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ABSTRACT

Kernel-based methods, e.g., support vector machine (SVM),
produce high classification performances. However, the com-
putation becomes time-consuming as the number of the vec-
tors supporting the classifier increases. In this paper, we pro-
pose a method for reducing the computational cost of clas-
sification by kernel-based methods while retaining the high
performance. By using linear algebra of a kernel Gram ma-
trix of the support vectors (SVs) at low computational cost,
the method efficiently prunes the redundant SVs which are
unnecessary for constructing the classifier. The pruning is
based on the evaluation of the performance of the classifier
formed by the reduced SVs in SVM. In the experiment of
classification using SVM for various datasets, the feasibility
of the evaluation criterion and the effectiveness of the pro-
posed method are demonstrated.

Index Terms— Reduction of support vectors, Kernel-
based method, Support vector machine

1. INTRODUCTION

Kernel-based methods, such as KPCA [1] and KDA [2], ex-
tend existing linear methods to non-linear ones, often achiev-
ing the state-of-the-art performance. In particular, support
vector machine (SVM) [3] with kernel has been successfully
applied in versatile problems. These kernel-based methods,
however, require rather large computational cost since we
must calculate the kernel functions for all vectors, called
support vectors (SVs)1, supporting the classifier (or the pro-
jection). The number of SVs increases linearly in SVM for a
large scale problem [4] and time-consuming, and still more
in the case of the SVs correspond to all samples in the other
kernel-based methods in general. Therefore, the classifi-
cation becomes much more time-consuming, especially for
large-scale problems. Practically speaking, it is desirable to
reduce the computational cost required for the classification
by kernel-based methods.

Some previous works have shown that a classifier con-
structed by a reduced set of SVs can still retain high perfor-

1In this paper, we use the term of support vectors (SVs) as the samples
that contribute to the classifier not only in SVM but also in the other kernel-
based methods.

mance. Burges et al. [5] have approximated the SVM clas-
sifier by using a smaller number of vectors in terms of Eu-
clidean distance, but they stated that it is computationally ex-
pensive to find such a reduced set. Previous works closely
related to our method are those of [6, 7] which focused on
linear dependency of SVs. We can perform such a method
for reducing the computational cost required in the classifier
as post-processing, not pre-processing [8, 9]. In [8, 9], the
candidates for SVs are assumed to be predefined, and it is a
difficult and exhaustive task to select the candidates that in-
crease the performance.

In this paper, we propose a method for efficiently prun-
ing the SVs used in kernel-based methods to reduce computa-
tional cost of the classification. The method is based on linear
algebra of a kernel Gram matrix of SVs and prunes the redun-
dant SVs at low computational cost while keeping the high
performance of the classifier. For the pruning in SVM, we
utilize the criterion for evaluating the classifier constructed
by the reduced set of SVs. The effectiveness of the proposed
method and the feasibility of the criterion are exhibited in ex-
periments using SVM on various datasets.

2. REDUCTION OF SUPPORT VECTORS

2.1. Redundant Support Vector

In kernel-based methods, we consider the feature space
mapped via nonlinear function φ from input space. The
classifier corresponds to a hyperplane, the normal vector of
which is represented by a linear combination of SVs:

y = wT φ(x) + b, w =
ns∑
i=1

αiφ(si), (1)

where y is the output value of the classifier, x is the input vec-
tor, w and b are the normal vector and the bias of the hyper-
plane, respectively, ns is the number of support vectors (si),
and αi is the linear coefficient for mapped support vectors
φ(si). Suppose a mapped support vector is linearly depen-
dent on the others:

φ(si) =
∑
j �=i

βjφ(sj). (2)



Algorithm 1 Naive Support Vector Reduction

Require: Kernel gram matrix of SVs K ∈ Rns×ns (kij =
k(si, sj), 1 ≤ i, j ≤ ns)

Require: Linear coefficients for SVs α∈Rns

1: n← ns, α̂← α, K̂ ←K
2: repeat
3: for i = 1 to n do
4: βi ← (K̂(i) + λI)−1k̂(i)

5: εi ← k̂ii − 2βT
i k̂(i) + βT

i K̂(i)βi

6: end for
7: i∗ ← arg mini εi /* redundant SV */
8: α̂← α̂(i∗) + α̂i∗βi∗

9: K̂ ← K̂(i∗)

10: n← n− 1
11: until Stopping criterion is satisfied (see Sec.2.3)

In this case, the hyperplane in Eq.(1) can be rewritten as

w =
∑
j �=i

αjφ(sj)+αi

∑
j �=i

βjφ(sj) =
∑
j �=i

(αj +αiβj)φ(sj).

(3)
Thus, in the feature space, the linearly dependent SVs are
redundant for constructing the classifier (hyperplane). This
means that a set of SVs can be reduced by eliminating such
redundant ones while maintaining the hyperplane.

The problem is how to find the linearly dependent SVs de-
fined in Eq.(2). Downs et al. [7] have employed row reduced
echelon form which can identify the SVs strictly satisfying
Eq.(2). From the statistical viewpoint, however, it is sufficient
that the redundant SVs satisfy the equation approximately, not
strictly. Therefore, we employ sample-wise regression form.
The linear coefficient β in Eq.(2) is obtained by the following
least square problem:

β = arg min
β
||φ(si)−

∑
j �=i

βjφ(sj)||2 + λ||β||2

= (K(i) + λI)−1k(i), (4)

where K is the kernel Gram matrix of SVs (kij = φ(si)T φ(sj)
=k(si, sj)), (i) denotes the index excluding i, and thus K(i)

is the sub-matrix of K excluding the i-th row and column,
k(i) is the i-th column vector of K excluding the i-the row.
We introduce a regularization term with parameter λ, say
λ = 0.001, for avoiding rank reduction of the Gram matrix.
The squared approximation error of Eq.(2) is

ε ≡ ||φ(si)−
∑
j �=i

βjφ(sj)||2 =kii−2βT k(i)+βT K(i)β. (5)

By finding the SV of the least approximation error ε, the re-
dundant SV is sequentially identified and eliminated. The
naive algorithm is described in Algorithm 1.

Algorithm 2 Efficient Support Vector Reduction

Require: Kernel gram matrix of SVs K ∈ Rns×ns (kij =
k(si, sj), 1 ≤ i, j ≤ ns)

Require: Linear coefficients for SVs α∈Rns

1: H ← (K + λI)−1, α̂← α
2: repeat
3: i∗ ← arg maxi hii /* redundant SV */
4: α̂← α̂(i∗) − α̂i∗

h(i∗)

hi∗i∗

5: H ←H(i∗) − h(i∗)h
T
(i∗)

hi∗i∗
6: until Stopping criterion is satisfied (see Sec.2.3)

2.2. Efficient Reduction Method

The algorithm described above is time-consuming since
the least square problem of Eq.(4) has to be solved for every
SVs (lines 3∼6 in Algorithm 1). In order to efficiently solve
it, we employ elementary linear algebra as follows.

First, we consider the inverse matrix of the regularized
Gram matrix K + λI:

H ≡ (K + λI)−1 =
(

K(i) + λI k(i)

kT
(i) kii + λ

)−1

=

⎛
⎜⎝Ǩ−1

(i) +
Ǩ−1

(i) k(i)k
T
(i)Ǩ

−1
(i)

ǩii−kT
(i)Ǩ

−1
(i) k(i)

−Ǩ−1
(i) k(i)

ǩii−kT
(i)Ǩ

−1
(i) k(i)

−kT
(i)Ǩ

−1
(i)

ǩii−kT
(i)Ǩ

−1
(i) k(i)

1
ǩii−kT

(i)Ǩ
−1
(i) k(i)

⎞
⎟⎠ (6)

where Ǩ(i) = K(i) + λI, ǩii = kii + λ, and we focus on
the i-th sample by permutating the order in K. By comparing
Eq.(6) with Eq.(4) and Eq.(5), the solution of the least square
problem can be simply described as

β = −h(i)

hii
, ε + λ||β||2 =

1
hii
− λ ≡ ε̌, (7)

where ε̌ ≈ ε due to λ�1. Thus, once we calculate the inverse
matrix H of the Gram matrix K, the least square problem
for every SV can be solved at quite a low computational cost.
This enables us to avoid time-consuming processing.

For sequentially eliminating SVs, it still takes a large
computational load to calculate the inverse matrix (O(n3)) at
every step (lines 2∼10 in Algorithm 1). We can efficiently
reduce the cost by focusing on the property of H again:

H(i) = Ǩ−1
(i) +

Ǩ−1
(i) k(i)k

T
(i)Ǩ

−1
(i)

ǩii − kT
(i)Ǩ

−1
(i) k(i)

= Ǩ−1
(i) +

h(i)h
T
(i)

hii

∴ (K(i) + λI)−1 = Ǩ−1
(i) = H(i) −

h(i)h
T
(i)

hii
. (8)

The inverse matrix of the reduced Gram matrix (K(i) +
λI)−1, in which the i-th SV is eliminated, can be easily
calculated (updated) from that of the original inverse matrix
H .



In total, the time-consuming task is only a single calcu-
lation of the inverse matrix of the Gram matrix as in Eq.(6).
The identification of the redundant SVs and the calculation of
the linear coefficients in Eq.(2) are subsequently performed at
small extra computational cost. The proposed algorithm for
efficiently reducing SVs is described in Algorithm 2.

2.3. Stopping Criterion

Since there is a trade-off between the number of SVs and the
performance in general, a stopping criterion for sequential re-
duction is required. We focus on the increase of cost (loss)
values for the training dataset. In SVM, Hinge losses are em-
ployed:

HingeLoss =
1
N

N∑
i=1

max(0, 1− giyi) (9)

where N is the number of training samples, gi ∈ {+1,−1}
is the true label and yi is the output value of the classifier for
the i-th sample. We define the criterion as the increase of the
Hinge loss from the original classifier. The reduction of SVs
is stopped when the criterion value exceeds a certain threshold
τ . Note that a criterion might be practically determined as the
recognition error calculated by using a validation dataset like
cross-validation procedure.

3. EXPERIMENTAL RESULT

We conducted two types of experiments using benchmark
datasets and the MNIST handwritten digit dataset. In the
experiments, SVs are obtained by SVM with gaussian kernel,
the parameters of which are determined by cross validation.
The proposed method reduces those SVs.

[Benchmark Datasets] We employ various benchmark
datasets [10] containing sample vectors of various dimension-
alities. In each dataset, 10 pairs of training and test sets are
used and the results are the mean of 10 trials.

First, the results of the performance for various threshold
values τ of the criterion (Eq.(9)) are shown in Fig. 1. It is
found that there is roughly linear relationship: 0.1 increase
of Hinge loss causes about 2% decrease of the recognition
rate, which is described by the dotted line in the figure. On
the bais of the observation, we determine the threshold τ =
0.025 for the criterion by assuming 0.5% decrease of recog-
nition rate. The recognition rates of the classifier reduced
by the proposed method are shown in Table 1, compared to
those of Downs et al. [7]. The method of [7] yields the same
performance as those of the original classifier and thus we
show only the number of remained SVs for the method. It
should be noted that the proposed method can effectively re-
duce SVs (about half) in all datasets while keeping the perfor-
mance, even slightly outperforming the original result in sev-
eral datasets. The complexity of the classifier is also reduced

Fig. 1. The recognition rates with the criterion threshold val-
ues (increase of Hinge loss) for various datasets . There is
roughly linear relationship as denoted by dashed line.

by the proposed method, which may cause higher generaliza-
tion performance. On the other hand, the method [7] seeks the
redundant SVs strictly satisfying Eq.(2) and the final reduced
(remained) set of SVs is larger than that obtained by the pro-
posed method which statistically approximates Eq.(2). In par-
ticular, the method [7] can not reduce SVs in some datasets,
while our method achives the reduction in all datasets.

[MNIST Dataset] Next, we conducted an experiment on
handwritten digit recognition, using MNIST dataset [11]
which contains 10 types of digits from ’0’ to ’9’. For train-
ing, we use 60000 images (6000 images for each digit class),
while 10000 images (1000 images for each digit class) are
used for test. We simply break down the recognition task to
10 individual recognition tasks.

The recognition rate and the number of remained SVs are
shown in Table 2 for these 10 tasks. The SVs are greatly
reduced in every task, while retaining the recognition per-
formance: about a half reduction of SVs hardly affects the
recognition performance. Then, we also investigate the num-
ber of SVs under varying the number of training samples. By
focusing on the task of recognizing the digit ’3’, we applied
downsampling to the training dataset with keeping the ratio of
samples of each digit: from 6000 to 60000 samples (original
dataset size). The results are shown in Table 3. As described
in [4], the numbers of SVs are linearly increased along the
number of training samples. The number of remained SVs in
the reduction is also linearly increased but the increasing rate
is significantly suppressed. The recognition rate is hardly de-
creased even though half or more of SVs (at τ = 0.025) are
eliminated. As the threshold τ becomes larger, the SVs are
further reduced, but the decrease of the recognition rate be-
comes not negligible. This is similar tendency in Fig. 1, and
the threshold τ =0.025 is also feasible for this dataset.



Table 1. Recognition rates and the number of finally remained SVs for various datasets [10] using the different methods. The
numbers in the parentheses are the standard deviation.

Original SVM Proposed Method (τ =0.025) Downs et al. [7]
Dataset #SVs Recog. Rate (%) #SVs Recog. Rate (%) #SVs
banana 143 (± 23 ) 89.19 (± 0.73 ) 40 (± 24 ) 89.11 (± 0.80 ) 120 (± 37 )

breast-cancer 124 (± 9 ) 73.12 (± 5.20 ) 51 (± 18 ) 72.99 (± 5.02 ) 119 (± 9 )
diabetis 267 (± 13 ) 76.33 (± 1.80 ) 40 (± 17 ) 76.43 (± 1.97 ) 267 (± 13 )

flare-solar 485 (± 19 ) 67.85 (± 2.20 ) 49 (± 2 ) 67.85 (± 2.20 ) 62 (± 3 )
german 423 (± 30 ) 77.07 (± 1.97 ) 235 (± 88 ) 77.07 (± 1.67 ) 423 (± 30 )

heart 95 (± 8 ) 83.60 (± 3.01 ) 33 (± 15 ) 83.90 (± 2.84 ) 95 (± 8 )
image 320 (± 112 ) 96.75 (± 0.73 ) 266 (± 133 ) 96.26 (± 0.73 ) 312 (± 114 )

ringnorm 97 (± 10 ) 98.10 (± 0.23 ) 73 (± 7 ) 98.02 (± 0.29 ) 97 (± 10 )
splice 650 (± 67 ) 89.02 (± 0.75 ) 600 (± 65 ) 88.64 (± 0.73 ) 645 (± 68 )

thyroid 27 (± 19 ) 95.07 (± 2.80 ) 19 (± 16 ) 94.27 (± 3.48 ) 27 (± 19 )
titanic 76 (± 9 ) 77.33 (± 0.25 ) 8 (± 1 ) 77.36 (± 0.31 ) 10 (± 1 )

twonorm 125 (± 5 ) 97.36 (± 0.19 ) 53 (± 33 ) 97.38 (± 0.15 ) 125 (± 5 )
waveform 155 (± 22 ) 89.89 (± 0.51 ) 77 (± 25 ) 89.57 (± 0.70 ) 155 (± 22 )

Table 2. Recognition rate and the number of
finally remained SVs for MNIST [11].

Proposed Method
Original SVM τ = 0.025

Class Recog. #SVs Recog. #SVs
0 99.75 1481 99.06 559
1 99.78 1251 99.75 708
2 99.43 2844 99.22 1227
3 99.47 3300 99.15 1479
4 99.47 2726 99.26 1042
5 99.44 3224 99.05 1293
6 99.64 1896 99.26 820
7 99.24 2442 99.08 933
8 99.31 3877 99.22 1968
9 99.00 4100 98.76 1733

Table 3. Recognition rate and the number of finally remained SVs by varying the
number of training samples.

Proposed Method
Ratio of Original SVM τ = 0.025 τ = 0.05 τ = 0.075

Training size Recog. #SVs Recog. #SVs Recog. #SVs Recog. #SVs
0.1 98.74 706 98.28 380 97.43 283 96.34 202
0.2 99.09 1143 98.79 644 98.25 434 97.82 335
0.3 99.2 1468 98.75 764 97.92 490 97.81 373
0.4 99.21 1726 98.75 860 97.65 610 97.05 443
0.5 99.29 2100 99.05 1071 98.52 662 96.84 491
0.6 99.38 2309 98.92 1102 98.22 717 97.36 569
0.7 99.38 2550 99.09 1234 98.3 849 97.6 615
0.8 99.43 2851 99.04 1281 98.44 859 97.98 668
0.9 99.45 3106 99.04 1400 98.4 946 97.66 726
1 99.47 3300 99.15 1479 98.37 978 97.95 768

4. CONCLUSION

We have proposed an efficient method to reduce the compu-
tational cost of kernel-based classification. In the proposed
method, once we calculate the inverse matrix of the kernel
Gram matrix of support vectors, the redundant support vec-
tors are sequentially identified and eliminated at quite low
computational cost, while keeping the high performance of
the classifier. For stopping the sequential reduction, we apply
the criterion based on the increase of the Hinge loss calcu-
lated for training samples. In the experiments using various
datasets, the proposed method effectively reduced the support
vectors. In fact, even a half of the support vectors can be elim-
inated, preserving almost the same performance as that using
the original set of support vectors. Note that the method is
applicable to versatile kernel-based methods, not only SVM.
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