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ABSTRACT

In this paper, we propose a method to extract features from
three-dimensional acceleration signals. The proposed method
is based on the (auto-)correlation matrix of Fourier transform
features, naturally containing the correlations between the
frequencies as well as the ordinary power spectrum for each
frequency. The proposed features are inherently invariant to
both rotational variations and temporal shift (delay), whereas
the other methods employ ad hoc preprocessing to increase
robustness to those variations. Thereby, we can favorably
apply the proposed method to analyze 3-D acceleration sig-
nals regardless of the orientations of the accelerometer. In
the experiment on gait identification using an accelerometer
embedded in a cellular phone, the proposed method outper-
formed the other methods.

Index Terms— Three-dimensional acceleration signal,
feature extraction, auto-correlation matrix, rotation invari-
ance, gait recognition

1. INTRODUCTION

Three-dimensional accelerometers are commonly used sen-
sors, as they have been widely embedded in cellular phones.
Based on the signals of such an accelerometer, the orienta-
tion of the phone can be recognized and the screen is accord-
ingly rotated so as to facilitate users’ browsing. People carry
the cell phones with such sophisticated functions in daily life.
Keen attentions are therefore paid to the possibilities of us-
ing accelerometers for providing personalized services to im-
prove the quality of life. For example, action recognition by
accelerometers contributes to not only monitoring health but
also selecting services according to the person’s situations.
The accelerometer would be also useful for identifying per-
sons, especially based on human gaits. The identification
plays a key role for security in any services. The gait identifi-
cation by the accelerometer is recently studied [1, 2], while it
has been mainly based on vision so far [3, 4].

The accelerometer measures acceleration vectors of the
device along the three (x, y, and z) axes which are defined on
the device. Along with the rotations of the device, the ob-
tained signals are rotated across those axes (see Fig. 1). For
dealing with the acceleration signals, it is hence important
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Fig. 1. Three-dimensional acceleration signals. The three (x,
y, and z) axes are defined on the device, drawn in three colors
(red, green, and blues). The signals are rotated along with the
rotation of the device. (This figure is best viewd in color.)

to extract the essential features of human actions indepen-
dently of the device orientations: that is, the extracted fea-
tures should be invariant or at least robust to the rotations of
the device.

For this purpose, some studies have been made so far.
Most methods apply ad hoc approaches to achieve the rotation
robustness. In [5], three-dimensional signal vectors are first
normalized by applying principal component analysis (PCA),
and then wavelet features are extracted from the normalized
signals in each axis. PCA statistically normalizes the orien-
tations of the signals. In [6], the gravity vector is statistically
estimated as the mean vector of the three-dimensional sig-
nals. Then, simple statistics based on the gravity vector are
extracted as features; such as the mean and the standard devi-
ation of the inner product values between the input signal and
the estimated gravity vectors. These statistical preprocessing
methods to compensate the signal orientations require plenty
of signal data for obtaining statistically stable results, and the
rotation robustness of the features relies on the stability (ac-
curacy) of the results. On the other hand, the method in [7] in-
creases robustness in the process to learn the classifier by aug-
menting training samples with the simulated signals that are
artificially rotated. To accomplish high robustness, significant
augmentation is required and thereby the sample distribution
becomes complex, making it difficult to train the classifier.

In this paper, we propose a method to extract rotation in-
variant features from the acceleration signals. The proposed
method theoretically considers extraction of invariant features
to the rotational variations in signals, and the resultant fea-
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tures are inherently invariant to the rotations without any pre-
processing. The proposed features are based on the frequency
information of the signals via FFT and are composed of cor-
relations among all frequency components as well as power
spectrum for each frequency. Thus, the proposed method can
extract more discriminative features than the standard power
spectrum-based methods, while keeping the invariance to the
rotations and temporal shift.

2. PROPOSED METHOD

In this section, we describe the proposed method to extract ef-
fective features from the three-dimensional acceleration sig-
nals. The proposed features are inherently invariant to both
three-dimensional rotations and temporal shift.

2.1. Feature extraction

We focus on the frequency information in the three-dimensional
sensor signals. The human activity is mainly consisting of
cyclic motions, such as walking, running and so on. The char-
acteristics of such cyclic motions are effectively represented
by the frequency. We simply employ FFT to extract the fre-
quency information, though wavelet transformation is also
applicable for this purpose [5, 7]. Since the FFT can describe
the input signals in a frequency domain without any loss, the
proposed method is also applicable to extract features from
non-cyclic motions as well.

Let s(t) be three-dimensional signals (s(t) ∈ R
3) at the

t-th frame. FFT is applied to the sequence of the signals along
respective dimensions:

f(ω) =
∫

exp(−iωt)s(t)dt ∈ C
3, (1)

F = [f(ω1), · · · ,f(ωn)] ∈ C
3×n, (2)

where n indicates the number of frequencies. The input sig-
nals s are transformed into a frequency domain f and then
form the complex matrix F whose dimensionality is 3 × n.

Next, we consider the auto-correlation matrix of the com-
plex Fourier features F as follows:

R = F ∗F ∈ C
n×n, (3)

where F ∗ denotes complex conjugate transpose of the ma-
trix F . The diagonal elements in R corresponds to the or-
dinary power spectrum which are summed up over the three-
dimensional axes (Fig. 2):

Rjj = f(ωj)∗f(ωj) =
∑

d∈{x,y,z}
|fd(ωj)|2 ∈ R, (4)

where | · | denotes the absolute value of complex and d indi-
cates the dimension of the signals (d ∈ {x, y, z}). These di-
agonal elements are all real values. On the other hand, the off-
diagonal elements are cross-correlations among all frequency
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Fig. 2. Auto-correlation matrix R of Fourier features F .
The Fourier (complex) features from the three-dimensional
signals are multiplied by themselves and then the symmetric
auto-correlation matrix R is obtained. The diagonal compo-
nents of the matrix corresponds to the ordinary power spec-
trum for each frequency, while the off-diagonal ones are the
cross-correlation features among all frequency components.

components (Fig. 2):

Rjk = f(ωj)∗f(ωk) =
∑

d

fd(ωj)∗fd(ωk) ∈ C, (5)

and these elements are complex values. By exploiting these
correlation features, the relationships among frequencies can
be effectively extracted.

Since the auto-correlation matrix R is symmetric, we use
only the upper triangle components of which number is n(n+
1)/2 including the diagonal, and consider their absolute val-
ues. The features are actually unfolded to a vector form:

z = vector(upper(R)) ∈ R
n(n+1)

2 ×1, (6)

where R indicates the matrix consisting of the absolute com-
ponent values |Rij |.

2.2. Invariance

In this section, we show the invariance of the proposed fea-
tures z to both three-dimensional rotations and temporal shift
(delays) of the signals.

If the accelerometer is rotated, the input signals are sub-
ject to the three-dimensional rotation denoted by a rotation
matrix A:

ŝ(t) = As(t). (7)

The Fourier features F are also subject to that rotation:

f̂(ω) =
∫

exp(−iωt)ŝ(t)dt

= A

∫
exp(−iωt)s(t)dt = Af(ω), (8)

∴ F̂ = AF . (9)

In such case, the auto-correlation matrix R are invariant to A:

R̂ = F̂ ∗F̂ = F ∗A′AF = F ∗F = R, (10)

where A′ denotes the transpose of the matrix A and we use
the unitarity A′A = I . Therefore, the resultant features z in
Eq.(6) are invariant to any rotational variations.

Next, we show the invariance to the temporal shift (delay)
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of the signals. The temporal shift is described by

s̃(t) = s(t − τ). (11)

This results in the phase shift in the frequency domain for the
Fourier features:

f̃(ω) =
∫

exp(−iωt)s̃tdt =
∫

exp(−iωt)s(t − τ)dt

=
∫

exp(−iωτ) exp(−iωt)s(t)dt

= exp(−iωτ)f(ω), (12)

and the absolute values of the components Rij of the auto-
correlation matrix R are

|R̃jk| =
∣∣∣f̃(ωj)∗f̃(ωk)

∣∣∣
= |exp(iωjτ) exp(−iωkτ)f(ωj)∗f(ωk)|
= |f(ωj)∗f(ωk)| = |Rjk|. (13)

Therefore, the proposed features comprising absolute compo-
nent values of the complex auto-correlation matrix R have
invariance to the temporal shift.

As above, the proposed features are inherently invariant
to both three-dimensional rotation and temporal shift in con-
trast to the other methods [5, 6] which employ ad hoc prepro-
cessing to increase robustness to such variations.

2.3. Post-processing

Finally, we consider to take the logarithm of the extracted fea-
tures as post-processing. In general, the human actions are
measured by the accelerometer not directly but through vari-
ous media, such as clothing. Those media affect the signals
and the effects are represented by a transfer function b ∈ C

n

in the frequency domain:

F̌ = F diag(b), (14)

Ř = diag(b)∗Rdiag(b) = diag(b)Rdiag(b), (15)

where diag(b) indicates the n×n matrix whose diagonal ele-
ments are b. By considering the logarithm of the features, we
can linearly separate these effects b:

log[Ř] = log[R] + log[bb′], (16)

where log[A] stands for the matrix comprising the logarithm
of the component values log(Aij). In this case, linear meth-
ods, such as Fisher discriminant analysis and the other mul-
tivariate analyses, could cancel out those biases derived from
the transfer function b. This is the same motivation as in the
cepstrum [8] taking the logarithm of power spectrum of audio
signals.

3. EXPERIMENTAL RESULTS

We conducted the experiments on gait identification by using
the accelerometer embedded in the cellular phone (iPhone R©).
We collected the signal data at 33Hz sampling rate from 58

persons who freely walk in daily life with holding the cellular
phone in hand. There are 2,331 sequences (4∼106 sequences
per person, and about 40 sequences on an average). It is quite
a challenging task to identify the persons (gait) based on only
the acceleration signals under such practical situations with-
out any control for this experiment.

We compared the proposed method to the other methods
which extract features from the three-dimensional accelera-
tion signals with preprocessing to increase rotation robust-
ness: the wavelet-based features [5] and the simple statistics
based on the gravity vector [6]. The following experimental
protocols are employed in all these methods: Running time
window of 70 frames is applied to an input sequence with
35 frames step size, and the features are extracted from the
sub-sequence within each time window. Thus, we can extract
many features (vectors) from the input sequence, and the se-
quence is classified (identified) by using those features. In a
training phase, the method of Fisher discriminant analysis is
applied to the extracted features, and project them to lower-
dimensional discriminant space (R57). Each extracted feature
is classified into one of 58 person categories based on near-
est mean of the category in the discriminant space. By voting
the classification results to the person categories, the input se-
quence is finally classified as the category (person) that obtain
the maximum votes [4]. The evaluation is performed in 3-fold
cross validation. We measured the classification accuracy for
each person and then averaged them across all persons in or-
der to avoid the biases in the number of sequences for persons.

First, we evaluated various settings in the proposed
method. The Fourier features are split into AC and DC com-
ponents; DC components are f(0) and AC are f(ω), ω > 0
in Eq.(1). The DC component indicates the gravity vector
as in [6]. We varied the settings in the proposed method as
follows: (i) with / without post-processing (logarithm), (ii)
only diagonal components (ordinary power spectrum fea-
tures) / off-diagonal ones / full components containing both,
and (iii) AC / AC+DC (full) components. The performance
results are shown in Fig. 3. For diagonal features, the DC
components degrade the performance and the logarithm sig-
nificantly improves it. As stated in Sec.2.3, the logarithm is
effectively applied in this linear method (FDA). In contrast,
for off-diagonal features, the logarithm makes the perfor-
mance slightly worse and the DC components contributes to
the improvement. In this case, by adding DC components,
the correlations between AC and DC ones are incorporated.
Roughly speaking, by taking the logarithm of the features,
the correlations (multiplications) of various components are
broken to just the summations, degrading the discriminative
power. When both diagonal and off-diagonal features are
used, the performance is improved by adding DC compo-
nents and by taking the logarithm, as an average of the above
results. In addition, based on the above results, we combined
the logarithmic AC diagonal components and the AC+DC off-
diagonal components. The performance is further improved
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Fig. 3. Performance results for various settings in the pro-
posed method. The feature components are split into diag-
onal (power spectrum) and off-diagonal ones (correlations),
as shown in Fig. 2. The frequencies are also divided into
DC and AC components. ‘Combination’ indicates the method
combining the logarithmic AC diagonal components and the
AC+DC off-diagonal components.

as shown in the rightmost bar in Fig. 3. As a result, these
comparative experiments show that the off-diagonal (correla-
tion) components and the logarithm significantly contribute
to the performance improvement, compared to the standard
power spectrum features (the leftmost bars in Fig. 3).

Next, we compared the performance of the proposed
method to those of the other methods. In the proposed
method, the diagonal and off-diagonal components are fa-
vorably combined as described above. The results are shown
in Fig. 4, demonstrating that the proposed method is superior
to the others. The proposed features extracting the correla-
tion among frequencies are quite effective to discriminate the
human gaits. It should be noted that the computational cost
in the proposed method is also low because the method is
almost based on FFT and linear computations without any
complicated preprocessing.

4. CONCLUSION

In this paper, we have proposed a method to extract features
from three-dimensional acceleration signals. The proposed
method computes the correlation matrix of the Fourier trans-
form features which naturally contains both the ordinary
power spectrum for each frequency (diagonal) and the corre-
lations among the frequencies (off-diagonal). The proposed
features are inherently invariant to rotational variations as
well as to temporal shift, although the other methods employ
ad hoc preprocessing to increase robustness to those vari-
ations. In the experiments on identifying human gaits, the
proposed method exhibited the favorable performances com-
pared to the other methods. In this paper, we have focused
on the gait identification in the experiments. However, since

Proposed method Simple Statistics [6] Wavelet [5]0
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Fig. 4. The performance results of the proposed method com-
pared to the other methods [5, 6]. The proposed method uses
the setting of ‘combination’ (see Fig. 3).

the proposed feature extraction method is general, it can be
applicable to the other tasks using the accelerometer, such as
segmenting and recognizing various human activities.
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