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Abstract

In pattern recognition, feature vectors are occasion-
ally subject to non-negative constraints. This charac-
teristic can be expressed by a cone in feature vector
space. In this paper, we propose cone-restricted sub-
space methods. The proposed methods admit the scal-
ing and additivity of vectors as well as ordinary sub-
space methods; in addition, vectors can be strictly clas-
sified at the boundary of the cone. Some experimental
results for face and person detection demonstrate the
effectiveness of the proposed methods.

1. Introduction

In pattern recognition, it is important to appropri-
ately classify the feature vectors extracted from object
patterns. The classifier is required to allow for the fun-
damental structure of sample feature vectors while re-
maining robust to irrelevant variations. These irrele-
vant variations may be different for different recogni-
tion tasks, but a classifier can be constructed by assum-
ing appropriate sample distributions.

Subspace methods assuming linear variation of sam-
ples have been developed over many years [9, 11, 3].
The sample feature vectors, e.g., image vectors in an il-
lumination cone [4] and the features with the additivity
property [6, 5], vary linearly. In face recognition [3] and
abnormality detection [7] using CHLAC features [5],
subspace methods have worked well. Subspace meth-
ods, however, are not necessarily preferable in terms of
approximating the distribution of samples since the dis-
tribution cannot be precisely approximated in a linear
subspace. As shown in Fig. 1(a), sample vectors seldom
cover the whole subspace and are usually contained in
restricted regions, which increases false positive errors
in the subspace method. Moreover, the dimensional-
ity of the subspace is critical. Although the variance of
the distribution is different across each dimension of the
subspace, in subspace methods, the differences are not
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Figure 1. Subspace and cone

taken into account in the actual dimensions employed.
Thus, the number of dimensions greatly affects the clas-
sification performance.

Usually, extracted features, such as the physical
quantities of image vectors and histograms of SIFT [6]
and CHLAC [5], have non-negative values. As shown
in Fig. 1(b), non-negative feature vectors are subject to
the following variations: scaling, e.g., by changes of
pixel values arising from illumination changes, and ad-
ditivity, e.g., arising from multiple objects in the image.
These scaling and additivity are continuously brought
about, and as a consequence, the sample feature vectors
form a cone structure. It should be noted that, in this
paper, samples are assumed to be unimodal.

We propose novel subspace methods which utilize a
cone: cone-restricted subspace methods to deal with the
problems of subspace methods discussed above. The
proposed methods approximate the sample distribution
by a cone pointed from the origin as in Fig. 1(c) by fo-
cusing on the property of non-negative feature vectors.
They can strictly classify the vectors at the boundary of
the cone, while admitting scaling and additivity of vec-
tors as well as ordinary subspace methods.

2. Cone Restricted Subspace Method

Samples in feature vector space span a convex cone
defined as follows:

C :
{

x | x =
N∑

i=1

αiξi = Ξα, αi ≥ 0
}

, (1)
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(a) Convex Cone (b) Circular Cone

Figure 2. Cones

where N is the number of sample vectors ξi(∈Rd), and
the αi are non-negative coefficients. The cone C is ob-

tained from the subspace (
{

x|x =
∑N

i=1 αiξi

}
) by re-

striction to non-negative coefficients. The cone is, of
course, as robust as the subspace, with respect to scal-
ing and (non-negative) additivity of sample vectors. The
sample distribution can be approximated by the cone
more precisely as shown in Fig. 1(c), and the discrimi-
nation power should be improved.

Classification is based on the angle θ between the in-
put vector y and the orthogonally projected vector onto
the convex cone C (Fig. 2(a)), which is defined as

θ = arcsin(min
x∈C
||y − x||/||y||) (2)

= arcsin(
√

min
α≥0
||y −Ξα||2/||y||)

where 0≤θ≤π/2.1 This is calculated by using the non-
negative least square method (NNLS) [2]. However, the
computational cost increases rapidly as the number of
samples, N , increases. In order to reduce the compu-
tational cost, we propose three kinds of cone-restricted
subspace method: The first method is based on the strict
convex cone of samples by finding its essential basis
vectors, the second is to approximate the convex cone
by a covering convex cone, and the third is to approxi-
mate it by a circular cone.

2.1. Strict Convex Cone

From the sample vectors, we select a small num-
ber of essential basis vectors supporting the convex
cone spanned by samples. Given sample vectors X =
[xi, · · · ,xN ], convex-redundant samples are defined as
xt = Xt̃αt̃ (αt̃ ≥ 0), where t̃ indicates the subset
excluding the t-th sample. It is easily proven that the
convex cone (Eq.(1)) is invariant even if the convex-
redundant samples are eliminated. Thus, by eliminating
such samples, we can obtain the convex-basis samples.
In order to find and eliminate the convex-redundant
samples, the leave-one-out scheme is applied: the sam-
ple vector xt is eliminated if the angle to the convex
cone spanned by Xt̃, which is calculated by Eq.(2) with

1In the case of non-negative feature vectors and many other cases,
any angle satisfies the constraint.
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Figure 3. Covering convex cone

y←xt,Ξ←Xt̃, is below a predefined threshold (close
to 0). This results in a reduced number of vectors and a
drastic reduction in the computational cost of Eq.(2).

2.2. Covering Convex Cone

The convex cone of sample vectors can be approx-
imated by a covering convex cone spanned by a small
number of basis vectors. Consider the convex hull of the
projections of samples onto the unit (hyper)sphere. The
convex hull can be approximated by a covering convex
hull constructed using PCA as follows. First, sample
vectors are projected onto the sphere by normalization
(zt = xt/||xt|| ∈ Rd) and then PCA is applied to the
auto-correlation matrix of zt. The eigenvector of the
first (biggest) eigenvalue is the direction vector of the
cone and the other eigenvectors are the principal axes of
the distribution on the sphere (Fig. 3(a)).2 By determin-
ing two points, denoted by xL, xR, which are the edges
of the distribution on each principal axis (Fig. 3(b)),
the convex hull composed of these edge points approxi-
mately covers the convex hull of samples on the sphere.
Thus, for the i(≥ 2)-th eigenvector, two basis vectors
are defined as

ξ2i−3 = e1 + xi
Lei = e1 − k

√
λiei

ξ2i−2 = e1 + xi
Rei = e1 + k

√
λiei, (3)

where ei are eigenvectors, λi are eigenvalues corre-
sponding to the variances of the distribution, and k is the
scaling parameter. When applying the above PCA, we
determine the reduced dimensionality r(<d) according
to the contributing rate ηi =

∑i
j=2 λj/

∑d
j=2 λj , and so

obtain 2(r − 1) basis vectors.

2.3. Circular Cone

The convex cone of samples can be approximated by
a circular cone, defined as follows. Given projection
onto an unit sphere, as shown in Fig. 4(a), a circular
cone is defined by the circle which is the intersection of
the plane and the sphere:{

x | μT x/||x|| ≥ b
}

, (4)

2This holds in the case that feature vectors lie in a restricted region,
in particular, a non-negative region.
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Figure 4. Circular cone

where μ is the direction vector of the convex cone of
samples and μT x = b is the plane intersecting the
sphere. The circular cone has a simple formulation that
enables us to easily calculate angles, as we describe
later. The circular cone is an approximate representa-
tion of the convex cone of samples since, on the sphere,
the convex hull composed of an increased number of
the samples approaches a circle. The plane (μT x = b)
is obtained from sample vectors as follows.
[The Plane for Circular Cone] In general, sample
vectors are elliptically distributed, although we approx-
imate the distribution by a circular cone, i.e., a circle on
the sphere. For accurate approximation, whitening is re-
quired to convert the distribution into an isotropic one.
The whitening is based on PCA applied to the samples
on the sphere as in Sec.2.2. As shown in Fig. 3(a), the
second or subsequent eigenvectors of PCA are the prin-
cipal axes of the elliptical distribution on the sphere.
Since we can arbitrarily determine the radius of the cir-
cle, samples are scaled along the third or subsequent
eigenvectors, based on the standard deviation along the
second eigenvector:

ẑt = SET zt. (5)

where S = diag(1, 1,
√

λ2/λ3, · · · ,
√

λ2/λr), E =
[e1, · · · ,er].

The optimum circular cone appropriately approxi-
mating the sample distribution is equivalent to the mini-
mal circle containing samples on the sphere (Fig. 4(b)).
The radius of the circle decreases as the distance
(b/||μ||) between the plane and the origin increases
(Fig. 4(b)). Thus, the plane is obtained by

min
μ,b

1
2
||μ||2 − b s.t. μT ẑi

||ẑi|| ≥ b. (6)

The solutions are normalized; μ←μ/||μ||, b←b/||μ||.
This is the same formulation as 1-class SVM [10] and
can be solved by convex quadratic programming of
SVM.
[Angle to Circular Cone] The angle to the circular
cone is calculated more easily than that to the convex
cone in Eq.(2). Firstly, an input vector y is projected
into the subspace and scaled (ŷ = SET y). Secondly,
we calculate the unit vector a, which is the projection of
ŷ onto the circular cone. Suppose that the slice surface

(a) Face (b) Person

Figure 5. Images in database

including ŷ,a and the direction vector μ is as shown in
Fig. 2(b). Then a and the angle θ are calculated by

a = cos θCμ + sin θC
ŷ − (ŷT μ)μ
||ŷ − (ŷT μ)μ|| (7)

θ = arccos
yT

||y||
ES−1a

||ES−1a|| = arccos
ŷT S−2a

||y||||S−1a|| ,

where θC(=arccos(b)) is the spread angle of the circu-
lar cone. Due to the reduced dimensionality r of ŷ and
a, the computational time of Eq.(7) is less than that of
Eq.(5). Thus, the angle θ can be calculated as fast as
subspace methods (O(dr)). Note that, for the circular
cone, any angles (0≤θ≤π) can be calculated.

2.4. Summary

The proposed methods are summarized below.

Method Approx. Comp. Angle
Accuracy Cost Range

Strict

0≤θ≤ π
2

Convex Cone
Covering

Convex Cone
Circular 0≤θ≤π

Cone

These methods have trade-offs in terms of approxima-
tion accuracy and computational cost.

3. Experimental Results

We applied the proposed methods to face and person
detection using the MIT-CBCL Face Dataset [1] and the
Pedestrian Dataset [8], respectively. In this experiment,
only positive samples of target objects (face/person im-
ages) were used for constructing the cone, i.e., one-class
learning. For face detection, we used 2429 face im-
ages (19×19) for training, and 472 face and 28121 face-
free images for testing (Fig. 5(a)). We extracted SIFT-
like features: histograms of 8-oriented gradients from
2×2 subregions (32 dimensions). For person detection,
400 person images (64×128) for training, and 524 per-
son and 3000 person-free images for testing were used
(Fig. 5(b)), and the SIFT-like image features from 4×8
subregions were extracted (256 dimensions).



(a) Face detection result (ROC) (b) Dimensionality (c) Person detection result (ROC)

Figure 6. Experimental results.

The proposed methods were compared to methods
using the Mahalanobis distance and the subspace of nor-
malized vectors. The results of face detection are shown
in Fig. 6(a). The circular cone and strict convex cone
are superior to the others, and the covering convex cone
has a similar performance to the Mahalanobis distance
method, while the subspace method is least effective.
The relationship between the contributing rate in PCA,
which controls the dimensionality of the subspace, and
the error rate is shown in Fig. 6(b). The performance
of the subspace method is affected by the dimensional-
ity and has a peak at the trade-off point. For the pro-
posed methods, however, the error rate do not increase,
even for high dimensionality. Since the proposed meth-
ods appropriately approximate the sample distribution
by a cone, the effect of the redundant dimensionality
in the subspace is reduced. Thus, we can simply em-
ploy higher dimensionality for the proposed methods.
The results of person detection are shown in Fig. 6(c).
The proposed methods are superior, and in particular,
the strict convex cone is best. The figures of persons in-
clude more variance than those of faces, which results
in a more complicated distribution. The subspace and
normal distribution for the Mahalanobis distance is not
able to capture such a complicated distribution. In sum-
mary, the effectiveness of approximation by cones has
been demonstrated.

4. Conclusion

We have proposed three types of cone-restricted sub-
space method: the strict convex cone, the covering con-
vex cone and the circular cone. They approximate the
sample distributions by means of a cone pointed from
the origin. They are able to strictly classify the vectors
at the boundary of the cone, while admitting scaling and
additivity of vectors as well as ordinary subspace meth-
ods. The experimental results for face and person de-
tection have demonstrated the effectiveness of the pro-
posed methods. The future work is to extend the pro-

posed methods to deal with multi-modal cones, while
we assume unimodal cone in this paper.
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