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Abstract. In this paper, we propose a method of multiple kernel learn-

ing (MKL) to inherently deal with multi-class classification problems.

The performances of kernel-based classification methods depend on the

employed kernel functions, and it is difficult to predefine the optimal

kernel. In the framework of MKL, multiple types of kernel functions are

linearly integrated with optimizing the weights for the kernels. How-

ever, the multi-class problems are rarely incorporated in the formulation

and the optimization is time-consuming. We formulate the multi-class

MKL in a bilinear form and propose a scheme for computationally effi-

cient optimization. The scheme makes the method favorably applicable

to large-scaled samples in the real-world problems. In the experiments

on multi-class classification using several datasets, the proposed method

exhibits the favorable performance and low computation time compared

to the previous methods.

Keywords: Kernel methods, multiple kernel learning, multi-class clas-

sification, bilinear form.

1 Introduction

The kernel-based methods have attracted keen attentions, exhibiting the state-
of-the-art performances, such as in support vector machines (SVM) [10] and
kernel multivariate analyses [8]. These methods are applied in various real-world
tasks, e.g., in the fields of computer vision and signal processing. In the kernel-
based methods, the input vectors are implicitly embedded in a high dimensional
space (called kernel feature space) via kernel functions which efficiently compute
inner products of those vectors in the kernel feature space. Thus, the performance
of the kernel-based methods depends on how to construct the kernel functions.

In recent years, Lanckriet et al. [5] proposed the method to integrate differ-
ent kernel functions with optimizing the weights for the kernels, which is called
multiple kernel learning (MKL). By combining multiple types of kernels, the
heterogeneous information, which is complementary to each other, can be effec-
tively incorporated, possibly improving the performance. The composite kernel
is successfully applied to, for example, object recognition [11].

In MKL, the weights for combining the kernels are obtained via the optimiza-
tion processes based on a certain criterion, mainly for classification. Since the
criterion can be defined in different formula, various methods for MKL have been
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proposed by treating different optimization problems in different approaches;
e.g., semi-definite programming [5] and semi-infinite linear program [9,13]. Most
of the methods, however, are intended for classifying binary classes, while real-
world problems contain multi classes in general. In addition, for application to
practical problems, the optimization process should be computationally efficient.

In this paper, we propose a MKL method for multi-class classification prob-
lems. Without decomposing the multi-class problem into several binary class
problems, the proposed method inherently deals with it based on the formu-
lation of Crammer & Singer [2] which first proposed multi-class SVM using a
single kernel. The contributions of this paper are as follows:
– We extend the formulation of multi-class classification in [2] to cope with

multiple kernel functions, and formulate multi-class MKL (MC-MKL) in a
bilinear form. In the formulation, the optimal weights for kernel functions
are obtained in respective classes.

– We propose a scheme to effectively optimize the bilinear formulated problem,
which makes the method applicable to large-scaled samples.

– In the experiments on various datasets, we demonstrate the effectiveness of
the proposed method, compared to the existing MKL methods [7,13].

While Zien & Ong [13] proposed the method of MC-MKL based on a similar
formulation, we employ a different criterion for the margin of the multi-class
classifiers and propose a more efficient optimization scheme.

2 Bilinear Formulation for MC-MKL

To consider multiple kernels, we introduce multiple types of features x(r) (r ∈
{1, .., R}, where R is the number of feature types). The inner products of those

features can be replaced with respective types of kernels via kernel tricks: x(r)
i

′
x

(r)
j

→ kr(x
(r)
i , x

(r)
j ). Crammer & Singer [2] have proposed a formulation for multi-

class SVM, considering only a single type of feature x. We extend the formulation
to incorporate the multiple types of features (kernels). We additionally introduce
the weights v for feature types as well as the weights w within features similarly
in MKL methods [13]. These two kinds of weights are mathematically integrated
into the following bilinear form to constitute multi-class classification [2]:

∗
c = arg max

c∈{1,..,C}

{
R∑

r=1

v(r)
c w(r)

c

′
x(r) = w′

cXvc = 〈X, wcv
′
c〉F

}
, (1)

where C is the number of classes, 〈 , 〉F indicates Frobenius inner product, v
(r)
c

is a weight for the r-th type of feature, w
(r)
c is a classifier vector for the r-th

type of feature vector in class c, and these variables are concatenated into long
vectors, respectively;

vc �
[
v(1)

c , · · · , v(R)
c

]′
, X �

⎡⎢⎣x(1) 0 0

0
. . . 0

0 0 x(R)

⎤⎥⎦ , wc �

⎡⎢⎢⎣
w

(1)
c

...
w

(R)
c

⎤⎥⎥⎦ . (2)
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Then, we can consider the margin of the above-defined bilinear classifiers (pro-
jections) by using the Frobenius norm ||wcv

′
c||F , and define the following opti-

mization problem based on a large margin criterion:

OP: min
{wc,vc},{ξi}

C∑
c=1

||wcv
′
c||F + κ

N∑
i=1

ξi (3)

s.t. ∀i, c 〈Xi, wyiv
′
yi
〉F − 〈Xi, wcv

′
c〉F + δyi,c ≥ 1 − ξi,

where N is the number of samples, yi indicates the class label of the i-th sample;
yi ∈ {1, .., C}, δyi,c equals to 1 if c = yi and 0 otherwise, ξi is a slack variable for
soft margin, and κ is a parameter to control the trade-off between the margin
and the training errors. Note that we minimize the Frobenius norm, not squared
one in SVM. Since this problem is difficult to directly optimize, we employ the
upper bound of the Frobenius norm:

||wcv
′
c||F = ||wc||||vc|| ≤

1
2
(||wc||2 + ||vc||2). (4)

Therefore, the optimization problem OP is modified to

P’: min
{wc,vc},{ξi}

1
2

(
C∑

c=1

||wc||2 + ||vc||2
)

+ κ

N∑
i=1

ξi (5)

s.t. ∀i, c w′
yi

Xivyi − w′
cXivc + δyi,c ≥ 1 − ξi.

The weights w and v separately emerge as standard squared norm, which facil-
itates the optimization. It can be shown that the OP and P’ have the identical
optimum solution by using rescaling technique described in Sec. 3.3.

In the problem P’, if the optimal weights
∗
v are obtained, the optimal classifier

vectors are represented as
∗
wc =

∑N
i=1

∗
τ icXi

∗
vc, where

∗
τ ic are the optimal dual

variables [2]. Thus, the multi-class bilinear classifier in Eq.(1) results in

∗
w

′
cX

∗
vc =

N∑
i=1

∗
τ ic

∗
v
′
cX

′
iX

∗
vc =

N∑
i=1

∗
τ ic

R∑
r=1

∗
v
(r)

c

2

x
(r)
i

′
x(r) (6)

→
N∑

i=1

∗
τ ic

R∑
r=1

∗
v
(r)

c

2

kr(x
(r)
i , x(r)),

where kr(x
(r)
i , x(r)) is a kernel function on behalf of the inner-product of the

r-th type of features, x
(r)
i

′
x(r), in kernel tricks. Note that the kernel functions

can be differently defined for respective feature types. The squared weights v
(r)
c

2

play a role to weight the kernel functions as in MKL, and produce the composite
kernel function specialized to class c. In this case, we can introduce alternative

nonnegative variables d
(r)
c =v

(r)
c

2
≥0 without loss of generality. The variables d

are the weights for kernel functions, and therefore the above bilinear formulation
is applicable to MC-MKL. The primal problem P’ is reformulated to
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P: min
{wc,dc},{ξi}

1
2

(
C∑

c=1

||wc||2 + 1′dc

)
+ κ

N∑
i=1

ξi (7)

s.t. ∀i, c w′
yi

Xid
1
2
yi − w′

cXid
1
2
c + δyi,c ≥ 1 − ξi, dc ≥ 0,

where dc = [d(1)
c , .., d

(R)
c ]′, and d

1
2
c is a component-wise square root of the vector

dc. In the problem P, non-negativity constraint is additionally introduced to the
problem P’ (or OP). The bilinear classifier is finally obtained by

∗
w

′
cX

∗
d

1
2

c =
N∑

i=1

∗
τ ic

R∑
r=1

∗
d
(r)

c kr(x
(r)
i , x(r)). (8)

We describe the scheme to efficiently optimize P in the following section.

3 Optimization Methods

The primal problem P in Eq.(7) has the following dual form, similarly to [11]:

max
{τi}

N∑
i=1

e′
yi

τi, s.t. ∀i τi ≤ κeyi , 1′τi = 0, ∀r, c
1
2

∑
i,j

kr(x
(r)
i , x

(r)
j )τicτjc ≤ κ.

where τi is the i-th C-dimensional dual variable, eyi is a C-dimensional vector in
which only the yi-th element is 1 and the others are 0, and 1 is a C-dimensional
vector of which all elements are 1. This is a convex problem having the global
optimum. However, it is actually solved by second order cone programming,
which requires exhaustive computational cost, and it is not applicable to large-
scaled samples. Therefore, we take an alternative scheme to optimize the primal
problem P in a manner similar to [7,11]. The scheme is based on the iterative
optimization for w and d, with applying projected gradient descent.

3.1 Optimization with Respect to w

At the t-th iteration with fixing the variable d to d[t], in a manner similar to [2],
the problem P results in the dual form:

max
{τi}

−1
2

N∑
i,j=1

C∑
c=1

(v[t]
c

′
X ′

iXjv
[t]
c )τicτjc +

N∑
i=1

e′
yi

τi

⇔ Dw: max
{τi}

−1
2

N∑
i,j=1

τ ′
iΛijτj +

N∑
i=1

e′
yi

τi, s.t. ∀i τi ≤ κeyi, 1′τi = 0, (9)

where Λij is a C-dimensional diagonalmatrix, {Λij}cc =
∑R

r=1 d
(r)[t]
c kr(x

(r)
i , x

(r)
j ).

In this dual problem, the constants derived from d[t] are omitted. This is opti-
mized by iteratively solving the decomposed small subproblem [2,3], as follows.
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Algorithm 1. Optimization for subproblem SubDw

Require: Reindex b̃c = bc
λc

and λc such that b̃c are sorted in decreasing order

Initialize c = 2, ζnum = λ2
1b̃1 − κ, ζden = λ2

1.

while c ≤ C, ζ = ζnum
ζden

≤ b̃c do

ζnum ← ζnum + λ2
c b̃c, ζden ← ζden + λ2

c, c ← c + 1.

end while
Output: τ̃c = min(bc, ζλc), ∴ τc = min{κδy,c, λ

2
c(ζ − βc)}.

The dual problem Dw is decomposed into N small subproblems; the i-th
subproblem focuses on the dual variable τi associated with the i-th sample,
while fixing the others τj (j �= i):

SubDw: max
τi

−1
2
τ ′

iΛiiτi − β′τi − γ, s.t. τi ≤ κeyi , 1′τi = 0, (10)

where

β =
∑
j �=i

Λijτj − eyi , γ =
1
2

∑
j �=i,k �=i

τjΛjkτk −
∑
j �=i

e′
yj

τj .

For optimization in Dw, the process to solve SubDw works in rounds for all i
and the dual variables τi are updated until convergence. The subproblems are
rather more complex than those in [2] since they include not scalar value x′

ixj

but the diagonal matrix Λij derived from multiple features (kernels). However, it
is noteworthy that they are solved at a quite low computational cost, as follows.

Optimization for Subproblem SubDw

In the following, we omit the index i for simplicity. By ignoring the constant,
the subproblem SubDw in Eq.(10) is reformulated to

min
τ̃

1
2
||τ̃ ||2, s.t. τ̃ ≤ κλ−1

y ey + Λ− 1
2 β, λ′τ̃ = λ′Λ− 1

2 β,

where τ̃ = Λ
1
2 τ + Λ− 1

2 β, λ is a C-dimensional vector composed of diagonal
elements of Λ− 1

2 , and λy is the y-th element of the vector λ. By using b =
κλ−1

y ey + Λ− 1
2 β, the constraints are rewritten as

s.t. τ̃ ≤ b, λ′τ̃ = λ′b − κ. (11)

The Lagrangian for this problem is

L =
1
2
||τ̃ ||2 − α′(b − τ̃ ) − ζ(λ′τ̃ − λ′b + κ), (12)

where α ≥ 0, ζ are Lagrangian multipliers. When the subproblem is optimized,
the followings hold:

∂L

∂τ̃
= τ̃ + α − ζλ = 0, KKT: ∀c αc(bc − τ̃c) = 0. (13)
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Therefore, we obtain

αc = 0 ⇒ τ̃c = ζλc, ζ ≤ bc

λc
, αc > 0 ⇒ τ̃c = bc, ζ >

bc

λc
. (14)

By using the above, the second constraint in Eq.(11) results in

λ′τ̃ =ζ
∑

c|αc=0

λ2
c +

∑
c|αc>0

λcbc =
C∑

c=1

λcbc − κ, ∴ ζ =

∑
c|αc=0 λcbc − κ∑

c|αc=0 λ2
c

. (15)

Thus, for solving the subproblem, we only seek ζ satisfying Eq.(14) and (15),
and the simple algorithm is constructed in Algorithm 1.

The optimization of Dw is the core and most exhaustive process for the whole
optimization inP.Therefore, the effective algorithm(Algorithm1) to solve the sub-
problem SubDw makes the whole optimization process computationally efficient.

3.2 Optimization with Respect to d

Then, the optimization of P is performed with respect to d. In this study, we
simply employ projected gradient descent approach, although the other method
such as in [12] would be applicable. In this approach, the objective cost function is
minimized by a line search [6] along the projected gradient under the constraints
d ≥ 0. Based on the principle of strong duality, the primal P is represented by
using Dw in Eq.(9) with the optimal dual variables τ [t] as

min
{dc}

{(
C∑

c=1

1
2
1′dc − θ′

cdc

)
+

N∑
i=1

e′
yi

τ
[t]
i = W (d)

}
, s.t. ∀c dc ≥ 0,

where θc is a R-dimensional vector of θ
(r)
c = 1

2

∑
i,j τ

(r)[t]
ic τ

(r)[t]
jc kr(x

(r)
i , x

(r)
j ). In

this case, W is differentiable with respect to d (ref. [7]), and thus the gradients
are obtained as ∇W = 1

21− θc. Thereby, the optimization in P is performed by
using projected gradient descent, d[t+1] = d[t]− ε∇W . We apply a line search [6]
to greedily seek the parameter ε such that W , i.e., the objective cost function in
P, is minimized while ensuring d ≥ 0. Note that, in this greedy search, the cost
function is evaluated several times via optimization of Dw .

3.3 Rescaling

After optimization of Dw with the fixed d, the cost function is further decreased
by simply rescaling the variables of τ and d, so as to reach the lower bound
in Eq.(4). The rescaling, τ̂ic = scτic, d̂c = 1

sc
dc, does not affect the bilinear

projection in Eq.(8) and thus the constraints in P are kept:

ŵ′
cXd̂

1
2
c =

N∑
i=1

scτic

R∑
r=1

d
(r)
c

sc
kr(x, xi) = w′

cXd
1
2
c , (16)
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while the first term in the cost function is transformed to

1
2

C∑
c=1

||ŵc||2 + 1′d̂c =
1
2

C∑
c=1

sc||wc||2 +
1
sc

1′dc. (17)

The optimal rescaling that minimizes the above is analytically obtained as
∗
sc =√

1′dc/||wc||, and Eq.(17) equals to the lower bound (the Frobenius norm):

1
2

C∑
c=1

||ŵc||2 + 1′d̂c =
C∑

c=1

√
1′dc||wc|| =

C∑
c=1

||wcd
1
2
c

′
||F . (18)

Although the rescaled τ̂ is not necessarily the solution of the problem Dw with
the rescaled d̂, in the greedy optimization for d, the gradients using τ̂ are
employed as the approximation for ∇W (d̂). This rescaling contributes to fast
convergence.

4 Experimental Result

We show the classification performances and computation time of the proposed
methods in comparison with the other MKL methods [7,13] on various datasets.
We employed the 1-vs-all version of [7] to cope with multi-class problems. The
proposed method is implemented by using MATLAB with C-mex on Xeon 3GHz
PC. For the methods of [7,13], we used the MATLAB codes provided by the
authors and combined them with libsvm [1] and MOSEK optimization toolbox
in order to speed up those methods as much as possible. In this experiment,
the parameter values in the all methods are set as follows: κ is determined from
κ ∈ {0.5, 1, 10} based on 3-fold cross validation and the maximum number of
iterations is set to 40 iterations for fair comparison of computation time. These
methods almost converge on various datasets within 40 iterations.

First, we used four benchmark datasets: waveform from UCI Machine Learn-
ing Repository, satimage and segment from the STATLOG project, and USPS [4].
The multiple RBF kernels with 10 σ’s (uniformly selected on the logarithmic
scale over [10−1, 102]) were employed. We drew 1000 random training samples
and classified the remained samples. The trial is repeated 10 times and the av-
erage performance is reported. Fig. 1(a,b) shows the classification results (error
rates) and computation time on those datasets. While the performances of the
proposed method are competitive to the others, the computation time is much
more reduced; especially, more than 20 times faster than the method of [13].

Next, we applied the proposed method to the other practical classification
problems in cell biology. The task is to predict the sub-cellular localizations of
proteins, and in this case it results in multi-class classification problems. We
employed a total of 69 kernels of which details are described in [13]. MKL would
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Fig. 1. The classification performances (error rates) and computation time on the four

benchmark datasets. The number of classes is indicated in parentheses and that of

training samples is in brackets. The left bar shows the result of the proposed methods.

be effectively applied to these substantial types of kernel. In this experiment,
we used four biological datasets [13]: plant, nonplant, psort+, and psort-. We
randomly split the dataset into 40% for training and 60% for testing. The trial
is repeated 10 times and the average performance is reported. The results are
shown in Fig. 1(c,d), demonstrating that the proposed method is quite effec-
tive; the proposed method is superior and faster to the methods of [7,13]. The
experimental result shows that the proposed method effectively and efficiently
combines a lot of heterogeneous kernel functions.

5 Conclusion

We have proposed a multiple kernel learning (MKL) method to deal with multi-
class problems. In the proposed method, the multi-class classification using mul-
tiple kernels is formulated in the bilinear form, and the computationally efficient
optimization scheme is proposed in order to be applicable to large-scaled sam-
ples. In the experiments on the benchmarks and the biological datasets, the
proposed method exhibited the favorable performances and computation time
compared to the previous methods of MKL.
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