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ABSTRACT

In this paper, we propose a method for extracting color im-
age features, called color index local auto-correlations. Pixel
color is quantized and described sparsely in a manner sim-
ilar to the color indexing of color histograms. In addition,
by utilizing spatial auto-correlations of the color indexes, the
characteristics of color texture can be extracted more effec-
tively than ordinary histogram-based methods. The proposed
method has variants in terms of the color space and basic col-
ors used for indexing colors. These various settings are com-
prehensively compared in the experiments of image retrieval
and image classification, and are shown to exhibit favorable
results compared to the other conventional methods.

Index Terms— Feature extraction, Color auto-correlation,
Color indexing, Image recognition

1. INTRODUCTION

Color is an essential and typical representation for images
and it is also an important key for distinguishing objects.
Therefore, extracting features from color images is necessary
in many tasks of computer vision, e.g., object recognition [1],
image retrieval [2], and image matching [3]. In addition, hu-
mans perceive various impressions from color images, such
as paintings and photographs. The relationships between
color features and human perception are useful for human-
computer interactions [4]. However, it is difficult to effec-
tively extract features from color images. Several approaches
have been so far made for color feature extraction.

In the color histogram [5] which has been a popular ap-
proach, pixel colors are quantized into several basic colors;
this process is called color indexing. Since geometric char-
acteristics are hardly extracted by the color histogram, color
coherence vector (CCV) [2] extends the color histogram by
considering spatial color distributions. In CCV, for each color
index, i.e., the color associated with each histogram bin, the
connected regions in the color are detected in the image and
then the value of the histogram bin is divided into two compo-
nents corresponding to the pixel counts in connected and dis-
joint regions, respectively. Thereby, the spatial distribution
for each color index can be roughly characterized although

local patterns, such as texture, are not captured. Color higher-
order local auto-correlation (Color HLAC) [4] extracts local
spatial information by using the auto-correlations of RGB val-
ues of local pixels. However, various color patterns tend to re-
sult in the same values of auto-correlations (actually multipli-
cations) of RGB values. Such ambiguity in the representation
yields the degeneration in Color HLAC features. Thus, the
representations by raw RGB values are considered to be in-
appropriate for use of auto-correlations. In addition, the other
color representation, such as cyclic Hue value in HSV color
space, is difficult to be dealt with in the Color HLAC.

In this paper, we propose a method of color feature ex-
traction by combining the representations in color histograms
and auto-correlations. In the method, colors are quantized and
described sparsely by using various basic colors in a manner
similar to the color indexing of color histograms, and then
the auto-correlations of the color indexes is calculated; we
call this method color index local auto-correlation (CILAC).
Thus, the method can extract co-occurrence of colors which
is related to color texture and contains richer information than
occurrence in ordinary method based on color histogram. In
addition, the ambiguities regarding Color HLAC described
above can be reduced by using the sparse representations in
the indexed colors. Although the dimensionality of CILAC
increases, the computational cost is lower than that of Color
HLAC in virtue of the sparse representation of colors.

various settings both of color space and color indexing
are comparatively studied through the experiments of image
retrieval and image classification.

2. COLOR INDEX LOCAL AUTO-CORRELATION

An overview of the proposed method CILAC is shown in
Fig. 1. It consists of the following three steps. First, the pixel
values, usually RGB values, are mapped into a color space,
such as L*a*b* and HSV (Hue, Saturation and Value). Sec-
ond, the pixel values in the color space are indexed based on
several basic colors as is similar to the color histogram meth-
ods, and described as a sparse vector c. Finally, the auto-
correlations of the vector pairs in local neighbors are calcu-
lated. We describe the details of each step in the following
sections.
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Fig. 1. Overview of the proposed method (CILAC)

(a) L*a*b* (b) HSV

Fig. 2. Color spaces. (a) Slice image at L*= 54 in L*a*b*,
(b) HSV (best viewed in color)

2.1. Color Representing Spaces

We employ three types of color space: RGB, L*a*b* and
HSV. RGB is a typical representation for pixel color values.
L*a*b* approximates human perception for colors and is con-
structed so as to be perceptually uniform (Fig. 2(a)). The
metric in L*a*b* space reflects human perception. In HSV,
colors are represented rather categorically, which is similar to
the way of human perceiving colors. A cone-type HSV color
space is used in this paper, as shown in Fig. 2(b). Hue is cycli-
cally described as the circumference around the central cone
axis. The color spaces of L*a*b* and HSV have been applied
to several tasks [6, 7].

2.2. Color Indexing in CILAC

In order to consider co-occurrence by using auto-correlation,
which is described in the next section, each pixel color rep-
resented in the color space is indexed into basic colors (D
in number) by voting weights to several nearest basic colors.
Then, the pixel color is described as D-dimensional vector c
consisting of the weight values. The vector c has a sparse
representation, i.e., only a few elements have non-zero val-
ues, which is similar to the categorical representation, e.g.,
“red” or “green.” Color indexing also establishes robustness
to noise. The basic colors in the color space are determined
as follows.

Predefined Colors (P7/P8/P15) We define several basic col-
ors a priori based on knowledge about the color space. This
indexing is abbreviated to P7/P8/P15 of which digits indi-
cates the number (D) of basic colors.

In RGB, basic colors are defined based on the cubic shape
of color space. P8 consists of eight vertex points of the color
cube, which are denoted as points of a square in Fig. 3(a).
In addition to these eight basic colors, for P15, seven more
basic colors are selected as well. These additional basic colors
represent ambiguous colors: six centers on the faces and one
at the center of the color cube in RGB, denoted as star points
in Fig. 3(a).

In L*a*b* color space, we simply derive basic colors from
those of RGB. The eight or fifteen basic colors (P8/P15) in
RGB space are mapped into the L*a*b* space. Since the
L*a*b* space is distorted due to its perceptual uniformity, the
basic colors are not so equally located as those in the RGB
space.

In HSV, basic colors are defined based on the cone shape
of the color space. On the upper circle, six equally divided
points (red, yellow, green, cyan, blue, magenta) and one white
color are chosen, as depicted in Fig. 3(b). Only these seven
basic colors disregarding V-values can compose the basic col-
ors, denoted as P7. In the P7 indexing, on the assumption
that darker pixels have less information, darker pixels are ig-
nored as is the case with the other color features based on
raw pixel values, such as Color HLAC [4], which is described
later. On the other hand, P8 is simply constructed by adding
black color, i.e., the point of the cone, to these seven basic
colors, shown as square points in Fig. 3(c). For P15, seven
more basic colors are added to P8, representing ambiguous
colors: six equally divided points and one at the center in the
middle circle in HSV, denoted as star points in Fig. 3(c).
Cluster Center Colors (C8/C15) In this indexing, the basic
colors are determined a posteriori using a given dataset. Since
the pixel colors may not actually be distributed so evenly in
the color space, some of the predefined basic colors (Fig. 3)
may be useless for color indexing. Therefore, by taking into
account such bias of color distributions, pixel colors in all im-
ages of the given dataset are clustered, e.g., by k-means, into
eight or fifteen clusters for basic colors C8/C15, respectively.
The basic colors are determined as the cluster centers, all of
which contain pixel samples, and are useful for indexing.

In color indexing, a pixel color can be sparsely described
on the basis of the basic colors to which voting weights are
calculated in the following two ways.

In the case of predefined basic colors in HSV color space,
we employ the (tri-)linear weights to the nearest basic colors
along HSV values. For instance, when using the basic colors
of P8 (square points in Fig. 3(c)), pixel color p=(h, s, v), of
which s, v<1, is described as

p=(1− v)b + v(1− s)w + vs
hR − h

hR − hL
eL + vs

h− hL

hR − hL
eR

where b,w are black and white colors, and eL,eR are the
nearest adjacent basic colors on the circumference (Fig. 3(b))
and their H-values are hL, hR(hL < h < hR), respectively.
The coefficients for the nearest basic colors (b,w,eL,eR)
are the weights which are definitely summed to 1. Only for
P7 in HSV, the coefficient of black color (b) is disregarded
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(a) RGB (b) HS (c) HSV

Fig. 3. Configuration of predefined basic colors

and thus the sum of the weights is not necessarily equal to 1,
especially for the darker colors.

In the case of other indexing, k-nearest neighbor method
is applied for calculating the voting weights. Consider k
nearest basic colors with distances d1, · · · , dk (say, k = 4).
By determining the largest weight for the nearest basic color
as w1 = 1, the i(> 1)-th weight is defined as wi = d1

di
.

These weights are finally normalized by the sum: ŵi =
wi

1+
Pk

m=2 wm
=

Q
j �=i dj

Pk
m=1

Q
j �=m dj

, which are also summed to 1.

As a result, pixel color is described by means of D-
dimensional vector c of which element values associated to
the nearest basic colors are set to the voting weights and the
others are 0. Thus, c is a sparse vector.

2.3. Auto-Correlations of CILAC

By using the color descriptor c, the zeroth and first order auto-
correlations of colors are defined as follows:

0th order R0(i) =
∑

r

ci(r) (1)

1st order R1(i, j,a) =
∑

r

ci(r)cj(r + a), (2)

where a is a displacement vector from the reference point r=
(x, y), ci is the i-th element value of the D-dimensional vec-
tor c, and i, j ∈ {1, .., D}. We define a∈{(Δr, 0), (Δr,Δr),
(0,Δr), (−Δr,Δr)} where Δr indicates local spatial inter-
val [8]. The configurations of (r, r + a) are shown in Fig. 4.

The first order CILAC can extract co-occurrence of col-
ors which is related to local texture, while the zeroth order
corresponds to an ordinary color histogram. The first or-
der (Eq.(2)) contains two kinds of auto-correlation: spatial
auto-correlations derived from displacement vector a, and
color index auto-correlations derived from the products of
the element values ci, cj . This is a formulation similar to
that of Color HLAC, but we employ the auto-correlations
of the quantized data (c), not the raw RGB values used in
Color HLAC. This is based on the empirical fact that, in [8],
the auto-correlations of binary values, i.e., quantized data,
are better for establishing recognition than those of the pixel
values themselves. Although the dimensionality of CILAC
is high (D +4D2), the computational cost is rather low in
virtue of the sparseness of c: the operations of Eq.(1) and

(a) 0th order (b) 1st order

Fig. 4. Spatial auto-correlation patterns

(a) N-S dataset [9]

(b) Photograph and paintings
Fig. 5. Example images used in the experiments

(2) are applied to only a few non-zero elements of c. This is
practically performed by storing only non-zero weights and
their color indexes of c (sparse representation).

3. EXPERIMENTAL RESULTS

We apply the proposed method CILAC to two kinds of task:
image retrieval [9] and image classification. The perfor-
mances are compared to those of the other methods: CCV [2]
and Color HLAC [4]. CCV can be applied to any color
spaces and the number of basic colors is 64, as in [2]. The
other parameters in CCV are determined so as to yield the
best results as well as the spatial interval Δr in CILAC and
Color HLAC. Note that Color HLAC allows only for RGB
color space. Although the combination of color and shape
image features, like HueSIFT [10], might work better in these
experiments, any shape image features are not applied for
accurate comparison of the color image features themselves.

For image retrieval, N-S dataset [9] is used. This is com-
posed of 2550 objects and scenes, each of which is taken from
four different viewpoints. Hence, the dataset contains 10200
images of 640×480 pixels (Fig. 5(a)). The images are re-
trieved by using extracted color feature vectors according to
the distance from the query. The measure for evaluating per-
formance is the average number of correct images among the
four first images returned for the given query, as described in
[9]. The results of the performances are shown in Fig. 6(a).
By comparing the results of P7 and P8 in HSV, it is shown that
the addition of the “black” basic color improves the perfor-
mance. Thus, the black color has the discriminative informa-
tion and should not be neglected. Clustering seems to be ef-
fective for color indexing in RGB and, especially, in L*a*b*.
In L*a*b* space, the predefined basis colors are not uniformly
located, which would be ineffective for indexing. By applying
clustering method, the cluster center colors can correctly cap-
ture the characteristics of color distribution in that space. In
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(a) Image retrieval (b) Classification of photograph and
painting

Fig. 6. Experimental results

addition, the metric of L*a*b* is derived from human percep-
tion and is suitable to the metric-based clustering method that
we use. Among the various color spaces used in CILAC, HSV
outperforms the others, showing that the (categorical) color
representation of HSV is suitable for the CILAC method. The
color indexing using predefined basic colors in HSV color
space is simple, but CILAC with P15 in HSV is the most ef-
fective method producing the best result among all the meth-
ods. Although Color HLAC has the higher dimensionality
(739 dimensions), its performance is the worst. These exper-
imental results illustrate that co-occurrence of colors realized
by auto-correlations of color indexes is effective feature.

Next, we try to classify photographs and paintings. This
is a challenging task since both kinds of image have the same
motif: natural outdoor scenes. We collected 60 paintings
(including 30 Japanese paintings) and 60 photographs from
world wide web (Fig. 5(b)1). The classification is performed
by linear SVM and 5-fold cross validation is employed for
evaluation. As shown in Fig. 6(b), the result of CILAC is
superior to the others. The characteristics of local textures
extracted by CILAC would capture the subtle difference be-
tween these types of image.

4. CONCLUSIONS

We have proposed a method, color index local auto-correlation
(CILAC), for extracting color image features using auto-
correlations of color indexes. CILAC, which corresponds to
co-occurrence of colors, can extract features of local color
texture more discriminatively than the color histogram-based
methods. CILAC is based on so general formulation that it
has several variants in terms of both the selection of color
space and the determination of basic colors in the color space
for color indexing, as is the case with the color histogram.
In the experiments of image retrieval and image classifica-
tion, all these variants were comprehensively compared and

1http://nihongo.wunderground.com/data/wximagenew/f/Feather3/4198.jpg,
http://www.alpha-net.ne.jp/users2/tenni811/bri.JPG,
http://upload.wikimedia.org/wikipedia/commons/0/0a/The Great Wave off Kanagawa.jpg

CILAC using fifteen predefined basic colors in HSV color
space yielded a result superior to the other methods.
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