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Abstract—We propose a method of clustering sample vectors
on a hypersphere. Sample vectors are normalized in many
cases, especially when applying kernel functions, and thus
lie on a (unit) hypersphere. Considering the constraint of
the hypersphere, the proposed method utilizes the von Mises-
Fisher distribution in the framework of mean shift. It is also
extended to the kernel-based clustering method via kernel
tricks to cope with complex distributions. The algorithms of the
proposed methods are based on simple matrix calculations. In
the experiments, including a practical motion clustering task,
the proposed methods produce favorable clustering results.
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I. INTRODUCTION

Clustering sample vectors is a fundamental procedure
for pattern cognition and is employed in various applica-
tions, such as data mining, image segmentation and pattern
classification. For the clustering, we empirically estimate
the distribution of samples without any supervision, which
belongs to the framework of unsupervised learning. One
of the most popular methods is the k-means clustering
method [1]. The k-means method, however, requires the
number of clusters a priori based on the users’ experienced
knowledge. On the other hand, mean shift [2] is also widely
employed, and its derivatives, such as medoid shift [3] and
quick shift [4], have been proposed in recent years. The
method of mean shift operates without prior knowledge
about the number of clusters, and performs clustering of the
sample vectors by seeking local maxima of the probability
distribution defined in Euclidean space. The points of the
local maxima are considered to be the centers of the clusters
(modes).

In actual pattern recognition problems, the sample vector
is composed of features extracted from input data, e.g., still
images and motion images, and they are often normalized
in L2 norm in order to increase the robustness to vari-
ous changes, such as illumination changes. For example,
histogram-based features, such as SIFT [5], are ordinarily
normalized; in particular, most of the kernel functions used
in kernel-based methods implicitly assume that sample vec-
tors have unit norm in the kernel feature space. In these
cases, the sample vectors span not the whole feature space,

Figure 1. von Mises-Fisher distribution on a three-dimensional sphere.

rather a restricted region, i.e., a unit hypersphere. Banerjee et
al. [6] applied the EM method to cluster the samples on the
hypersphere under the assumption of a mixture distribution,
although the method based on EM requires the number of
the clusters as in the k-means method.

In this paper, we propose a method to cluster sample
vectors on the hypersphere without requiring the number
of clusters. We explicitly exploit the structure of the hyper-
sphere by employing the von Mises-Fisher distribution [7]
defined on the sphere, and then follow the scheme of mean
shift. The method is also extended to the kernel-based
clustering method via kernel tricks.

II. DISTRIBUTION ON THE HYPERSPHERE

On the hypersphere, sample vectors are characterized by
their directions (angles). In a discipline of directional statis-
tics, the von Mises-Fisher (vMF) distribution [7] (Fig. 1)
is commonly used, and the probability density function is
defined as follows:

M(y;μ, κ) = CM(κ) exp(κy′μ), (1)

where y is a d-dimensional unit vector (y ∈ Rd, ||y|| = 1),
μ is a unit vector orienting the center of the distribution, κ
is a parameter to control the concentration of the distribution
to the vector μ, and CM(κ) is a normalization constant.

The vMF distribution is based on the monotonically in-
creasing convex function exp and the inner product between
y and μ. According to this concept, we can generalize the
vMF distribution defined on the hypersphere as follows:

F(y;μ, κ) = CF (κ)f(y′μ;κ), (2)

where f is a monotonically increasing convex function
called profile function with a parameter κ. In this formu-
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Algorithm 1 : vMF Mean Shift
[Normalization] ||xi|| = 1,∀i.

for i = 1 to N do
[Init] Start from the i-th sample: y

(0)
i = xi.

[Update] Update the target points (vectors) until con-
vergence by the following formula:

y
(t+1)
i ←

∑N
j xjg(x′

jy
(t)
i ;κ)

||∑N
j xjg(x′

jy
(t)
i ;κ)||

. (6)

end for

[Postprocessing] Merge close convergent points

(y(∞)
i

′
y

(∞)
j > 1− ε) into the same cluster.

lation, the vMF is defined as f(x;κ) ≡ exp(κx), and we
call the distribution in Eq.(2) a vMF distribution.

III. VMF MEAN SHIFT

Using the above vMF distribution, we propose a method
of mean shift on the sphere (vMF mean shift) by imposing
the constraint that all samples are laid on the unit sphere.

A. Linear method

The empirical probability distribution can be estimated
by applying the Parzen window method [1] to the given
samples. We employ the vMF distribution in Eq.(2) for the
window function at each sample vector xi (||xi|| = 1), and
thus the probability distribution is obtained by

p(y) =
1
N

N∑
i

F(y;xi, κ) =
CF
N

N∑
i

f(y′xi;κ), (3)

where ||y|| = 1 and N is the number of samples. Local
maxima y∗ of this probability distribution p is calculated
via derivatives of the objective function with the Lagrange
multiplier η for imposing the constraint ||y||=1:

Objective function: L = p(y)− η

2
(||y||2 − 1), (4)

y∗ =
1

ηN

N∑
i

xiG(y;xi, κ) =
∑N

i xig(y′xi;κ)

||∑N
i xig(y′xi;κ)||

, (5)

where G, g are derivatives of F ,f , respectively. Thus, the
algorithm of vMF mean shift is given in Algorithm 1. Note
that κ is a single parameter of the method.

B. Kernel-based method

In the previous section, the hypersphere that the sample
vectors lie on is embedded in Euclidean space. On the other
hand, because the proposed method is mainly based on inner
products between sample vectors, we can extend the vMF
mean shift to the kernel-based clustering method via kernel
tricks.

Algorithm 2 : Kernel vMF Mean Shift

[Normalization] K = diag(K)−1/2Kdiag(K)−1/2

[Init] Start from each sample: A(0) = I , where I is an
identity matrix.

[Update] Update the target points (coefficients) until con-
vergence by the following formula:

W (t) ← gM (KA(t);κ) (7)

A(t+1) ←W (t)diag(W t′KW (t))−1/2 (8)

[Postprocessing] Merge close convergent points

(a(∞)
i

′
Ka

(∞)
j > 1− ε) into the same cluster.

The vMF distribution in Eq.(2) can also be defined in the
kernel feature space by simply replacing inner products with
kernel functions:

F(φy;φµ, κ) = CFf(φ′
yφµ;κ) = CFf(k(y,μ);κ),

where φy,φµ are normalized vectors in the kernel fea-
ture space, and thus k is a normalized kernel function:
k(x,y) ← k(x,y)√

k(x,x)k(y,y)
. The frequently used Gaussian

kernel is inherently normalized, and the normalized kernel
function has also produced better performance in recognition
problems [8].

In addition, the updated vector is described as a linear
combination of sample vectors in Eq.(6) as in the representer
theorem [9]. Thus, the updated vector for the i-th sample in
the kernel feature space is represented by

φyi
∝

N∑
j

aijφxj
= φXai, (9)

where φX = [φx1 , · · · ,φxN
] and ai are linear coefficients.

Thus, the update formula in Eq.(6) leads to

φXa
(t+1)
i ←

∑N
j φxj

g(φ′
xj

φXa
(t)
i ;κ)

||∑N
j φxj

g(φ′
xj

φXa
(t)
i ;κ)||

=

∑N
j φxj

g(k′
ja

(t)
i ;κ)

||∑N
j φxj

g(k′
ja

(t)
i ;κ)||

=
φXgM (Ka

(t)
i ;κ)√

gM (Ka
(t)
i ;κ)′KgM (Ka

(t)
i ;κ)

(10)

∴ a
(t+1)
i ← w

(t)
i√

w
(t)
i

′
Kw

(t)
i

, w
(t)
i = gM (Ka

(t)
i ;κ), (11)

where kj is the j-th column vector of the (normalized)
kernel Gram matrix K, and gM denotes the matrix function
applying g to all elements of the matrix, {gM (A)}ij =
g(Aij). The algorithm of the kernel vMF mean shift can
be simply described by using matrix calculations, as shown
in Algorithm 2.
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C. Discussion

We prove the convergence of the kernel vMF mean shift,
which can also be applied to that of the (linear) vMF mean
shift. Since the probability distribution function p is upper-
bounded, what we prove is only that p is monotonically
increasing by the updates:

p(φXa(t+1))− p(φXa(t))

=
CF
N

N∑
i

f(k′
ia

(t+1);κ)− f(k′
ia

(t);κ)

≥ CF
N

N∑
i

{k′
i(a

(t+1) − a(t))}g(k′
ia

(t);κ) (12)

=
CF
N

(a(t+1) − a(t))′KgM (Ka(t);κ)

=
CF

√
w(t)′Kw(t)

N
(a(t+1) − a(t))′Ka(t+1)

=
CF

√
w(t)′Kw(t)

2N
(a(t+1) − a(t))′K(a(t+1) − a(t))

≥ 0, (13)

where we use convexity of f in Eq.(12), and positive
definiteness of the kernel Gram matrix K in Eq.(13).

In the kernel vMF mean shift, when the update is con-
verged, the following equation holds:

gM (Ka(∞);κ) = λa(∞), (14)

where λ=
√

gM (Ka(∞);κ)′KgM (Ka(∞);κ) and a(∞) is
a fixed point. This is similar to an eigenvalue problem of the
kernel Gram matrix, Ka = λa, in which the eigenvectors
are considered as fixed points of the matrix K. Therefore,
the method of the kernel vMF mean shift is a sort of
nonlinear extension of spectral clustering [10] which also
finds the eigenvectors (fixed points) of the kernel Gram
matrix (similarity matrix).

IV. EXPERIMENTAL RESULTS

We apply the proposed methods to several clustering
problems. In the experiments, the profile function f and its
derivative g are set as

f(x;κ) =
{

0 0 ≤ x ≤ κ
1
2 (x− κ)2 κ ≤ x ≤ 1 , (15)

g(x;κ) =
{

0 0 ≤ x ≤ κ
x− κ κ ≤ x ≤ 1 . (16)

The profile f is smooth and thus the derivative g is contin-
uous.

The proposed methods have a single parameter κ that con-
trols the concentration of vMF distribution. In this study, the
parameter value is determined based on directional statistics
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(2a) Kernel vMF Mean Shift (2b) Mean Shift

Figure 2. Two types of toy examples.

of sample vectors, similarly to the standard deviation of a
Gaussian distribution:

κ = cos
{

1
2
Eij cos−1(k(xi,xj))

}
. (17)

We focus on the angle between sample vectors, which
corresponds to the metric on the hypersphere.

A. Toy examples

The first task is to cluster sample vectors that simply form
four modes on a 3D unit sphere (Fig. 2(1)). The proposed
method extracts the correct mode structure as shown in
Fig. 2(1a). In the standard mean shift, the parameter value
greatly affects the clustering results; the parameter value
derived from the standard deviation of the samples causes
a single cluster (Fig. 2(1b)), and that derived from Eq.(17)
even leads to the incorrect result (Fig. 2(1c)). To obtain the
same result as in Fig. 2(1a), we have to carefully determine
the parameter in the mean shift. The vMF mean shift,
which exploits the constraint for the hypersphere, produces
favorable results by using the statistical parameter value in
Eq.(17).

Next, we apply the kernel vMF mean shift to cluster
sample vectors on a complex distribution consisting of four
spirals (Fig. 2(2)). We employ the Gaussian kernel for
geodesic distance [11] and, by using such kernel functions,
the kernel vMF mean shift can deal with complex distribu-
tions. As shown in Fig. 2(2a), the proposed method retrieves
the four correct modes. The mean shift, however, loses
some of the mode structures in this complex distribution
(Fig. 2(2b)).
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(1) jump (2) swing (3) squat

(4) punch (5) turn right (6) turn left
Figure 3. Examples of motions.

QuickShift

MedoidShift

vMF MeanShift

Ground Truth

t

(1) (2) (3) (4)(5) (6)

Figure 4. Results of motion clustering.

B. Motion clustering

We can apply linear vMF mean shift to a more practical
problem such as the clustering of human motions in motion
images. The motion images consist of 1100 frames con-
taining four basic cyclic motions: jump, swing, squat and
punch, and two transient motions: turn left and turn right,
as shown in Fig. 3. We extract motion features at every
time point (frame) by applying the CHLAC method [12]
with the time window of 60 frames. The feature vectors are
then normalized (to unit in L2-norm) to increase robustness
to environmental variations, such as illumination changes.
Based on the human motion features, frames in motion
images are clustered into segments along the time axis.

For comparison, quick shift [4] and medoid shift [3] are
applied with the parameter values that are statistically deter-
mined in a manner similar to Eq.(17). The clustering results
are shown in Fig. 4. The proposed method successfully
detects all motion clusters, not only four basic motions but
also two short transient motions, whereas both the quick shift
and medoid shift confuse the jump and squat motions and
miss the two transient motions. Note that, in this experiment,
the profile function and definition of κ (Eq.(17)) in the vMF
mean shift are the same as those in Sec.IV-A.

V. CONCLUSION

We have proposed a method for clustering sample vectors
on a hypersphere. The method incorporates the vMF distri-

bution on the hypersphere into the framework of mean shift.
We also extended the method to the kernel-based clustering
method by utilizing kernel tricks. The unit-norm constraint
that the proposed methods assume is frequently imposed in
feature vectors and kernel functions. We applied the methods
to several clustering problems including motion clustering,
and the proposed methods exhibited the favorable results.
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