utilizing the discriminative co-clusters, the co-occurrence characteristics are effectively
extracted in a discriminative way with a fewer number of cluster components, i.e., low di-
mensional features. Therefore, the co-occurrences can be extended to the higher-order co-
occurrences of feasible dimensionality by considering quadruplets, pairs of pair-wise data
represented efficiently by the discriminative co-clusters. The higher-order co-occurrence
features take into account the relationships in the multiplets more than only doublets (pairs)
to capture richer information of image textures. In the experiments on image classifications
for cancer cells and pedestrians, the proposed method exhibited favorable performances com-
pared to the other methods, even to the standard co-occurrence based methods.

Our future works include to automatically determine the number of co-clusters such as
by introducing AIC in the EM method and to apply the method to multi-class problems.
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