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ABSTRACT

We propose cone-restricted kernel subspace methods for pat-
tern classification. A cone is mathematically defined in a
manner similar to a linear subspace with a nonnegativity con-
straint. Since the angles between vectors (i.e., inner products)
are fundamental to the cone, kernel tricks can be directly ap-
plied. The proposed methods approximate the distribution of
sample patterns by using the cone in kernel feature space via
kernel tricks, and the classification is more accurate than that
of the kernel subspace method. Due to the nonlinearity of ker-
nel functions, even a single cone in the kernel feature space
can can cope with multi-modal distributions in the original in-
put space. In the experimental results on person detection and
motion detection, the proposed methods exhibit the favorable
performances.

Index Terms— Pattern classification, kernel-based method,
cone, subspace method

1. INTRODUCTION

In recent years, linear methods for classifying pattern vec-
tors have been extended to kernel-based methods, such as
kernel principal component analysis [1] and kernel discrim-
inant analysis [2], to deal with linearly inseparable pattern
distributions. These kernel-based methods have performed
well in various pattern recognition tasks in comparison with
the linear methods. In kernel-based methods, input pattern
vectors are implicitly embedded in high dimensional space,
called kernel feature space, using kernel tricks [1], and then
linear methods are applied in that space. Kernel subspace
methods [3, 4], which assume a linear subspace in the ker-
nel feature space, also provide favorable performances. The
successful results indicate that pattern distribution in kernel
feature space can be approximated by simple models, such
as subspaces, even though the linearity in the original input
space no longer holds due to the nonlinear kernel functions.

Cone-restricted subspace methods [5] were recently pro-
posed and their superiority to the linear subspace method has
been confirmed. The methods approximate a pattern distri-
bution by using a cone. A cone is mathematically defined
in a manner similar to a linear subspace with the constraint
of nonnegativity that is compatible with the nonnegative fea-

Fig. 1. A kernel cone for two modal distributions is shown in
three-dimensional input space. The pseudo color indicates the
angle to the kernel cone. This figure is best viewed in color.

tures, such as histogram-based features [6, 7]. While the pat-
tern vectors can be strictly classified at the boundary of the
cone, cone-restricted subspace methods retain the favorable
property of the subspace method, i.e., robustness to scale and
additive changes of input pattern vectors. Therefore, the cone
would be useful for approximating the pattern distribution
even in kernel feature space.

In this paper, we extend the cone-restricted subspace
methods to kernel-based methods by utilizing kernel tricks.
The angles between pattern vectors (i.e., inner products) are
fundamental to the cone, and thus kernel tricks are applicable.
Thereby, a cone is also definable in kernel feature space. Due
to the nonlinearity of kernel functions, the kernel cone can
deal with the multi-modalities of pattern distributions in the
original input space (Fig. 1), whereas the linear cone can only
deal with uni-modal distributions. In this paper, we develop
two types of kernel-based methods, using a strict convex
cone and a circular cone [5] 1. In experiments, we apply the
proposed methods to one-class learning problems.

2. CONE-RESTRICTED KERNEL SUBSPACE
METHODS

We propose two types of cone-restricted kernel subspace
methods that utilize kernel tricks [1]. The proposed methods
approximate the pattern distribution by using the cone in the
kernel feature space. The first method is based on a con-
vex cone defined in the kernel feature space and the second
method is based on a circular (elliptic) cone.

1In [5], the method of covering convex cone is also proposed and it can
be extended to kernel-based method. In this paper, however, we describe the
kernel-based extensions of only a strict convex cone and a circular cone due
to their superior performances to the covering cone method.
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2.1. Kernel convex cone

We first define the convex cone in kernel feature space, and
then describe how to find the basis samples forming the kernel
convex cone.

2.1.1. Definition of kernel convex cone

The kernel convex cone is defined as

C :
{

φx | φx =
N∑

i=1

αiφ(xi) = Φ(X)α, αi ≥ 0
}

, (1)

where φ are nonlinear functions that map the input pattern
vector x into higher dimensional space φ(x) so that kernel
function k(x,y) = φ(x)′φ(y), Φ(X)=[φ(x1), ..,φ(xN )],
N is the number of sample vectors xi, and αi are nonnegative
coefficients, α=[α1, , αN ]′ ∈ RN×1. Cone C is embedded
in higher dimensional space, called the kernel feature space,
via the functions φ. In the proposed method, an input vector
y is classified based on the angle θ between the transformed
vector φ(y) and the vector perpendicularly projected onto the
kernel convex cone C in the kernel feature space. The angle
θ is calculated as follows:

θ = arcsin
minφx∈C ||φ(y)− φx||

||φ(y)||

= arcsin

√
minα≥0 ||φ(y)−Φ(X)α||2

||φ(y)||

= arcsin

√
minα≥0 α′Kα− 2α′ky + k(y,y)

k(y,y)
, (2)

where 0 ≤ θ ≤ π/2, K ∈ RN×N is a kernel Gram matrix
(Kij = k(xi,xj)), ky ∈ RN×1 is a vector consisting of
{ky}i = k(xi,y). This optimization problem is efficiently
solved by applying the nonnegative least square (NNLS)
method [8] to matrix K and vector ky . However, it is time-
consuming to use all of the samples Φ(X) as bases of the
kernel cone, for calculating the angle in Eq.(2). To reduce
the computational cost, we extract a smaller number of basis
samples by eliminating the redundant ones.

2.1.2. Basis samples in kernel convex cone

First, we define convex-redundant samples φ(xi) by

φ(xi) =
∑
j �=i

φ(xj)αj = Φ(Xī)αī, s.t. αī ≥ 0, (3)

where ī denotes the index set excluding i. Even if the re-
dundant samples are excluded, the kernel convex cone can be
represented by the remaining subset of samples without col-
lapsing the cone. The redundancy is evaluated based on the
angle between the vector φ(xi) and the cone composed of
Φ(Xī); a smaller angle indicates higher redundancy of the
sample (Eq.(3) holds for a zero angle). Thus, based on the

Algorithm 1 : Extraction of basis samples in convex cone
1: Select subset S randomly from the whole index set W =
{1, · · · , N} (complementary index set is denoted by S̄).

2: Calculate the angle θi between each sample φ(xi) (i ∈
S) and the cone CSī

by using kernel matrix KSīSī
and

vector kSīi in Eq.(2) (see below).

KSīSī

KS̄S̄

KSS̄

i

i

KSS �
�

kSīi

3: Eliminate the index {i|θi < θthre(≈ 0)} from W and S
(the sample is convex-redundant).

4: Calculate the angle θj between sample φ(xj) (j ∈ S̄)
and cone CS by using KSS and kSj , and eliminate index
{j|θj < θthre} from W .

5: Repeat steps 1∼4 until no redundant sample index is
found.

kernel Gram matrix K, the redundant samples are sequen-
tially eliminated in a manner of leave-one-out using Eq.(2),
as in reducing support vectors [9]. The algorithm is described
in Algorithm 1. The basis samples, which are similar to the
support vectors in support vector machines (SVM) [10], are
obtained in this greedy manner, and so the computational cost
in Eq.(2) is drastically reduced.

2.2. Kernel circular cone

In the second proposed method, the sample distribution is ap-
proximated by a circular (elliptic) cone in the kernel feature
space. Suppose that all samples are projected onto a unit (ker-
nel) hypersphere. Then the kernel circular cone is simply de-
fined by {

x| φ′
μφ(x)√

φ(x)′φ(x)
≥ b

}
, (4)

where φμ is the orientation vector of the kernel circular cone,
and φ′

μφ(x) = b is the hyperplane perpendicular to φμ that
intersects the unit hypersphere. The primary problem for the
kernel circular cone is determining the hyperplane.

2.2.1. Whitening

Since the samples are generally distributed elliptically, they
should be whitened in the kernel feature space before apply-
ing the kernel circular cone. The whitening is performed by
applying kernel principal component analysis (KPCA) to the
samples projected onto the unit hypersphere. In this case, the
orientation vector is simply assumed to be the sample mean
vector φm:

φm =
Φ̃(X)1√

1′Φ̃(X)′Φ̃(X)1
= Φ(X) diag(K)−1/2 1√

1′K̃1︸ ︷︷ ︸
m∈RN×1

,
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where φ̃(x) = φ(x)
||φ(x)|| , and K̃ = diag(K)−

1
2 Kdiag(K)−

1
2

is a normalized Gram matrix. The samples are assumed to be
elliptically distributed around this orientation vector and we
project them into the complementary subspace to φm by

φ̂(xi) = (I − φmφ′
m)

φ(xi)
||φ(xi)|| = (I − φmφ′

m)φ̃(xi).

Then, KPCA is applied to these projected samples:

K̂K̂α = λK̂α ∴ K̂α = λα, s.t. α′K̂α = 1, (5)

where K̂ = K̃ − K̃11′K̃′

1′K̃1
. The j-th principal axis is

Φ̂(X)αj = Φ(X) diag(K)−1/2

[
αj − 1′K̃αj

1′K̃1
1
]

︸ ︷︷ ︸
aj∈RN×1

. (6)

Thus, by using n principal axes, the mapping vectors for
whitening are obtained as

V = [φm, Φ̂(X)α1, · · · , Φ̂(X)αn] = Φ(X)[m,A], (7)

where A=[a1, ..,an]∈RN×n. The samples are whitened by

x̌i = diag

(
1, 1,

√
λ1

λ2
, · · · ,

√
λ1

λn

)
︸ ︷︷ ︸

S∈R(n+1)×(n+1)

V ′φ(xi) = S[m,A]′ki.

In this whitening, the sample distribution is scaled based on
the standard deviation along the first principal axis. Vector x̌
is further normalized, as described in the next section.

2.2.2. Determination of hyperplane

After whitening by KPCA, the sample vectors are embedded
in Euclidean space x̌. As in the method of a linear circu-
lar cone [5], the optimal plane for the kernel circular cone is
obtained by applying (linear) 1-class SVM to the whitened
samples:

min
μ,b

1
2
||μ||2 − b, s.t. μ′ x̌i

||x̌i|| ≥ b. (8)

The solutions are then normalized: μ← μ
||μ|| , b← b

||μ|| .

2.2.3. Angle to kernel circular cone

The angle to the kernel circular cone is easily calculated due
to its simple formulation in Eq.(4). We calculate the projected
vector ζ of an input vector y onto the kernel circular cone.
Since the kernel circular cone is defined in the kernel sub-
space by whitening (KPCA), input vector φ(y) is first pro-
jected into the kernel subspace by using V :

y̌ = SV ′φ(y) = S[m,A]′ky. (9)

Then, ζ is obtained as follows:

ζ̌ = cos θCμ + sin θC
y̌ − (y̌′μ)μ
||y̌ − (y̌′μ)μ|| (10)

ζ = V S−1ζ̌, (11)

where θC(= arccos(b)) is the spread angle of the kernel cir-
cular cone, and ζ̌ is the vector projected from ζ into the kernel
subspace. Thus, we can compute the angle between the input
vector and kernel circular cone as follows:

θ = arccos
φ(y)
||φ(y)||

ζ

||ζ|| = arccos
y̌′S−2ζ̌√

k(y,y)
√

ζ̌′S−2ζ̌
.

Since the dimensionality of the kernel subspace is low, the
computational cost for calculating the angle is also low, even
if the kernel feature space has high dimensionality.

3. EXPERIMENTAL RESULT

We applied the proposed methods to two kinds of one-class
learning problems: person detection and motion detection. In
one-class learning, only the positive samples to be detected
are used to construct the kernel cone, and then the input sam-
ple is classified based on the angle to the cone.

3.1. Person detection

We used the INRIA person dataset [11] containing person im-
ages (64x128) with large variability, as shown in Fig. 2(a). We
selected 2416 person images for training, and 1132 person
images and 25770 person-free images for testing. The gra-
dient local auto-correlation (GLAC) image features [6] were
extracted from these images and the RBF kernel was applied
to the features. The cone-restricted kernel subspace methods
were compared to the methods of the linear cone [5] and the
kernel subspace [3]. The results are shown in Fig. 2(b). The
cone-restricted kernel subspace methods show an improve-
ment over the performances of the linear cones and the kernel
subspace method. As shown in Fig. 2(c), the kernel circu-
lar cone method is robust with respect to the dimensionality
of the kernel subspace for whitening, in contrast to the ker-
nel subspace method. These results show that the cone-based
method is effective even in the kernel feature space.

3.2. Motion detection

Next, we used sports motion images for motion detection.
The task is to detect weightlifting motions from a long motion
image sequence captured by a stationary camera at a prac-
tice field. The test image sequence has approximately 30000
frames containing 14 weightlifting motions performed by sev-
eral players as well as various irrelevant motions, as shown in
Fig. 3(a). For training, we collected 38 short motion images
containing only the target (weightlifting) motions captured at
the different practice field from that of the test sequence. We
employed the kernel circular cone method, since the method
is favorable in terms of performance and computational cost,
and applied the RBF kernel to cubic higher-order local auto-
correlation (CHLAC) motion features [7] extracted from the
motion images. To detect the target motions, we applied the
detection window with 75, 150 and 300 frames along the time
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Fig. 2. Results of person detection.

axis, and performed non-maximum suppression [11] as post-
processing. The detection performance was evaluated by the
average precision rate. The performance of the kernel circu-
lar cone was 99.5%, whereas the performance of the linear
circular cone was 98.5%. The detection results of the kernel
circular cone method are shown in Fig. 3(b, c). As shown in
Fig. 3(b), we can easily determine the threshold for detecting
all the weightlifting motions except for the last one, in which
the player failed to lift the barbell. Although the eighth mo-
tion is redundantly detected, the detected motion periods are
quite close to the ground truth, as shown in Fig. 3(c).

4. CONCLUSION

We proposed two cone-restricted kernel subspace methods.
The methods approximate the sample distributions in kernel
feature space by a cone and strictly classify the patterns at the
boundary of the cone, compared to kernel subspace methods.
In addition, multi-modalities in the original input space can
be dealt with in virtue of nonlinear kernel functions. The ex-
perimental results for person detection and motion detection
demonstrated the effectiveness of the proposed methods.
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