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This paper presents a feature extraction method for three-way data: the cubic higher-order local auto-
correlation (CHLAC) method. This method is particularly suitable for analysis of motion-image sequences.
Motion-image sequences can be regarded as three-way data consisting of x-, y- and t-axes. The CHLAC
method is based on three-way auto-correlations of pixels in motion images. It effectively extracts spa-
tio-temporal local geometric features characterizing the motion, such as gradients (velocities) and curva-
tures (accelerations). It has also several advantages for motion recognition. Firstly, neither a priori
knowledge nor heuristics about the objects in question is required. Secondly, it is shift-invariant and thus
segmentation-free. Thirdly, its computational cost is less than that of traditional methods, which makes it
more suitable for real time processing. The experimental results on large datasets for gesture and gait rec-
ognition showed the effectiveness of the CHLAC method.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

Motion recognition is becoming an important area in computer
vision, and has attracted an increasing number of researchers. The
two approaches being considered are, firstly, recognition of the
particular type of motion, and secondly, recognition of the per-
former of the motion. Gesture recognition corresponds to the for-
mer task and this has been developed over the last decade. It is
considered to be an effective approach to studying human–ma-
chine interactions (Raytchev et al., 2000).

In terms of the latter approach, more recently, gait recognition
has become an important focus within the video surveillance com-
munity (Nixon and Carter, 2006). The term ‘‘gait” refers to the
manner of walking, which, if characterized precisely enough, is ex-
pected to become a biometric key for human identification. Unlike
fingerprinting, this biometric method would have the advantage
that human identification could be carried out by observing the
gait through a video camera from a distance.

There are several difficult problems associated with motion rec-
ognition, namely segmentation, tracking, and analysis both of the
human shape and its changes over time. Gait recognition requires
an even more detailed analysis of motion and considerable effort
has already been invested in these problems. Motion images are
characterized as containing both spatial and temporal information
that are difficult to treat all together and effectively. In typical ap-
proaches to motion-image analysis, these two kinds of information
ll rights reserved.
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are processed individually: each image frame is processed and usu-
ally compressed into a feature vector before a time series of the
resulting feature vectors is analyzed. While several previous stud-
ies have required specific knowledge of the motion or the per-
former, some psychological studies have suggested that such
specific knowledge may not be required for motion recognition
(Johansson, 1973; Cutting and Kozlowski, 1977).

One of the earliest psychological studies related to motion rec-
ognition, particularly gait recognition, was that of Johansson
(1973) in which an experiment, using ‘‘point light display,” re-
vealed that we can perceive human motion using only the moving
patterns of points of light as a cue (Fig. 1). In terms of employing
gait to identify humans, Cutting and Kozlowski (1977) confirmed
that humans can recognize a particular person walking by observ-
ing the moving points of light, even if familiarity cues are omitted.
They also suggested that dynamic cues such as speed, bounciness
and rhythm of the walker are more important than static cues such
as the height of the walker. It is important to note that human gait
can be recognized almost entirely by utilizing only dynamic cues.
Cutting and Kozlowski (1977) noted that, ‘‘the perception of dy-
namic forms is probably not derived from the perception of static
forms” and ‘‘snapshot recognition is a special case of motion recog-
nition, where the dynamic invariance is null.”

In this paper, cubic higher-order local auto-correlation (CHLAC)
is presented, the basic idea of which is proposed in (Kobayashi and
Otsu, 2004, 2006). Auto-correlation is associated with relative move-
ment of points such as those in point light display. CHLAC is able to
cope with static and dynamic cues simultaneously in a natural way
using spatio-temporal auto-correlation. The motivation for using
to-correlation approach to motion recognition, Pattern Recognition
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Fig. 2. Cubic data showing motion pixels as white points which are extracted by
frame differencing and binarization.

Fig. 1. Point light display. Points of light are perceived as random patterns in the
static case, but once the object moves, the movement can be recognized entirely by
means of the moving points of light.
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CHLAC is similar to that discussed by Cutting and Kozlowski (1977)
which deals with both spatial axes and the time axis equally, not as
a compilation of snapshots. The key point is that dynamic percep-
tion is connected to the mutual relations among the moving points
which we regard as spatio-temporal auto-correlations of the moving
points (see Section 4 for details). CHLAC requires no a priori knowl-
edge about objects and can be used as a method for versatile mo-
tion-feature extraction. Furthermore, motion images are analyzed
simultaneously within a spatio-temporal context and do not re-
quire any two-step analysis for still images and time series.

In this paper, we apply the CHLAC method to the two motion
recognition tasks: gesture and gait recognition. The experimental
results on large datasets confirmed the effectiveness of the
method.

The rest of the paper is organized as follows: the next section
reviews previous studies related to gesture and gait recognition.
We describe the preprocessing of motion-image sequences in Sec-
tion 3 and details of CHLAC method in Section 4. In Section 5, the
experimental results for gesture and gait recognition are shown. Fi-
nally, Section 6 contains our concluding remarks.

2. Previous studies

Firstly, we review related studies of gesture recognition. One of
the traditional methods is that of Wilson and Bobick (1999) in
which hidden Markov model (HMM) is employed to analyze time
series of kinematic parameters of a human body. Recently, Kim
et al. (2007) used canonical correlations to calculate the similarity
between two video sequences by applying tensor canonical corre-
lation analysis. The method assumes aligned sequences and is af-
fected by background. The method of Dollar et al. (2005) is based
on spatio-temporal interest points (Laptev, 2005) and visual code
words (Sivic and Zisserman, 2003). In (Jhuang et al., 2007), the
interest point detector becomes more sophisticated and is biolog-
ically inspired. Although these methods have resulted in good per-
formance, it is difficult to apply them in real time due to the high
computational load. The most closely related studies to our work
are Raytchev et al. (2000) and Ishihara and Otsu (2004). These
methods, however, considered only the first order auto-correla-
tions, which are insufficient to capture details of motion informa-
tion, as discussed in Section 4.3.

Next, studies related to gait recognition are reviewed. Sarker
et al. (2005) used template matching of silhouettes which were
roughly extracted by background subtraction. More sophisticated
silhouette extraction method was employed together with HMM
in (Lee et al., 2003). Tolliver and Collins (2003) applied the refined
template matching method by using a variance-weighted metric
and detecting key frames in a human gait. Sundaresan et al.
(2003) applied HMM to the time series analysis of silhouettes.
These methods are all based on human silhouettes and template
Please cite this article in press as: Kobayashi, T., Otsu, N., Three-way au
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matching (spatio-temporal cross-correlation) for calculating the
similarities of frames. Wang et al. (2003) extracted features from
the outer contour of silhouettes, while hardly making use of tem-
poral information.

3. Preprocessing

Before applying CHLAC to motion images, pixel values are con-
verted to binary values, based on the motion as follows.

Firstly, as shown in Fig. 2, an image sequence can be regarded as
three-dimensional data: x- and y-axes in an image frame (X � Y)
and the t-axis (for time) along the frame sequence. Motion is usu-
ally composed of characteristic (sub-)motions over certain time
durations, such as cyclic motion periods. For capturing the charac-
teristics, we set a time window containing a constant number of
frames along the t-axis. The frames within the window are as-
signed as one unit of three-way data, called ‘‘cubic data”
(X � Y � T). A series of such cubic data units is obtained by shifting
the window – say one frame at a time – along the time axis, where
the width T of the window is a parameter to be determined. Hu-
man motion is recognized at each frame t by classifying the CHLAC
feature vector of the cubic data.

Secondly, we apply frame differencing and then automatic-
thresholding (Otsu, 1979) in order to detect and binarize motion
pixels. These processes also filter out both inherent noise and
brightness information, such as that due to clothing, which is
irrelevant to the motion itself. Consequently, pixel values in each
frame become either 1 (moved) or 0 (static). A moving human
contour is visible (Fig. 2), and the contour is sufficient for motion
recognition (Veres et al., 2004). A little isolated noise might be
left in the resulting frames, but need not be eliminated since
CHLAC is robust to such isolated noise (see Section 4.3). In this
preprocessing, frame differencing could be replaced by another
method, such as silhouette extraction or edge extraction. The
extraction of silhouettes, however, requires more complicated
processing (background estimation, etc.) whereas frame differenc-
ing and binarization are easily processed. It should be noted that
CHLAC can deal with these kinds of preprocessing, whereas other
methods of motion recognition based on template matching ac-
cept only silhouette extraction for preprocessing. Edge extraction
and binarization are also easily processed and produce human
contours similar to the frame differencing approach. Differences
in the effects of these variants of preprocessing are discussed in
Section 5.1.

4. Cubic higher-order local auto-correlation (CHLAC)

In this section, the general formulation and practical computa-
tion of the cubic higher-order local auto-correlation (CHLAC)
(Kobayashi and Otsu, 2004, 2006) are presented. Higher-order local
auto-correlation (HLAC) has been proposed for extracting spatial
auto-correlations, and its effectiveness has also been demonstrated
for static image (two-way data) recognition (Otsu and Kurita,
to-correlation approach to motion recognition, Pattern Recognition
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Fig. 4. Examples of duplicated mask patterns: (a) N = 1, a1 = (�Dr,�Dr,�Dt)T, (b)
N = 1, a1 = (Dr,Dr,Dt)T. The mask pattern (a) corresponds to a shift of (b) by
(Dr,Dr,Dt)T.

Fig. 5. Manifold of human motion in XYT space. Local geometric characteristics are
also described as arrows and curves. Velocities and accelerations are along the time
axis while gradients and curvatures are in an image frame.
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1988). We extend this naturally to CHLAC so as to deal directly
with three-way data. In this framework, static perception related
to HLAC is considered as a special case of dynamic perception re-
lated to CHLAC as suggested in (Cutting and Kozlowski, 1977).

4.1. Definition

Let f(r) be three-way (cubic) data defined on the region
D :X � Y � T with r = (x,y, t)T, where X and Y are the width and
height of the image frame and T is the time length of the time win-
dow. Then the Nth order auto-correlation function is defined as

RNða1; . . . ;aNÞ ¼
Z

Ds

f ðrÞf ðr þ a1Þ � � � f ðr þ aNÞdr ð1Þ

Ds ¼ fr j r þ ai 2 D 8ig;

where ai(i = 1, . . .,N) are displacement vectors from the reference
point r. Since Eq. (1) can take many different forms by varying N
and ai, we limit N 6 2 and ai to a local region by focusing on the
high correlation of the local voxels.

A CHLAC feature (vector) consists of RN(a1, . . .,aN) with various
a1, . . .,aN in the local region and N 2 {0,1,2}. However, in the case
that the point configuration of ðrð1Þ; rð1Þ þ að1Þ1 ; . . . ; rð1Þ þ að1ÞN Þ
matches that of ðrð2Þ; rð2Þ þ að2Þ1 ; . . . ; rð2Þ þ að2ÞN Þ by shifting,
RNðað1Þ1 ; . . . ;að1ÞN Þ takes the same value as RNðað2Þ1 ; . . . ;að2ÞN Þ. Therefore,
we eliminate such duplicate configurations for CHLAC features. The
following section describes details of the computation of CHLAC
features.

4.2. Computation

Firstly, Eq. (1) is translated from its continuous form to a corre-
sponding discrete version:

RNða1; . . . ;aNÞ ¼
X

x;y;t2Ds

f ðx; y; tÞf ðxþ a1x; yþ a1y; t þ a1tÞ � � � f ðx

þ aNx; yþ aNy; t þ aNtÞ; ð2Þ

where aix,aiy 2 {±Dr, 0}, ait 2 {±Dt,0} and N 2 {0,1,2}. The parame-
ters Dr, Dt denote the spatial and temporal intervals, respectively.
The interval along the x-axis is made equal to that along the y-axis
because of isotropy in the x–y plane. On the other hand, the tempo-
ral interval Dt may be different from the spatial interval Dr because
the resolution of space and time may differ.

The configuration (r,r + a1, . . .,r + aN) is represented by a local
mask pattern, e.g., in Fig. 3. Such mask patterns are constructed
as follows. There are many possible mask patterns including dupli-
cated patterns in terms of point configurations. The mask patterns
which are mutually matched by shifting, e.g., in Fig. 4, can be elim-
inated; in which case 279 independent mask patterns are obtained
for the case of gray-scale image (Appendix A). On the other hand, in
the case of binary image (f(r) = 0 or 1), the number of mask pat-
terns is further reduced to 251 because f(r)k = f(r), "k > 0. Refer
to Appendix A for all of the reduced pattens. The dimension of
CHLAC features corresponds to the number of mask patterns. In
Fig. 3. Examples of independent mask patterns: (a) N = 0, (b) N = 1, a1 =

Please cite this article in press as: Kobayashi, T., Otsu, N., Three-way au
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this paper, we use the latter 251-dimensional features since the
voxel values in cubic data are binary values (Section 3).

In the case of motion images, frames are successively inputted
to the system. Considering cubic data with constant time width,
the oldest frame in the cubic data is discarded when a new frame
is inputted. Similarly, the feature (vector) for the cubic data is up-
dated only by adding CHLAC feature (vector) for the new frame and
subtracting one for the oldest frame, not computing for whole cu-
bic data every time. This is due to the ‘‘additivity” property of
CHLAC as described in the next section. Consequently, the compu-
tational cost is significantly reduced. The computational cost of
CHLAC is low because it consists of simple multiplications (or
AND operations for binary data) and additions, which enables us
to use SIMD instructions (Iwata et al., 2007). The computation for
a mask pattern is skippable if its center pixel value is 0, which is
common in an actual image sequence. In addition, the computation
of the mask pattern of N = 2 is also skippable if it includes the skip-
pable sub-pattern (N = 1). Therefore, we can efficiently compute
CHLAC features. For example, it takes about 0.4 ms per frame to
compute the CHLAC features for a 320 � 240 image sequence using
a Pentium 4 3.8 GHz processor with 3 GB RAM.
(Dr,Dr,Dt)T, and (c) N = 2, a1 = (Dr,Dr,Dt)T, a2 = (�Dr,�Dr,�Dt)T.

to-correlation approach to motion recognition, Pattern Recognition
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4.3. Properties

The CHLAC method extracts spatio-temporal features from
three-way data in only one step. This is different from the tradi-
tional approaches which require two steps: shape feature extrac-
tion and temporal feature extraction. Furthermore, it has the
following desirable properties with respect to recognition.

� Shift-invariance with respect to data: This renders the method
segmentation-free.

� Additivity for data: Suppose we consider disjoint regions A
and B (A \ B = /); the feature value of the whole region is
the sum of those from regions A and B due to the locality
of auto-correlations. When different motions, whose features
Fig. 6. Snapshots of some gestures and results of prepro

Please cite this article in press as: Kobayashi, T., Otsu, N., Three-way au
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are denoted by fA and fB, are simultaneously captured in an
image sequence, the feature of the whole image sequence
is sum of these different motions, fT = fA + fB. If we know
each motion feature, fA, fB, through training stage, these dif-
ferent motions can be recognized from fT simultaneously,
such as by multiple regression analysis (Kobayashi and
Otsu, 2004).

� Robustness to noise in data: Correlation is robust with respect to
background noise as follows. Let si and ni be a signal and random
noise with mean 0 and variance r2 at the ith voxel, respectively;
E(si + ni)(sj + nj) = E(sisj) + r2dij ; Esisj by assuming that si� r.
For binary data, isolated noise has hardly any effect on CHLAC
feature values because most of the noise points have no correla-
tion with the surrounding points.
cessing. Top: ‘‘right”, middle: ‘‘left”, bottom: ‘‘stop”.

to-correlation approach to motion recognition, Pattern Recognition
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In the case of binary three-way data where dot patterns form a
manifold of the object, CHLAC can extract local geometric charac-
teristics: gradients and curvatures. These two characteristics are
discretized and described by the first and second order mask pat-
terns, respectively. The first and second order patterns compose lo-
cal lines and curves, respectively, and the gradients and curvatures
of the manifold are approximated by such mask patterns. From this
viewpoint, a CHLAC feature may be interpreted as a histogram of
orientations of these local characteristics. In this study of motion
images, the preprocessed frame contains dot patterns of human
contours, and the manifold is formed by successive human con-
tours (dot patterns) in three-dimensions (x,y, t) (see Fig. 5). The
geometric characteristics of this manifold are spatio-temporal. In
particular, along the temporal axis, gradients and curvatures corre-
spond to velocities and accelerations of individual points which
characterize the motion. Therefore, CHLAC for (binary) motion
images can effectively and simultaneously capture the characteris-
tics not only of the shape but also its motion. It should be noted
that Raytchev et al. (2000) and Ishihara and Otsu (2004) used only
first order mask patterns indicating gradients for simplicity, which
are not sufficient for fully describing the characteristics of motion.

5. Experimental results

5.1. Gesture recognition

For gesture recognition, we used a Multimodal Database of Ges-
tures with Speech (Hayamizu et al., 1996). This database contains
time-varying image sequences of 17 gesture classes by 48 subjects,
consisting of 25 women and 23 men (see Fig. 6). Each gesture class
of each subject contains 4 sequences and thus the total number of
sequences is 3264. The size of the image frames is 320 � 240.

The scheme for recognizing gestures in image sequences is
based on Fisher discriminant analysis (FDA) of CHLAC features
and k-NN decision rule in the discriminant space. At each time t
in an image sequence, the CHLAC feature of cubic data is classified
by k-NN decision, and then the whole sequence is classified by
accumulating successive decision results of frames. FDA is prefera-
ble for recognition because feature vectors of each gesture class are
clustered in the reduced dimensional discriminant space, and the
computational cost of k-NN search is lessened.

Leave-one-out cross-validation was performed to test the pro-
posed method, i.e., for each run the sequences of 47 subjects were
exploited for training and the sequences of the remaining subject
were used for test.

The results with various parameter values are shown in Fig. 7. In
this experiment, there were two parameters; the time width T of
a

Fig. 7. Recognition results. The optimal parameter values by grid search are T = 30, Dr =
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cubic data and the spatial interval Dr in CHLAC (setting the tempo-
ral interval Dt to 1). The optimal set of the parameter values was
found by grid search, and the partial results with respect to each
parameter is shown in Fig. 7. As for the time width T, it is taken
as a moving average along the trajectory of the CHLAC feature se-
quence. Cubic data of greater width may decrease discrimination
between trajectories, while those of smaller width do not include
sufficient motion information. As for the spatial interval Dr, the
correlations between very close points become meaningless be-
cause points that are close together are obviously highly correlated
in every direction. On the other hand, points that are distant are
not correlated at all, and thus the appropriate interval Dr to obtain
effective correlations will depend on the scale of the object and the
movement. These trade-offs in T and Dr can be determined by the
peak of recognition rate in Fig. 7, which occurred when T = 30,
Dr = 4. It is noted that the best recognition rate of 95.86% is slightly
superior to the 95.65% rate reported by Ishihara and Otsu (2004)
who applied a more complicated time series analysis with HMM
for the auto-regressive model.

Next, we demonstrate the effectiveness of higher-order auto-
correlations which is primary advantage of CHLAC. For this pur-
pose, only first order correlation, i.e., N 6 1 in Eq. (2), is applied,
and then the performance is compared with that of CHLAC of
N 6 2. For roughly making uniform the dimensionality of these
two types of feature, spatial interval D r is varied from 1 to 20
and then extracted first order features are concatenated to form
261-dimensional feature vector which is comparable to 251-
dimensional vector of CHLAC with Dr = 4. The recognition result
of first order feature with T = 30 is 93.01% and it is inferior to
95.86% of CHLAC. This indicates that CHLAC of higher-order is supe-
rior, extracting detailed characteristics of motion as described in
Section 4.3.

Finally, for preprocessing of motion images, edge extraction is
compared with frame differencing. In this experiment, we applied
Sobel filters to calculate gradients and then binarized them to ex-
tract edges. The recognition results from edge extraction are
shown in Fig. 8 in a manner similar to that of Fig. 7. The best result
from edge extraction was 94.12%, when T = 40, Dr = 4, and it can be
obviously seen that frame differencing is superior to edge extrac-
tion. The reason is as follows. Firstly, the process of edge extraction
produces contours of objects whether or not they move. The result-
ing frames include information that is not relevant for gesture mo-
tion, such as the static human shape, which may result in a
decrease in performance. Secondly, human contour ‘‘curves” are
obtained from edge extraction whereas moving ‘‘regions” are con-
structed by frame differencing (Fig. 9). The movements of curves
may be captured by CHLAC features with constant intervals D r
b

4. (a) Varying T from 10 to 60 with Dr = 4. (b) Varying Dr from 1 to 6 with T = 30.

to-correlation approach to motion recognition, Pattern Recognition
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Fig. 8. Recognition results when edge extraction is used for preprocessing (solid line). The optimal parameter values by grid search are T = 40, Dr = 4. (a) Varying T from 10 to
60 when Dr = 4. (b) Varying Dr from 1 to 6 when T = 40. The dashed line is the same as that of Fig. 7 (frame differencing).

Fig. 9. Comparison of preprocessing. (a) Moving object. (b) Result of edge
extraction. Only the contour edge is extracted. (c) Result of frame differencing.
The moving region is extracted.
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and Dt, but only certain velocities of curves, which correspond to
the constant intervals, can be captured. Capturing all movements
(velocities) of curves requires the use of various intervals in CHLAC.
On the other hand, a moving region includes velocity information
in its size. Thus, velocity information is expressed in terms of the
quantity of CHLAC feature values. That is, faster movements create
larger regions by frame differencing, which results in a greater
number of CHLAC values of the mask patterns corresponding to
the movement.

5.2. Gait recognition

Next, we applied the proposed method to gait recognition using
the NIST gait dataset which is the largest one available. The original
study is referred to Kobayashi and Otsu (2006). The dataset con-
sists of 456 video sequences of 71 individuals, walking around an
Fig. 10. Snapshots of some gait seque

Please cite this article in press as: Kobayashi, T., Otsu, N., Three-way au
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elliptical course (Fig. 10), with labels: Gallery for training, and
Probes A–G for test. The details of this dataset are described in
(Sarker et al., 2005).

The recognition scheme is almost the same as that for gesture
recognition except that the parameter ranges for CHLAC are taken
into account. Many different discriminant spaces are constructed
for all parameter values lying in the parameter range (see Section
5.2.1), and the results for these discriminant spaces are unified as
follows.

At each time t, a CHLAC feature is extracted for each parameter
set, Rt(Dr,Dt,T), and k-NN decision is performed in the correspond-
ing discriminant space S(Dr,Dt,T). We repeat this k-NN decision for
all discriminant spaces, and the frame t is classified by

ResultðtÞ ¼ arg max
i

max
Dr;Dt;T

kNNSðDr;Dt;TÞðRtðDr;Dt; TÞ; PiÞ; ð3Þ

where ðDt;Dr; TÞ 2 ParamRange: ð4Þ

kNNS(Dr,Dt,T)(x,Pi) counts the number of samples belonging to the ith
person Pi in the k nearest neighbors around x in the space
S(Dr,Dt,T). This k-NN number is some sort of the posterior likeli-
hood of the person when using the parameter values, and by max-
imizing the likelihood over Dr, Dt, T and P in Eq. (3) the recognition
result is more stable and accurate because the parameter values
may have different discriminatory power for different people. This
process also means the selection of parameters. The range of
parameters in Eq. (4) are determined in the next section. Finally,
the sequence is classified by accumulating the individual frame
decisions.
nces and results of preprocessing.

to-correlation approach to motion recognition, Pattern Recognition



Fig. 12. Variance vs. time width. The variance is unbiased, rescaled to [0,1] and
averaged over all image sequences. It becomes stationary at a time width of around
30.
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5.2.1. The Parameter range for gait
There are three parameters to be determined: the spatial and

temporal intervals Dr, Dt and the time width T. As seen in gesture
recognition in Section 5.1, optimal parameter values may vary for
each object and each motion, but they cannot be defined a priori
without any knowledge. Therefore, we take into account some
knowledge about characteristics of the human gait in order to re-
strict the ranges of these parameter values.

[Spatial and temporal intervals Dr and Dt] The only constraint
on Dr and Dt is locality. However, some knowledge about the hu-
man gait imposes further constraints on the relationship between
Dr and Dt.

Suppose a human is walking from right to left in an image plane.
If the image sequence is sliced at the midpoint of the height of the
human, the sliced surface also forms an image plane (x-axis vs. t-
axis), the so-called XT-slice (Niyogi and Adelson, 1994) (Fig. 11).
The image illustrates that the trajectory of human walking can be
approximated as a straight line, the gradient of which corresponds
to the walking velocity. The relationship between spatial and tem-
poral intervals is closely connected to this gradient (velocity). If
arg(�Dr,Dt)T is very different from the gradients of the human tra-
jectories, it does not make any correlations of human positions in
XT-slice, and the CHLAC feature values become close to zero. There-
fore, it should be close to most gradients, i.e. the mean of the gradi-
ents (Fig. 11b). We adopt principal component analysis (PCA) for
approximating each person’s trajectory by a straight line and then
estimate the gradient. The mean gradient over all sequences was
computed as�0.49, which corresponds to Dt/Dr = 1/2. On the other
hand, in the image frame, the size of the human body (width of the
human figure) restricted Dr to the range Dr 6 16.

[Time width T] Since the experiment of gait recognition utilized
noisy outdoor images, a larger time width T had the result that
noisy frames were retained in the cubic data for a long time. Thus,
T should be limited up to appropriate length. Considering that hu-
man gait is a periodic motion, CHLAC features of cubic data with
a value for T close to the period would be particularly stable. We
evaluate the stability of CHLAC features on the basis of the variance
of features in each image sequence by varying the time width T un-
der the assumption that the gait period is constant within each im-
age sequence. Fig. 12 shows the variance vs. time width T. Since the
variance became stationary at a time width of around 30, we set the
average gait period to be 30 frames. In (Sundaresan et al., 2003; Sar-
ker et al., 2005), it was reported that the gait period was also set at
30–40 frames. Here, it is important that the gait period is calculated
based on the stability of features, i.e. the variance, without applying
an object-model based analysis used in other studies: for example,
making use of leg-angles. Thus, the time width T 6 30.

As a result, the parameter ranges in Eq. (4) are determined as

ParamRange ¼ fDr;Dt; TjDt= Dr ¼ 1=2; Dr 6 16; T 6 30g: ð5Þ

The discriminant spaces are constructed for every parameter value
satisfying the constraint in Eq. (5), and then k-NN decisions are per-
Fig. 11. Trajectories of different walking humans in an XT-slice. (a) Slowest walk,
(b) middle speed walk and (c) fastest walk.
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formed in these spaces. These constraints are not particularly heu-
ristic because they are definitely derived from the data by
introducing a little knowledge about the human gait. These con-
straints make it possible to extract CHLAC features more effectively
for the human gait, and by combining these constraints with the
decision rules in Eq. (3) our scheme becomes much more efficient.

5.2.2. Recognition results
The identification results as compared to those resulting from the

use of other methods (Sundaresan et al., 2003; Sarker et al., 2005;
Tolliver and Collins, 2003; Lee et al., 2003; Wang et al., 2003) are
shown in Fig. 13. The identification rate of our method is also pre-
sented in Table 1a. The results show that our scheme outperforms
the others in all probes. It is noted that the identification results of
Probes D–G are worse than those of Probes A–C for all methods. This
is caused by differences in ground surface conditions: The Gallery
and Probes A–C are ‘‘grass,” while Probes D–G are ‘‘concrete.” The
surfaces may slightly affect the gait period and the preprocessing re-
sults. Thus, Probes D–G whose surfaces are different from that of the
Gallery, pose challenging problems, but the performance of our
method is nevertheless much better than any other methods even
for these probes. This is because CHLAC is robust with respect to
the results of preprocessing as discussed next.

Table 1 shows our method’s dependency on the quality of pre-
processed data: namely the effect of noise in background and in
the human region. The term ‘‘bbox” means that the human region
(bounding box) is extracted and pixels in the other region are set to
0 (noiseless) after binarization to suppress the amount of back-
ground noise. The term ‘‘half-threshold” means binarization with
Fig. 13. The identification rate (%) for each probe compared with those of the other
methods: UMD (Sundaresan et al., 2003), USF (Sarker et al., 2005), CMU (Tolliver
and Collins, 2003), MIT (Lee et al., 2003), CAS (Wang et al., 2003) (these are top-rank
results). See each paper for the detailed identification rate, or (Sarker et al., 2005)
for the collective results. Detailed results for the proposed method (CHLAC) are
shown in Table 1a.
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Table A.1
CHLAC mask patterns

No. Mask pattern

M�1 M0 M+1

1 � e �
2 � e a
3 � e b
4 � e c
5 � e d
6 � e e
7 � e f
8 � e g
9 � e h
10 � e i
11 � e,a �
12 � e,b �
13 � e,c �
14 � e,d �
15 a,b e �
16 a,c e �
17 a,d e �
18 a,e e �
19 a,f e �
20 a,g e �
21 a,h e �
22 a,i e �
23 a a,e �
24 a b,e �
25 a c,e �
26 a d,e �
27 a e,f �
28 a e,g �
29 a e,h �
30 a e,i �
31 a e a
32 a e b
33 a e c
34 a e d
35 a e e
36 a e f
37 a e g
38 a e h
39 a e i
40 b,c e �
41 b,d e �
42 b,e e �
43 b,f e �
44 b,g e �
45 b,h e �
46 b,i e �
47 b a,e �
48 b b,e �
49 b c,e �
50 b d,e �
51 b e,g �
52 b e,h �
53 b e,i �
54 b e a

Table 1
The identification rate (%) for the proposed method under various conditions. Details
are in the text.

Probe Half-threshold Automatic-threshold

bbox Non-bbox

A 100 100 99
B 93 90 90
C 90 90 83
D 77 67 61
E 75 70 61
F 49 39 40
G 52 45 45

(a) (b) (c)
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the half value suggested by automatic-thresholding for increasing
the amount of noise and the thickness of a human contour. Com-
paring Table 1b and c, the proposed method is slightly affected
by background noise, but from (a) and (b) it can be seen that infor-
mation about a human contour is more helpful than noise. Thus,
CHLAC can cope with noisy data (Section 4.3), which makes it
effective for use outdoors.

6. Conclusion

We have presented a feature extraction method, cubic higher-
order local auto-correlation (CHLAC), for three-way data, particu-
larly for motion images. The method is based on three-dimensional
(spatio-temporal) auto-correlations of pixels, which are closely re-
lated to geometric meanings: namely gradients and curvatures.
Particularly, for motion images, it extracts not only the gradients
and the curvatures of shape but also the velocity and the accelera-
tion of the motion simultaneously. Thus, neither a specific model of
the objects nor time series analysis is required, unlike traditional
approaches to motion analysis. It is also noteworthy that CHLAC
is robust with respect to noise in data and is a segmentation-free
method. In addition, its computational cost is so low that the meth-
od can be applied in real time.

The two experimental results for gesture and gait recognition
showed the effectiveness of the CHLAC method for motion analy-
sis. The objects to be recognized are different in these experiments;
one is concerned with the motion itself regardless of performers
and the other is concerned with the performer of the motion via
the gait. The CHLAC feature extraction method can be applied to
such different tasks by combining it with a subsequent multivari-
ate analysis suited to the particular tasks, e.g. discriminant analysis
in this paper.

It should be remarked that the CHLAC method is so general as to
be applicable to three-dimensional geometrical analysis, such as
object recognition.
55 b e b
56 b e c
57 b e d
58 b e e
59 b e f
60 b e g
61 b e h
62 b e i
63 c,d e �
64 c,e e �
Appendix A. CHLAC mask patterns

All mask patterns are shown in Table A.1. M�1,M0,M+1 indicate
layers in a mask pattern (Fig. A.1a) and a–i are positions in each
layer (Fig. A.1b). The mask pattern of N = 0 is only No. 1, and those
of N = 1 are Nos. 2–14, together with No. 252. The others are of
N = 2.
65 c,f e �
66 c,g e �
67 c,h e �
68 c,i e �
69 c a,e �
70 c b,e �
71 c c,e �
72 c d,e �
73 c e,g �
74 c e,h �

a b

Fig. A.1. Mask layers (a) and position labels in each layer (b).
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Table A.1 (continued)

No. Mask pattern

M�1 M0 M+1

75 c e,i �
76 c e a
77 c e b
78 c e c
79 c e d
80 c e e
81 c e f
82 c e g
83 c e h
84 c e i
85 d,e e �
86 d,f e �
87 d,g e �
88 d,h e �
89 d,i e �
90 d a,e �
91 d b,e �
92 d c,e �
93 d d,e �
94 d e,f �
95 d e,i �
96 d e a
97 d e b
98 d e c
99 d e d
100 d e e
101 d e f
102 d e g
103 d e h
104 d e i
105 e,f e �
106 e,g e �
107 e,h e �
108 e,i e �
109 e a,e �
110 e b,e �
111 e c,e �
112 e d,e �
113 e e a
114 e e b
115 e e c
116 e e d
117 e e e
118 e e f
119 e e g
120 e e h
121 e e i
122 f,g e �
123 f,h e �
124 f,i e �
125 f a,e �
126 f b,e �
127 f c,e �
128 f d,e �
129 f e,g �
130 f e a
131 f e b
132 f e c
133 f e d
134 f e e
135 f e f
136 f e g
137 f e h
138 f e i
139 g,h e �
140 g,i e �
141 g a,e �
142 g b,e �
143 g c,e �
144 g d,e �
145 g e,f �
146 g e,i �
147 g e a
148 g e b
149 g e c

Table A.1 (continued)

No. Mask pattern

M�1 M0 M+1

150 g e d
151 g e e
152 g e f
153 g e g
154 g e h
155 g e i
156 h,i e �
157 h a,e �
158 h b,e �
159 h c,e �
160 h d,e �
161 h e a
162 h e b
163 h e c
164 h e d
165 h e e
166 h e f
167 h e g
168 h e h
169 h e i
170 i a,e �
171 i b,e �
172 i c,e �
173 i d,e �
174 i e,g �
175 i e a
176 i e b
177 i e c
178 i e d
179 i e e
180 i e f
181 i e g
182 i e h
183 i e i
184 � a,b,e �
185 � a,c,e �
186 � a,d,e �
187 � a,e,f �
188 � a,e,g �
189 � a,e,h �
190 � a,e,i �
191 � a,e c
192 � a,e f
193 � a,e g
194 � a,e h
195 � a,e i
196 � b,c,e �
197 � b,d,e �
198 � b,e,g �
199 � b,e,h �
200 � b,e,i �
201 � b,e g
202 � b,e h
203 � b,e i
204 � c,d,e �
205 � c,e,g �
206 � c,e,h �
207 � c,e,i �
208 � c,e a
209 � c,e d
210 � c,e g
211 � c,e h
212 � c,e i
213 � d,e,f �
214 � d,e,i �
215 � d,e c
216 � d,e f
217 � d,e i
218 � e,f,g �
219 � e,f a
220 � e,f d
221 � e,f g
222 � e,g,i �
223 � e,g a
224 � e,g b

(continued on next page)
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Table A.1 (continued)

No. Mask pattern

M�1 M0 M+1

225 � e,g c
226 � e,g f
227 � e,g i
228 � e,h a
229 � e,h b
230 � e,h c
231 � e,i a
232 � e,i b
233 � e,i c
234 � e,i d
235 � e,i g
236 � e a,c
237 � e a,f
238 � e a,g
239 � e a,h
240 � e a,i
241 � e b,g
242 � e b,h
243 � e b,i
244 � e c,d
245 � e c,g
246 � e c,h
247 � e c,i
248 � e d,f
249 � e d,i
250 � e f,g
251 � e g,i
252 � e,e �
253 � e,e,e �
254 a e,e �
255 b e,e �
256 c e,e �
257 d e,e �
258 e e,e �
259 f e,e �
260 g e,e �
261 h e,e �
262 i e,e �
263 � e,e,a �
264 � e,e,b �
265 � e,e,c �
266 � e,e,d �
267 � e,e i
268 � e,e h
269 � e,e g
270 � e,e f
271 � e,e e
272 � e,e d
273 � e,e c
274 � e,e b
275 � e,e a
276 � e,e,i �
277 � e,e,h �
278 � e,e,g �
279 � e,e,f �

All 279 patterns are for real valued data and, especially, No. 1–251 patterns are for
binary data, i.e. the patterns used in this study.
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