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Abstract— In this paper, we propose a novel method of
label propagation for one-class learning. For binary (posi-
tive/negative) classification, the proposed method simultane-
ously measures the pair-wise similarity between samples and the
negativity at every sample based on a cone-based model of local
neighborhoods. Relying only on positive labeled samples as in
one-class learning, the method estimates the labels of unlabeled
samples via label propagation using the similarities and the
negativities in the framework of semi-supervised learning.
In the proposed method, unlike standard label propagation
methods, it is not necessary to prepare negative labeled samples
since the measured negativity works as an alternative of such
labeling negative samples. In experiments on target detection in
still images and motion images, the proposed method exhibits
the favorable performances compared to the other methods.

I. INTRODUCTION

Classifying pattern vectors is a fundamental procedure for
pattern recognition and various classification methods have
been developed along with the advances in machine learning,
such as SVM [18] and kernel-based methods [17]. The
classifier is generally learnt by using given training (labeled)
samples; e.g., for two-class (binary) classification, we have to
prepare both positive and negative labeled samples. Although
the performance of the classifier depends on the amount
of such labeled samples, the task of labeling samples by
hand requires heavy human labor and thus, in practice, it is
difficult to prepare plenty of labeled samples.

To avoid such difficulty, the framework of semi-supervised
learning is useful. In that framework, classification, i.e., label
estimation, is performed by incorporating a large amount of
unlabeled samples in addition to a small number of labeled
ones. The method of label propagation (LP) [20] is frequently
adopted in the semi-supervised learning, such as for image
matting (segmentation) [15], [7], image annotation [9] and
image classification [5]. The LP method effectively integrates
the labeled and unlabeled samples through pair-wise simi-
larities defined between samples, and it copes with binary
classification problems.1

On the other hand, the method of one-class learning is also
effective to reduce the required labeled samples for the binary
problem, especially for a target detection problem. In the
one-class learning, a certain model, such as a subspace [16]
and a cone [11], is fitted to the sample distribution in the
target class (positive class). Thus, we do not need to prepare
the negative labeled samples for training. This eases the users
to collect the labeled samples.
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In this study, we propose a novel method to combine the
one-class learning and semi-supervised learning. The pro-
posed method estimates the binary class labels by using only
positive labeled samples (one-class learning) and unlabeled
samples (semi-supervised learning), and basically performs
in the framework of the label propagation. In the proposed
method, we employ the cone-based model to define the
similarities in local neighborhood samples. At the same time
to construct the similarities, the negativity is also measured
at every sample, and it works as an alternative of labeling
negative samples. By using these negativities as well as the
similarities, the proposed method is applicable to one-class
learning in the framework of semi-supervised learning, and
is quite effective in practice since users are only required to
label a few positive samples in a large amount of unlabeled

A. Related Work

We briefly mention the related methods of label propaga-
tion and those of one-class learning.

The main concern in the label propagation is how to
construct effective similarities between samples. In the case
that we have no prior knowledge about the samples, a
model is assumed to measure the similarities. The commonly
used similarity formulation is the Gaussian kernel similarity
(GKS) [3] which assumes a Gaussian distribution centered
at each sample. The sparsity induced similarity (SIS) [5]
employs the linear model (subspace) in the local neighbor-
hood samples, and the similarity is computed based on the
coefficients in the linear model. In addition, sparseness in the
similarities is explicitly induced by minimizing the L1-norm
of the coefficients. In an image matting [15], the similarities
between pixels are derived from the local linear model of
alpha values on the pixels.

In the one-class learning, the distribution of the samples
belonging to a target class (positive class) is approximated
by using a certain model. The intuitive method is the
subspace method [16] which extracts the low-dimensional
subspace from the sample distribution. The subspace method
is recently further developed to the cone-restricted subspace
method [11]. The cone-restricted subspace method utilizes
the cone-based model which imposes the non-negativity
constraint on the linear subspace in order to approximate the
sample distribution more precisely. The method of one-class
SVM [17] is also frequently used in the one-class learning.
In the one-class SVM, the hyper-plane that separates the
samples from the origin as much as possible is obtained

1In the case of multi-class problems, the problems are divided into several
binary-class problems and the LP is respectively applied to them.



Fig. 1. All n samples are divided into labeled (L) and unlabeled (U ) ones,
and labeled samples (L) are further split into positive (P) and negative (N )
ones. The proposed method utilizes only the labels assigned to P .

based on the large margin criterion in a manner similar to
SVM [18].

As above, most methods have been developed along the
line of either semi-supervised or one-class learning. How-
ever, the method that combines these two directions has been
rarely proposed. In this study, we effectively utilize the cone-
based model in the local neighborhood samples and propose
a novel method for one-class semi-supervised learning. The
combination of semi-supervised and one-class learning is
important from the viewpoint of practice for easing users’
labeling task.

II. ONE-CLASS SEMI-SUPERVISED LEARNING

In this section, we derive the method of one-class label
propagation for one-class semi-supervised learning. The one-
class label propagation can estimate the binary labels by
using only the positive labeled samples without the negative
labeled ones. We begin with the standard label propagation
method which requires both the positive and the negative
labeled samples, and then introduce a negativity as an alter-
native for such negative labeled samples.

A. Standard Label Propagation

First, we briefly review the method of label propagation
(LP) [20]. The LP method integrates labeled and unlabeled
samples for estimating binary labels in the framework of
semi-supervised learning.

We consider a binary (two-class) label estimation problem
and denote the label value of the i-th sample by αi ∈ [0, 1]
in which positive and negative labels are indicated as 1 and
0, respectively. Suppose, in all n samples, some of samples
are labeled as positive (α = 1) and negative (α = 0), and
the others are not assigned any labels. Let L be the index
set of those labeled samples and U be that of the remaining
unlabeled samples (L ∩ U = φ, |L ∪ U| = n), as shown in
Fig. 1. Given a symmetric similarity sij = sji between the
i,j-th samples (1 ≤ i, j ≤ n), the method of LP estimates
the labels αU of the unlabeled samples by minimizing the
following cost function with the fixed αL:

J =
n∑

i,j=1

sij(αi − αj)2

=
∑

i,j∈U
sij(αi − αj)2 − 2

∑
i∈U,j∈L

sij(αi − αj)2 + Const

= α′
U (DU − SUU )αU − 2α′

USULαL + Const, (1)

where D is a diagonal matrix, Dii =
∑n

j=1 sij . The
optimum labels are obtained in a closed form:

α∗
U = (DUU − SUU )−1SULαL. (2)

B. One-class Label Propagation

The above standard LP operates only when both positive
and negative labeled samples are given. If the given labels are
all identical, a trivial solution (uniform labeling) is produced.

In the following, we describe a role of the labeled samples,
especially in a negative class, to establish one-class label
propagation. Let the index sets of the positive and negative
labeled samples be P and N , respectively (P ∪ N = L,
see Fig. 1). By taking into account the given negative label
values αN = 0, Equation (2) actually results in

α∗
U = (DUU − SUU )−1SUPαP , (3)

and the similarities connected to the negative labeled samples
N appear only in D:

Dii =
n∑

j=1

sij =
∑

j∈U∪P
sij +

∑
j∈N

sij

︸ ︷︷ ︸
δi

. (4)

Therefore, in this framework, only the summation δi �∑
j∈N sij is required without explicitly providing the nega-

tive labeled samples N . This summation δi of the similarities
connected to the negative labeled samples can be regarded
as a negativity at the i-th sample; the negativity indicates
how far the i-th sample is from the target (positive). We
do not know a priori which samples are positive, but some
suggestion for the negativity can be statistically given, such
as by outliers. By introducing the negativity, the LP is
applicable to one-class semi-supervised learning which uses
only the positive labeled samples.

In the next section, we describe the proposed method that
simultaneously measures the pairwise similarities sij and the
negativities δi on the basis of a cone-based model of local
neighborhoods.

III. CONE-BASED SIMILARITY AND NEGATIVITY

In the proposed method, both the similarities and the neg-
ativity are simultaneously measured at each sample by fitting
a cone-based model [11] to local neighborhood samples.

A. Similarity

Let the i-th sample be represented by the feature vector xi.
The commonly used Gaussian kernel similarity (GKS) [3]
models the local sample distribution by a Gaussian distri-
bution; sij = exp(−γ||xi − xj ||2). The sparsity induced
similarity (SIS) [5] assumes linear model, i.e., subspace, in
the local neighborhood samples:

p∗
i = arg min

pi

||pi||1 (pi = [pi1, · · · , pin]) (5)

s.t. xi =
∑

j∈kNN(i)

pijxj , pij = 0 for j /∈ kNN(i),

p̂ij =
max(p∗ij , 0)∑n

k=1,k �=i max(p∗ik, 0)
, sij =

p̂ij + p̂ji

2
, (6)



Fig. 2. The i-th sample vector xi is projected onto the cone consisting
of its local neighborhoods, and the projected vector is represented by the
the basis sample vectors xj and xk with the non-negative coefficients pij

and pik . The similarities sij to the i-th sample are defined by using those
coefficients, and the distance of the projection is utilized for measuring the
negativity δi.

where kNN(i) indicates the index set of k nearest neighbor
samples around the i-th sample. In the SIS, sparsity in the
similarities is induced by minimizing the L1-norm of the
coefficients pij in the linear model.

Recently, the cone-restricted subspace method has been
proposed and produced superior performances to the sub-
space method [11]. In that method, the sample distribution is
modeled as a cone which imposes non-negativity constraints
on the coefficients in the linear model:

Cone :
{

x | x =
∑

i

pixi, pi ≥ 0 for ∀i
}

. (7)

In this study, we apply the cone to model local neighborhood
samples and then derive the similarities as follows:

p∗
i = arg min

pi

||xi −
∑

j∈kNN(i)

pijxj ||2 (8)

s.t. pij ≥ 0 for ∀j, pij = 0 for j /∈ kNN(i),

sij =
p∗ij + p∗ji

2
, (9)

where the feature vectors are normalized to unit in L2 norm
(||x||2 = 1). Equation (8) is efficiently solved by applying
the fast non-negative least square (FNNLS) method [4]. In
this formulation, the i-th sample xi is approximated by using
the cone composed of the neighborhood samples xj . In (8),
we calculate the projection from xi onto the cone and obtain
the non-negative coefficients p∗ij such that the projection
is represented by

∑
j∈kNN p∗ijxj , as shown in Fig. 2. The

sample of the larger coefficient significantly contributes to
the projection and thus is considered to be highly similar to
xi. Therefore, the coefficients reflect the similarities between
xi and its neighbors. We simply take an average of those
coefficients for symmetric similarities in (9).

Due to the normalized feature vectors, the similarities are
fairly measured across the neighborhood samples based on
the angles between the vectors, disregarding their magni-
tudes. In case that the feature vector is scaled by the factor s,
x̂j ← sxj , the coefficient is also (inversely) scaled by p̂ij ←
1
spij (∵ pijxj = 1

spijx̂j). This indicates that the samples
with smaller magnitudes would have larger similarity values.
To avoid such unfavorable side-effects, we disregard the
magnitude information and employ the angle between sample
vectors which is sufficiently discriminative [11]. In addition,
the feature vectors are often (inherently) normalized, such as
in histogram-based features (HOG [6] and GLAC [12]) and

Fig. 3. The information of the i-th sample is split into the similarities
along projection on the cone and the negativity based on the distance of
the projection. We fully extract the information, although the most methods
use only the projected information.

image vectors, so as to increase robustness to environmental
changes.

As in SIS [5], the formulation defined above induces
sparsity into similarities due to the non-negativity constraint
without explicitly imposing a sparseness constraint. The non-
zero coefficients are assigned only to the basis samples of
the cone which are close to the sample xi (Fig. 2). As a
result, the number of non-zero similarities is small.

B. Negativity

Next, we describe how the negativity δi is measured at the
same time to construct the similarities. Model parameters,
such as coefficients in the linear model in (5), are usually
exploited to construct the similarities under the assumed
model, although the deviations from the model are ignored.
In this study, we make use of such deviations to measure the
negativity at every sample. The deviation manifests how the
sample is outlier in the (local) sample distribution. While the
positive (target) samples, e.g., faces or pedestrians to detect,
must obey certain distributions such as clusters, the negative
(non-target) samples lie out of such distributions and could
be outliers. The deviation from the cone, i.e., the negativity
δi, is directly calculated by squared Euclidean distance:

δi = min
pi

||xi −
∑

j∈kNN(i)

pijxj ||2

=
∑

j,k∈kNN(i)

p∗ijp
∗
ikx′

jxk − 2
∑

j∈kNN(i)

p∗ijx
′
jxi + 1

= 1−
∑

j∈kNN(i)

p∗ijx
′
jxi. (10)

where we use
∑

j,k∈kNN(i) p∗ijp
∗
ikx′

jxk =∑
j∈kNN(i) p∗ijx

′
jxi corresponding to the squared norm

of the projected vector from xi onto the cone.
As shown in Fig. 3, the information that the sample

contains is fully exploited by both the similarities (along the
projection) and the negativity (along the perpendicular to the
projection). By using these similarities and negativities, all
of which are derived from the cone-based model in the local
neighborhood, we can perform one-class semi-supervised
learning via label propagation in (3) and (4).

C. Kernel-based Method

In the above descriptions, we mentioned the method in
the (linear) space of feature vectors. The formulation in
(8) is easily extended to the non-linear case via kernel
tricks. We introduce the non-linear functions φ(xi) such
that k(xi,xj) = φ(xi)′φ(xj). The cone-based model in



the local neighborhood can also be defined in the kernel
space [14]:

p∗
i = arg min

pi

||φ(xi)−
∑

j∈kNN(i)

pijφ(xj)||2 (11)

=
∑

j,k∈kNN(i)

pijpikk(xj ,xk)− 2
∑

j∈kNN(i)

pijk(xi,xj) + 1

s.t. pij ≥ 0 for ∀j, pij = 0 for j /∈ kNN(i),

where we assume a normalized kernel function (k(x,x) =
1). Most kernel functions are inherently normalized, such as
in RBF kernel k(xi,xj) = exp(−γ||xi−xj ||2). This is also
solved by the FNNLS method [4]. Thus, the similarities and
the negativities are calculated as is the case with the above-
mentioned linear method, by substituting the kernel function
k(xi,xj) for the inner product x′

ixj .
By using the kernel version of the proposed method, the

one-class label propagation is applicable in the case that not
the explicit form of the feature vectors but only the kernel
function is obtained, such as in graph kernel [10] and string
kernel [8].

IV. EXPERIMENTAL RESULTS

First, we illustrate how the proposed method works on
a toy problem. Then, we apply the proposed method to
practical problems of one-class learning; face/pedestrian de-
tection and specific action detection. In those tasks, only a
few positive labels for targets are provided and the proposed
method estimates the binary labels (target or non-target) in
the framework of semi-supervised learning.

A. Toy Problem

We collected the samples that are concentrically dis-
tributed on a unit sphere in the three-dimensional space, as
shown in Fig. 4. Only two samples around the center of the
distribution are labeled as positive. The proposed method
favorably estimates the label values; the circular distributed
samples around the center are classified as positive and,
meanwhile, the samples of the surrounding ring distribution
are classified as negative (Fig. 4(a)). The negativities are
also shown in Fig. 4(b), and the samples that lie out of
the distribution in negative class have high negativity values.
Thus, based on such negativities, the proposed method can
estimate the labels correctly by using only a few positive
labeled samples.

B. Object Detection

In object detection problems, the samples of the target
object belong to a positive class, while the non-target samples
are regarded as negative. This corresponds to a binary class
classification.

1) Experimental Setup: We compared the proposed
method to several other methods of one-class learning and
of semi-supervised learning; one-class SVM [17], cone-
restricted subspace method [11], and the LP methods using
GKS [3] and SIS [5]. Whilst the proposed method (one-class
LP), one-class SVM and cone-restricted subspace utilize
only positive (target) labeled samples, the GKS and SIS
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(a) Estimated label values (b) Negativity
Fig. 4. The proposed method is applied to toy samples on a unit sphere in
the three-dimensional space. (a) Only two samples denoted by star points
are labeled positive samples and the estimated label values ([0, 1]) are
detenoted by the pseudo colors. (b) The measured negativities are shown
for all unlabeled samples. The high negativity values are produced at the
negative samples that lie out of the distribution. This figure is best viewed
in color.

methods require negative (non-target) labeled samples as
well as the positive labeled ones. In these experiments, the
number of the negative labeled samples is the same as that
of the positive ones. The parameters in those methods are
empirically determined as follows: In the proposed method
and SIS, the number of nearest neighbors k is determined as
half of the dimensionality of feature vectors. The ν parameter
in one-class SVM is set to 0.5, and the γ parameter in GKS
is determined as the inverse of the sample variance. We also
applied the kernel version of the proposed method (one-class
kernel LP), one-class kernel SVM [17] and cone-restricted
kernel subspace method [14]. In these kernel-based methods,
we employed the Gaussian kernel for image vectors in
Sec.IV-B.2 and the chi-square kernel [19] for histogram-base
feature vectors in Sec.IV-B.3 and Sec.IV-B.4. The parameter
value of the kernel is simply determined based on the sample
variance in the same manner to GKS. All these methods
are implemented by using MATLAB on 3.3GHz Xeon PC;
we use L1-magic toolbox [2] for SIS and mex-C for the
proposed method.

The performances are measured by the DET (Detection
Error Trade-off) curve based on the false positive and false
negative rates which contains the same information as the
ROC curve. The AUC (area under the curve) of the ROC
curve is computed for evaluation as well.

2) Face Detection: We utilized MIT face dataset [1] to
evaluate the face detection performance of the proposed
method. The dataset contains 2,429 face images (19 × 19
pixels) for training and 472 face and 23,573 non-face images
for test (see Fig. 5(a)). The image vector (x ∈ R361) was
simply extracted as the feature vector. The DET curves
are shown in Fig. 5(b), and the proposed method exhibits
superior performances to the others. The kernel version of the
proposed method is inferior to the linear version, indicating
that the cone-based model is not necessarily proper in this
kernel (nonlinear) space, and the kernel function employed
in this experiment is based on GKS, which might degrade the
performance. Then, we reduced the number of the positive



(face) labeled samples by ranging the ratio of the positive
samples from 0.1 to 1. The AUC-based scores (1−AUC) are
calculated for respective cases, as shown in Fig. 5(c). The
proposed method produced much favorable performances
across all amounts of the labeled samples, compared to
the other methods. Even when the small amount of the
positive labeled samples is given, the proposed method works
well by effectively incorporating unlabeled samples via the
similarities. In addition, the computation time for calculating
similarities is significantly low compared to SIS, as shown
in Fig. 5(d).

3) Pedestrian Detection: Next, the methods were applied
to a pedestrian detection task according to the same experi-
mental protocol as above. We used INRIA person dataset [6],
containing 2,416 person images (128×64 pixels) for training
and 1,132 person and 13,590 non-person images for test
(see Fig. 6(a)). The GLAC features [12] (x ∈ R3888)
were extracted from those images. In this case, due to the
computational issue, the number of nearest neighbors k in
the method of SIS is set to k = 500 and the proposed method
with such parameter value was additionally applied for fair
comparison. The performance results are shown in Fig. 6(b)
and Fig. 6(c), demonstrating that the proposed method is
superior to the others as in Sec.IV-B.2. The proposed method
can effectively perform even for the GLAC features which
have high dimensionality but are highly discriminative.

4) Action Detection: Finally, we applied the methods to
detect a specific action from motion images. The CHLAC
motion features [13] (x ∈ R1251) were employed to char-
acterize the action (motion). We conducted the experiment
on detecting gymnastics sport actions in horizontal bar and
parallel bar events. The motion images (320 × 240 pixels)
were captured by a static camera in gymkhana. We collected
nine sequences and 17 sequences in parallel bar and in hori-
zontal bar events, respectively, containing the target acrobatic
actions to detect as well as the other non-target actions, as
shown in Fig. 7(a). The performances were evaluated in the
following scheme; for training, we randomly selected only
three sequences (one in parallel bar and two in horizontal
bar events) which contain about seven acrobatic actions, i.e.,
seven positive labeled samples, and for test, we drew the
samples extracted from the remaining sequences (roughly
speaking, there are 26 positive acrobatic samples and 1,500
negative samples). The target actions (positive samples) are
sub-sequences of about 20 frames, and similarly we extracted
sub-sequences of 20 frames for negative samples. This trial
was repeated three times and the averaged performances were
reported. Fig. 7(b,c) show the DET curve and the AUC-based
evaluation scores. The proposed method produces clearly
superior performances even in such case of quite a few
labeled positive samples.

In the above all experimental results, the linear version
of the proposed method is superior to the other methods
of one-class learning and semi-supervised learning, and
requires a little computation time. These results show that
the similarities and the negativities derived from the cone-

based model of local neighborhoods in linear feature space
are effective in the framework of one-class semi-supervised
learning. However, the kernel version yields inferior perfor-
mances. The cone-based model could be improper in the
kernel (nonlinear) space, although the performance might
be improved by carefully choosing the kernel function and
tuning the parameter values in the kernel function.

V. CONCLUSION

We have proposed a novel method of one-class semi-
supervised learning. Based only on positive labeled samples,
the proposed method estimates the class labels, incorporating
unlabeled samples via similarities, without using negative
labeled samples. In the method, the similarities between
samples are computed by exploiting the cone-based model
in local neighborhoods, and at the same time, the negativity
is measured at every sample. The negativities work as
alternatives for labeling negative samples, which frees us
from collecting those samples. In the various experiments
on detecting targets, the proposed method produced the
favorable performances compared to the other methods of
one-class learning and of semi-supervised learning.

The proposed method is quite effective in practice as users
are only required to label a few positive samples in a lot of
unlabeled samples, and is so general as to be applicable to
the other applications, such as object tracking in the semi-
supervised framework.
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Fig. 5. Performances for face detection compared to the other methods. (a) MIT face dataset [1]. (b) DET (Detection Error Trade-off) curve in log-scale,
based on the false positive and false negative rates. The lower-left curve indicates a better performance. (c) AUC-based evaluation scores (1−AUC) in
log-scale for various ratios of the positive labeled samples. The lower value indicates a better performance. (d) Similarity computation time per sample
(millisecond). These figures are best viewed in color.
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(b) DET curve (c) 1−AUC

Fig. 6. Performances for pedestrian detection compared to the other methods. (a) INRIA person dataset [6]. (b) DET (Detection Error Trade-off) curve
in log-scale. (c) AUC-based evaluation scores (1−AUC) in log-scale for various ratios of the positive labeled samples. (d) Similarity computation time per
sample (millisecond). These figures are best viewed in color.
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(a) Dataset (b) DET curve

Fig. 7. Performances for action detection compared to the other methods. (a) Examples of actions in parallel and horizontal bar events. Target acrobatic
actions jumping out of bars are positive (a-1) and the other non-target actions are negative (a-2). (b) DET (Detection Error Trade-off) curve in log-
scale, averaging all three random trials. (c) Averaged AUC-based evaluatoin scores (1−AUC) in log-scale. (d) Similarity computation time per sample
(millisecond). These figures are best viewed in color.
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