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Abstract—Signal sequences are practically observed as com-
posites in which a few number of factor signals are linearly
combined with non-negative weights. Based on prior physical
knowledge about the target, the factors can be modeled
as parametric functions, and their parameter values benefit
further analyses. In this paper, we present a novel factorization
method for the composite signals in terms of parametric
factor functions. The method optimizes both the factor weights
and the parameter values in the factor functions. While the
parameter values are simply optimized by gradient descent,
we propose L0-regularized non-negative least squares (L0-
NNLS) for optimizing the factor weights. In L0-NNLS, both
L0 regularization and non-negativity constraint are imposed
on the weights in the least squares to enhance the sparsity
as much as possible. Since so regularized least squares is NP-
hard, we propose a stepwise forward/backward optimization to
efficiently solve it in an approximated manner. Due to the spar-
sity by the L0-NNLS, the proposed factorization method can
automatically discover the inherent number of factor functions
as well as the parametric functions themselves by estimating
their parameter values. In the experiments on factorization of
simulated signals and practical biological signals, the proposed
method exhibits favorable performances.

Keywords-Least squares, non-negativity, sparsity, L0 regu-
larization, factorization, parametric function

I. INTRODUCTION

In practice, a signal is observed as a composite con-
sisting of several component signals corresponding to the
factors inherently contained in the observation target. It is
an important process to factorize those composite signals
into the components (factors) for analyzing the target; the
physical characteristics of the target can be inspected based
on the decomposed factors. For example, in the chemical and
biological researches, energy dynamics signals such as of
chemical particles are observed and then analyzed by fitting
physical model functions [1], [2], [3].

Such a composite signal s(t), which possesses an addi-
tivity property in nature, is modeled as a linear combination
of factors denoted by functions gi(t): s(t) ≈ ∑N

i wigi(t),
where wi is the factor weight for gi(t) and N indicates the
number of the factors. The task of the factorization problem
is to estimate all of them; number of factors N , factor
functions gi(t), and their weights wi. By using the above
linear additive model, the factorization is usually addressed
to the least squares [4]. However, without any constraints,

it produces unfavorably over-fitted results, affected by ir-
relevant noises, and thus most methods introduce several
appropriate constraints to the factorization model as follows.

The popular method of the factorization is non-negative
matrix factorization (NMF) [5]. The method imposes non-
negativity constraints on both the weights and the factors.
The non-negativity weights are considered to be natural from
the physical viewpoint, since the weights wi can be regarded
as the significance and/or the existence (0/1) of factors, both
of which are non-negative. Due to such non-negativity of
the factor weights, we can easily interpret and analyze the
obtained factors. In the NMF, however, the number of factors
is required to be manually determined in advance, and only
the fixed length (dimensional) signals, i.e., matrix, are dealt
with. There are also variants of the NMF such as [6], [7].

On the other hand, sparsity in the factor weights has at-
tracted keen attentions in the field of compressed sensing [8].
The sparsity is an effective criterion to retrieve the essential
factors, recovering the signals in disregard of noises. The
sparseness is measured by the number of non-zero compo-
nents in the weights, namely, L0 norm ||w||0. However, it is
difficult (NP-hard in general) to seek the global optimum that
minimizes the L0 norm, requiring all combinations of non-
zero components to be checked. In the compressed sensing,
given the factors, much research effort has been made to
establish an efficient approach for finding the optimum factor
weights with the minimum L0 norm; e.g., L1 relaxation [9],
orthogonal matching pursuit (OMP) [10] and regularized
OMP (ROMP) [11]. By enhancing the sparseness in the
factor weights, the inherent number of factors in the signals
would be automatically extracted.

In this paper, we propose a novel factorization method in
terms of parametric factor functions. The proposed method
comprises two kinds of optimizations for factor weights and
parameter values in the factor functions. While the parameter
values are optimized based on the gradient descent, we pro-
pose L0-regularized non-negative least squares (L0-NNLS)
for optimizing the factor weights. In the L0-NNLS, both
the L0 regularization and the non-negativity constraint are
imposed on the weights in the least squares so as to enhance
sparsity in the weights. Since so regularized least squares
is NP-hard, we propose a stepwise forward/backward opti-
mization to efficiently solve it in an approximated manner
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Algorithm 1 : Stepwise forward selection
Input: I, s(t), gi(t) (i = 1, .., N).

1: Initialize w[0] =0, I [0] =φ, J [0] =inf, l=1.
2: repeat
3: r(t) = s(t)−P

i w
[l−1]
i gi(t): residual function

4: i∗ =arg maxi∈I\I[l−1]

˘
cF

i ,
R

r(t)gi(t)dt/
qR

gi(t)2dt
¯

5: I [l] = I [l−1] ∪ i∗

6: Solve (2) only for the weights of I [l], and set w[l].
7: J [l] = J(w[l]), l← l + 1
8: until J [l] − J [l−1] 6 0

Output: wF = w[l−1], JF = J [l−1]

from the geometrical viewpoint of the least squares. Due
to the sparsity by the L0-NNLS, the proposed factorization
method automatically provides minimal (essential) number
of parametric factor functions with sparse positive weights
underling the target signals, together with optimizing the
parameter values in those functions.

II. L0-REGULARIZED NONNEGATIVE LEAST SQUARES

We give the general formulation of the proposed L0

regularized non-negative least squares (L0-NNLS), by using
signal “functions”, which is also applicable to the “vectors”
of the fixed dimensionality.

Given the N factor functions denoted by gi(t), (i =
1, .., N), the task is to approximate the target function s(t)
by their linear combination with the weights wi, which
results in the well-known least squres:

min
w

∫
||s(t) −

∑
i

wigi(t)||2dt. (1)

Since any constraints such as non-negativity are not imposed
on w, this can be analytically solved by w=K−1y where
Kij =

∫
gi(t)gj(t)dt and yi =

∫
s(t)gi(t)dt.

As described in Section I, it is physically natural to impose
non-negativity constraints on the weights wi, which results
in the following non-negative least squares (NNLS):

min
w≥0

∫
||s(t) −

∑
i

wigi(t)||2dt. (2)

From geometrical viewpoint, (2) is regarded as the problem
to seek the projection of the target s(t) onto the convex
cone spanned by the factor functions gi(t) [12], and only the
factors close to the target are assigned with positive weights,
which results in sparse non-negative weights wi [13]. (2) can
be efficiently solved by applying the fast non-negative least
squares method (fnnls) [14].

In this study, we further introduce the L0 regularization
into the above non-negative least squares (2) to obtain the
sparser weights. Such sparse solutions enables us to avoid
the interference by irrelevant noises and outliers, while
extracting the intrinsic (essential) factors contained in the

Algorithm 2 : Stepwise backward pruning

Input: I, wnnls, s(t), gi(t) (i = 1, .., N).
1: Initialize w[0] =wnnls, I [0] =I, J [0] =J(wnnls), l=1.
2: repeat
3: ŝ(t) =

P
i w

[l−1]
i gi(t): projection onto the cone

4: i∗ =arg mini∈I[l−1]

˘
cB

i , | R ŝ(t)w
[l−1]
i gi(t)dt|¯

5: I [l] = I [l−1]\i∗
6: Solve (2) only for the weights of I [l], and set w[l].
7: J [l] = J(w[l]), l← l + 1
8: until J [l] − J [l−1] 6 0

Output: wB = w[l−1], JB = J [l−1]

target signal [8]. The problem is finally defined as

min
w≥0

{
J(w) �

∫
||s(t) −

∑
i

wigi(t)||2dt + λ||w||0
}

, (3)

where λ(> 0) is the regularization parameter. Since this
is an NP-hard problem, we render the way to efficiently
solve it in an approximated manner based on the geometrical
perspective of the least squares as follows.

A. Efficient Optimization Approach

As described above, the NNLS (2) produces the essential
factors in the convex cone which are close to the input, and
the L0 norm of the solution w∗ in (3) with λ > 0 is less
than or equal to that of the solution wnnls in (2) which
corresponds to (3) with λ=0. Thus, by assuming the non-
zero components of w∗ are subset of those of wnnls, we
solve (3) in the following approximated manner.

We first solve (2) by using fnnls [14] and obtain the
initial weights wnnls. Then, both stepwise forward selection
and backward pruning are applied to wnnls for finding the
optimum weight that minimizes J in (3). The selection and
pruning are conducted based on the geometrical interpre-
tations of the least squares. Their algorithms are shown in
Algorithm 1&2.

Let the index set of the positive weights be denoted by
I�{i|wnnls

i >0}.
1) Stepwise forward selection (Algorithm 1): This pro-

cedure is motivated by OMP [10]. We begin with empty
factors (all weights are zero) and sequentially add the factor
from the set I one-by-one. The selection criterion is the
correlation cF

i between the factor gi(t) and the residual
r(t); the factor of the highest correlation, i.e., the closest
to the residual, would significantly reduce the squared error
(Fig. 1(a)). At the l-th round, the optimization (3) only for
the factors I [l] results in (2) since the factors I [l] (⊂ I) have
all positive weights, producing ||w||0 = l=const. By adding
factors, we seek the optimum factors of the minimum cost
value J in (3).

2) Stepwise backward pruning (Algorithm 2): In contrast
to the forward selection, we sequentially delete the factor
from the whole set I. We consider the contribution of each
factor to the projection ŝ(t) of the target s(t) onto the
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(a) Forward (b) Backward
Figure 1. Geometrical illustration for the criterion of forward selection
and backward pruning. In forward selection (a), the factor of the highest
correlation cF to the residual r is added, while in backward pruning (b),
the factor of the lowest contribution (vector length) cB to the projected
function ŝ is removed.

cone spanned by gi(t) (i ∈ I [l−1]). The contribution is
measured as the (vector) length of the factor in the projection
(Fig. 1(b)):

| ∫ ŝ(t)wigi(t)dt|√∫
ŝ(t)2dt

∝ |∫ ŝ(t)wigi(t)dt| � cB
i . (4)

We prune the factor of the lowest contribution. Such factor
less affects the least squares and the error would not be
significantly increased even by pruning it. Through the
pruning, we seek the optimum factors of the minimum cost
value J in (3).

After performing the above procedures independently in
an arbitrary order, we choose the weight w∗ ∈ {wF ,wB}
that produces the lower cost in those two results JF , JB .
By searching the minimum cost in both the forward and
backward directions, we can avoid the local minimum as
much as possible.

3) Practical Issue: When searching the minimum cost in
the above two approaches, it is not necessary to go through
the whole factors I, but we just look for the convex point
by simply checking the differentials J [l] −J [l−1]. This is
because the cost function would be convex along the number
of the factors in almost all cases; in the forward (backward)
approach, the increase (decrease) of the regularization cost is
constant (= λ) while the decrease (increase) of the squared
error would decline (grow).

The NNLS (2) is repeatedly solved for the small amount
of factors in a sequential manner (line 6 in Algorithm 1&2).
It requires quite a little computational cost since the non-
negative solution is simply obtained by ordinary least
squares for those factors in most cases.1 In addition, such
sequential fnnls [14] can be performed in an efficient manner
by using 1-rank update for the inverse of the Gram matrix
of factors [15].

B. Kernel-based Method

We have considered the linear relationship (inner-product)
between functions. Along the recent advances in the kernel-
based methods, we can also develop the method of ker-
nel L0-NNLS via kernel tricks [16]. By substituting the

1The angles between the bases are less than 90 degrees.

kernel k(f, g) between the functions for the inner-product∫
f(t)g(t)dt, the above-mentioned procedure is applied.

III. L0-REGULARIZED PARAMETRIC NONNEGATIVE

FACTORIZATION

We consider the factorization problem using parametric
factor functions. Given the family of the factor functions,
the task is to estimate the parameter values in the factor
functions as well as their weights wi. Let the parameters
be denoted by τi ∈ R

d in the i-th factor function, where d
is the number of parameters. The factorization problem is
defined by

min
w≥0,τ

∫
||s(t) −

∑
i

wigi(t; τi)||2dt + λ||w||0. (5)

Assuming a sufficiently large number N of factor functions,
some of them are automatically discovered with the positive
weights as the essential factors describing the target signal.

In more practical situations, we have multiple target
signals, such as for the case that many signal sequences
are observed. And, the factor functions are shared by those
signals, as in NMF [5], if the observation targets have all
the same physical property. Then, the problem is formulated
as

min
w≥0,τ

{
L�

∑
j

∫
||sj(t)−

∑
i

wijgi(t; τi)||2dt+λ
∑

j

||wj ||0
}

,

where sj(t) is the j-th signal sequence and wij is the i-th
factor weight for the j-th sequence.

To solve this problem, we take an iterative approach to al-
ternately optimize the factor weights wj and the parameters
τi. For the fixed parameter values, the weights are optimized
by applying L0-NNLS with the fixed factor functions to
the respective signals. On the other hand, for the fixed
weights, the parameter values in the factor functions are
optimized based on the gradient descent method, such as
conjugate gradient and Newton method [17]. The gradient
of the objective cost L with respect to the parameters τi is
written by

∂L

∂τi
= −

∑
j

2
∫ {

sj(t)−
∑

i

wijgi(t; τi)
}

wij
∂gi(t; τi)

∂τi
dt.

IV. EXPERIMENTAL RESULTS

A. Optimality in L0-NNLS

We evaluate the optimality of the proposed stepwise
forward/backward optimization (Section II-A) for L0-NNLS
by using the following synthetic data. We sampled 100-
dimensional 10 factor vectors G∈R

100×10 whose compo-
nents are randomly drawn from uniform distribution [0, 1],
and set the weights for those factors to sparse random
positive values w ∈ R

10
+ of which five components are

randomly assigned with positive random values in (0, 1].
The target vector is constructed by s = Gw+N (0, 0.01)
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(a) Forward/backward (b) ROMP [11]
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(c) Forward selection (d) Backward pruning
Figure 2. Average accuracy of various optimization approaches in L0-
NNLS with various λ compared to the global optimum on synthetic data.
The result of the proposed forward/backward optimization is shown in (a).

where Gaussian noises with 0 mean and 0.01 standard devi-
ation are added. We applied the stepwise forward/backward
optimization for L0-NNLS in (3) to the target vector s by
using the given factors G. For various parameter values λ,
the obtained factor weights were compared to the global
optimum ones in (3) by a greedy search which is feasible for
such low-dimensional vectors, and then the average accuracy
was measured on 100 trials. For comparison, we also applied
the method of ROMP [11] which is slightly modified so as
to deal with the non-negative least squares, and individually
applied the forward selection and the backward pruning.
The results are shown in Fig. 2, demonstrating that the
proposed forward/backward optimization exhibits superior
performances to the others; the accuracy of the proposed
method averaged over λ is more than 99% (Fig. 2(a)).

B. Factorization of Simulated Signals

We apply the proposed factorization method using L0-
NNLS to the simulated signals. We drew the sample points
from 1-dimensional two-modal Gaussian function with white
noise as shown in Fig. 3 where negative values are shifted
to zeros by assuming the spectrum data. We set λ = 0.1
and prepare 10 Gaussian-like factor functions gi(t;μi, τi)=
exp(−|t − μi|2/τi), i = 1, .., 10, whose initial values of
μi and τi are randomly chosen from [0, 20] and [0, 5],
respectively. The factorization results are shown in Fig. 3
compared to those by EM algorithm in which the number of
components is set to two in advance. The proposed method
successfully retrieved the inherent structures (correct number
of factors with correct parameter values), while the EM was
affected by noises, missing to discover them. It should be
noted that by only setting the parameter λ the correct number
of factors are automatically obtained in virtue of sparsity
induced by L0 regularization. Even for various parameter

#1 Factor #2 Factor
μ σ2 weight μ σ2 weight

Input 5 0.5 0.4 11 2.5 0.6
Ours 5.00 0.50 0.40 11.00 2.47 0.60
EM 4.75 1.48 0.39 11.27 5.65 0.61
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(a) Ours (b) EM
Figure 3. Factorization results of the simulated signal (blue line). Top table
shows the estimated parameter values of Gaussian factors. The proposed
method automatically discovers the correct factors with correct weights (a),
while the EM method failed (b).

values λ ∼ 10, the proposed method produces the same
factorization results, which indicates the robustness to the
parameter value λ.

C. Factorization of Biological Signals

Finally, we apply the proposed factorization method to
biological signals of functional proteins of signal transduc-
ers and activators of transcription 3 (STAT3). We mea-
sured the free diffusion of the functional proteins in living
cell via fluorescence correlation spectroscopy (FCS) [18],
[19], [20] and observed signals by applying the auto-
correlations (refer to [2] for details). For analyzing the
functional protein’s dynamics, it is effective and important
to automatically factorize the biological signals, although
the free diffusions of proteins are inhibited such as by a
protein-protein interaction, making it difficult to correctly
decompose the observed signals. We observed 43 sequences
before IL-6 stimulation (STAT3/IL6(-)) and 42 sequences
after 15 minutes IL-6 stimulation (STAT3/IL6(+)). The
number of the sampling time points in STAT3/IL6(-) and
STAT3/IL6(+) were 113 (10.4μs ≤ t ≤ 170393.6μs) and
116 (9.6μs≤ t≤ 196608.0μs), respectively. The factors in
this type of signals are physically modeled by the functions
gi(t; τi)= exp(−t/τi), where t denotes the time index and
the parameter τi stands for the diffusion time. We prepare 10
factors with random initial parameter values τi (i=1, .., 10),
and set the parameter λ=0.1 as in Section IV-B.

Table I shows the parameter values (diffusion times) τi

of the factors and their (averaged) positive weights wi,
i.e., existence ratio, estimated by the proposed method. The
first factor of the dominant existence ratio is regarded as
the primary component, since it significantly contributes to
compose the signals. The diffusion time of the primary factor
is estimated as 369.64μs in STAT3/IL6(-) and 451.26μs in
STAT3/IL6(+) both of which are quite close to the ideal
primary diffusion times, 373μs and 470μs, computed based
on the biological knowledge [2] and the conversion by using
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Table I
EXPERIMENTAL RESULTS ON FACTORIZATION OF BIOLOGICAL SIGNALS

BY USING THE PROPOSED METHOD

STAT3/IL6(-) STAT3/IL6(+)

primary diffusion time τ∗=373μs primary diffusion time τ∗=470μs

[obtained 3 factors] [obtained 2 factors]

diffusion time τ weight w diffusion time τ weight w

369.64 μs 0.53±0.05 451.26 μs 0.52±0.04

5537.96 μs 0.39±0.05 8857.79 μs 0.40±0.05

76077.18 μs 0.10
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Figure 4. Examples of factorization results. Blue dots show the observed
signals, and red solid lines show the reconstructed signals from the obtained
factors (cyan and green broken lines).

the Stokes-Einstein equation. Thus, we can say that the
proposed method successfully extracts the primary factors
from the noisy biological signals. The diffusion time of
the second factor is extremely slower than that of the first
one in both conditions. From the biological viewpoint [21],
[22], [23], we can consider that the second factor captures
the inhibition of free diffusion in STAT3 such as by DNA
binding and protein-protein interactions. Note that the third
factor in STAT3/IL6(-) is used in only one sequence.

Fig. 4 shows the examples of the obtained (weighted)
factors as well as the reconstructed signals. The target
signals are well reconstructed by using only several factor
functions. Although these factors are inherently overlapped,
the primary factor is successfully found with the largest
weight.

V. CONCLUSION

We have proposed a novel factorization method in terms
of parametric factor functions. In the proposed method,
while the parameter values in the factor functions are
simply optimized based on the gradient descent, we pro-
posed L0-regularized non-negative least squares (L0-NNLS)
for optimizing the factor weights. The L0-NNLS produces
sparse weights by imposing L0 regularization and non-
negativity constraint on the weights in the least squares.
Since the greedy algorithm for it is NP-hard, we proposed
the stepwise forward/backward optimization to efficiently
solve it in an approximated manner from the geometrical
viewpoint. Given sufficient number of factors, the proposed
factorization method automatically provides minimal factors
with sparse positive weights underling the target signals,
together with optimizing the parameter values in the factor

functions. In the experiments on factorization of simulated
signals and practical biological signals, the proposed method
favorably identified the underling factors.
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