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ABSTRACT
In image matting, several algorithms that produce high-
quality results have recently been proposed; however, cer-
tain parameters have to be manually determined in order to
obtain favorable results, which requires significant user ef-
fort. In this paper, we propose a method of automatically
evaluating alpha mattes based on either of the two crite-
ria: mutual information or correlation coefficient between
the matte and the image gradient fields, and selecting opti-
mal parameter values. This drastically reduces the user ef-
fort required for tuning parameters in image matting. The
experimental results using several matting algorithms for
various images show that the automatically selected alpha
mattes are similar (or the same) to the manually selected
optimal ones.
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1 Introduction

As a tool for image and video editing, image matting is
used to extract a foreground object from the background
and naturally place it into a new (background) image. The
matting problem is to estimate the opacity (alpha value)
and the foreground and background elements at each pixel,
which are related to each other by the following equation:

Ci = αiFi + (1 − αi)Bi, (1)

where αi ∈ [0, 1] represents the opacity; Ci, the color
vector in an image; and Fi and Bi, the foreground and
background color vectors at pixel i, respectively. The mat-
ting problem for natural images is inherently ill-posed since
there are three observations (R,G and B in Ci) and seven
unknowns to estimate in Eq.(1). Several algorithms have
been recently proposed to deal with the ill-posedness in
the computer vision community. Unlike blue-screen mat-
ting [9], these algorithms have shown high-quality results
without controlling the environment.

In these algorithms, some user interactions are re-
quired for indicating the foreground object to extract; these
interactions also function as clues or constraints for solv-
ing the problem. One method for such user interactions is
a trimap [8, 2, 4, 10], in which an image is segmented by
a user into three regions: definitely foreground, definitely
background, and unknown. The unknown region, in which

the alpha values are estimated, is expected to possibly be a
narrow strip for the sake of obtaining high-quality results.
Another method for the user interactions, strokes, has re-
cently been proposed for image matting [11]. As shown
in Fig.1(a), a user draws two types of strokes: definitely
foreground and background. The degree of the user inter-
action is significantly less than that of trimap. However,
the region of alpha estimation is larger when using strokes,
which makes the matting problem more difficult. Wang
and Cohen [11] estimated the alpha values by iteratively
propagating them from the strokes by using belief prop-
agation. Levin et al. [7] transformed the above ill-posed
problem into a closed-form expression under local smooth-
ness assumptions on the foreground and background col-
ors. Hosaka et al. [5] incorporated the discriminative infor-
mation between foreground and background into the mat-
ting formulation of the MRF framework. Kobayashi et
al. [6] have also proposed the unified formulation of alpha
estimation which naturally incorporates the discriminative
information in the closed form.

In a case that the estimated alpha matte is not satis-
factory for a user, two approaches are usually employed for
its improvement: repeating the alpha estimation by adding
more clues and/or changing the parameters of the alpha es-
timation method. Without the appropriate parameters, even
if a user adds some more clues (strokes) to modify the alpha
matte, a favorable result might not be obtained. Therefore,
the parameters first need to be appropriately determined,
and then the user effort, e.g., adding strokes, is required for
further improving the alpha mattes, if necessary. In the al-
pha estimation, there are usually several parameters, such
as regularization parameters, that need to be manually de-
termined by a user. Although these parameters increase the
degree of freedom in the formulation to deal with various
images, it is an exhaustive task for a user to decide the opti-
mal parameter values that produce the most favorable result
by trial and error.

In this paper, we propose a method of automatically
evaluating the alpha mattes. Our method searches the opti-
mal alpha matte by evaluating all the mattes produced us-
ing various parameter values of the employed matting al-
gorithm, as illustrated in Fig.1, which significantly reduces
user effort required for tuning parameters. The evaluation
criterion is based on the consistency of the relationship be-
tween the matte and the image gradient fields. Since the
alpha mattes are evaluated after performing a matting al-
gorithm, it can be integrated with any matting algorithms
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(a) Input (b) Automatic selection (c) Composite

Figure 1. Once a user draws cue strokes for the foreground
and the background in an input image (a), our method auto-
matically selects the optimal alpha matte (b) among all the
mattes produced using various parameter values. Figure (c)
is a composite image with the extracted object and a new
background.

as post-processing. The experimental results show that the
evaluation method favorably selects the alpha mattes.

2 Automatic Evaluation of Alpha Mattes

Practically, there are several parameters in most matting al-
gorithms. Since the parameters in the alpha estimation can
not be appropriately determined in advance, they are usu-
ally selected on the basis of the observation of the result-
ing alpha mattes so as to produce the most favorable alpha
matte for a user. In order to make a user free from tedious
tuning parameters, the evaluation of the alpha mattes needs
to be automated. Thus, we focus on how the user eval-
uates the alpha mattes produced using various parameter
values, and then derive a criterion for the automatic eval-
uation of the alpha mattes. The criterion will enable the
quantitative evaluation of the alpha mattes, which has not
been performed in previous studies except for using artifi-
cial ground truth [7].

2.1 Considering the Evaluation by Users

Users can evaluate the alpha mattes according to their im-
pressions, although it is not actually clear what these im-
pressions are based on. However, the alpha mattes are
probably evaluated on the basis of the top-down knowledge
about the foreground object, and bottom-up information
derived from comparing the alpha matte with the original
image. The top-down knowledge requires the high-level
cognition which is still one of the most difficult problems
in computer vision. In this paper, we employ the bottom-up
approach under the assumption that the comparisons be-
tween the contours of the foreground objects in an alpha
matte and those in the original image play an important role
in the evaluation. For example, when evaluating two alpha
mattes, shown in Fig.2 (b,c), estimated from the original
image (a) using different parameter values, alpha matte (c)
would be selected as the favorable one by the user. In (b),
some of the contours correspond to those in (a) (lower right

window in (a,b)), whereas the other corresponding regions
do not have the same contours (other windows in (a,b)).
Such an inconsistency occurs in unsatisfactory alpha mat-
tes. On the other hand, as to satisfactory result (c), most
contours correspond to those in (a). In this paper, the cri-
terion for evaluating the alpha mattes is derived from these
observations. The key concept is that the contours in a sat-
isfactory alpha matte must be shared with the original im-
age. In image matting, however, it is not suitable to extract
the contours and directly compare them. This is because
the foreground objects are represented by their opacities in
Eq.(1), and thereby the contours are not necessarily explic-
itly extracted as in the case of hard segmentation, especially
for the transparent objects. Therefore, we focus on the fact
that steep gradients exist around the contours in both the al-
pha matte and the original image. On this basis, the above
concept implies that the pixels at which steep gradients are
detected in the alpha matte should consistently have steep
gradients in the corresponding original image. The crite-
rion is defined below based on the relationship between the
matte and the image gradients.

2.2 Evaluation Criterion

On the basis of the above observations, a criterion is con-
structed so as to evaluate the consistency of the relationship
between gradients in the alpha matte and in the original
image. In this paper, we propose the following two types
of criteria: mutual information (MI) and correlation coeffi-
cient (CC). In these criteria, it is expected that the matte
gradients should be positively correlated with the image
gradients and the inconsistencies such as those in Fig.2(b)
are not permitted. Here, the following notations are used
for the definition of the criteria. The gradient at pixel i is
represented by the magnitude Sα

i and the direction θα
i in an

alpha matte and by So
i and θo

i in the original image, respec-
tively. The direction ranges from 0 to π and thus it is cyclic
in the range θ ∈ [0, π), which is slightly difficult to be dealt
with when calculating the criteria. Since only the relation-
ship between θα

i and θo
i is important in the evaluation, we

transform the value of θo
i such that |θo

i − θα
i | ≤ π/2. Pα

E

denotes the set of pixels having gradients that are steeper
than the threshold ξ in the alpha matte: Pα

E = {i|Sα
i > ξ}.

These pixels are mostly located around contours in the al-
pha matte to be evaluated and are focused on in the follow-
ing criteria.

Mutual Information Criterion (MI): The MI be-
tween the distributions of (Sα, θα) and (So, θo) in Pα

E is
calculated as

MI = I(Sα;So) + I(θα; θo) (2)

I(Sα;So) =
∫∫

p(Sα, So) log
p(Sα)p(So)
p(Sα, So)

dSαdSo

I(θα; θo) =
∫∫

p(θα, θo) log
p(θα)p(θo)
p(θα, θo)

dθαdθo,
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(a) (b) (c)

Figure 2. Evaluation of alpha mattes. (a) Original image: the square windows are associated with those in alpha mattes (b,c).
(b) Unsatisfactory alpha matte: only the right-down window is satisfactory while the other windows are not. (c) Satisfactory
alpha matte: most contours are consistent with those in the original image.

where p(·) indicates a probability defined by samples (pix-
els) of Pα

E . As to the probability of magnitude S, each
sample i ∈ Pα

E has two variates (Sα
i , So

i ) and all of
samples form the probability distribution of 2-dimension,
p(Sα, So), and 1-dimension, p(Sα) and p(So). The same
holds for that of direction θ. In Eq.(2), we assume that the
magnitude S is independent of the direction θ. The value
of MI increases as matte gradients depend on image gra-
dients. These dependencies between the gradients in the
two images are evaluated in this criterion and inconsistent
(independent) relationships cause a decrease in MI. Even
nonlinear relationships can be captured in this criterion.

Correlation Coefficient Criterion (CC): The CC be-
tween samples {Sα

i , θα
i } and {So

i , θo
i } in Pα

E is defined as

CC = RS + Rθ (3)

RS =

∑
i∈Pα

E
(Sα

i − S̄α)(So
i − S̄o)√∑

i∈Pα
E
(Sα

i − S̄α)2
√∑

i∈Pα
E
(So

i − S̄o)2

Rθ =

∑
i∈Pα

E
(θα

i − θ̄α)(θo
i − θ̄o)√∑

i∈Pα
E
(θα

i − θ̄α)2
√∑

i∈Pα
E
(θo

i − θ̄o)2
,

where ·̄ denotes the mean in Pα
E . We simply sum up the two

correlation coefficients, RS and Rθ, of magnitude S and
direction θ in Eq.(3) in a manner similar to that in Eq.(2).
CC evaluates the correlations between the matte and the
image gradients. It captures linear relationships, and the
inconsistent relationships (negative correlations) decrease
the evaluation score.

Although MI adapts to various relationships due to its
nonlinearity, it could possibly allow even negative corre-
lations. Therefore, it is unclear which of the two criteria
performs better in evaluating the alpha mattes. The experi-
mental results in Sec.4, however, slightly clarify what kind
of image each criterion tends to be suitable for.

2.3 Selection of Optimal Parameters

In our method, the optimal alpha matte is searched by the
automatic evaluation of the alpha mattes as follows. First,

the alpha mattes are produced by any matting algorithms
using various parameter values, and then they are evaluated
respectively in the subsequent procedure. Second, by cal-
culating gradients in the alpha matte and thresholding the
magnitudes, the pixel locations of the steep gradients, Pα

E ,
are detected. We also calculate the magnitude So

i and the
direction θo

i of the gradient at pixel i ∈ Pα
E in the original

image. The gradients are calculated using color channels as
in [3]. Third, the alpha matte is evaluated based on either
the MI or the CC criterion using the relationships between
(Sα, θα) and (So, θo). Finally, the alpha matte with the
highest evaluation score is selected.

3 Relationship to Previous Works

In [7], the following cost function is minimized with re-
spect to α,

J(α) = min
a,b

∑
j∈Image

∑
i∈wj

(αi − ajCi − bj)2 + εa2
j , (4)

where wj indicates the local window centered at pixel j
and ε is a regularization parameter. Although this is de-
rived from Eq.(1), it also means maximization of the nor-
malized correlation between alpha values α and pixel val-
ues C within each local windows wj in case of a > 0. In
the proposed criterion, we maximize the normalized corre-
lation (correlation coefficient) between matte gradients and
image gradients on the contours in the alpha matte. The
criterion evaluate the global consistency of the object ex-
tracted by matting algorithm.

Apostloff et al. [1] also adopted the concept of the re-
lationship between the matte and the image gradients. They
learnt the model of the relationship (p(∇α|∇C)) from the
reliable alpha mattes produced by blue-screen matting. The
model, however, could be varied in every image and its
construction is also an exhaustive task. In this paper, we
measure the consistency of the relationships in each al-
pha matte by using bottom-up approach without employing
such models. The model construction in [1] also suggests
the validness of the consistency.
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Sun et al. [10] focused on the matte gradient field and
solved the associated Poisson equations, which are based
on the following equations:

∇αi =
1

Fi − Bi
{∇Ci − Di}, (5)

where Di = (αi∇Fi + (1 − αi)∇Bi). In global Poisson
matting, the matte gradient ∇αi is assumed to be linearly
related to the image gradient ∇Ci, where Fi and Bi are
smooth, i.e., Di ≈ 0. In local Poisson matting, Di was
modeled in several ways for the region that Fi and Bi are
not smooth. In such a case, the relationships between the
matte and the image gradients are nonlinear as in the case
of Eq.(5) with Di �= 0. As above, the two types of rela-
tionships naturally appear in the image matting. Our cri-
teria can respectively deal with these relationships: MI for
nonlinear and CC for linear.

4 Experimental Results

We evaluate the alpha mattes produced by state-of-the-art
matting algorithms [11, 7, 5, 6]. These algorithms have
several parameters to be determined by a user and employ
the user interactions of strokes type. It should be noted that
for the algorithms of [11, 7] we utilize the programs pro-
vided at their websites and can change parameters in their
programs. The parameters in these algorithms are briefly
described as follows, and refer to each paper for more de-
tails.

Wang and Cohen [11]: There is one major parameter λs

(sensitivity) which balances the two terms in the fol-
lowing cost function,

∑
i

Vd(αi) + λs

∑
(i,j)∈Neighbor

Vs(αi, αj), (6)

where Vd and Vs are data energy and smoothness en-
ergy, respectively. The other (minor) parameters are
set to the appropriate values recommended by the au-
thors. The range of parameter is that λs ∈ [0, 1] with
20 steps, and then 20 alpha mattes are produced.

Levin et al. [7]: There are three parameters: regulariza-
tion parameter ε in Eq.(4), the number of multiscale
layers M and the threshold for alpha values Tα in
the coarse-to-fine scheme. The range of parameters
is that ε ∈ {1e−5, 1e−7},M = {1, 2, 3, 4, 5, 6}, Tα ∈
{0.05, 0.12, 0.30}. 36 alpha mattes are produced.

Hosaka et al. [5]: There are two major parameters
λM , λD which balances the three terms in the
following cost function,

λM

∑
i

UM (αi)+
∑

(i,j)∈Neighbor

US(αi, αj)+λD

∑
i

UD(αi)

(7)
where UM , US , UD are matting term, smoothing term
and data term, respectively. The range of parameters

is that λM , λD ∈ [0, 2] with 23 steps, and then 529
alpha mattes are produced.

Kobayashi et al. [6]: This method is extended from [7] by
adding second term in the following cost function,

∑
(i,j)∈Neighbor

sij(αi−αj)2+λ
∑

i

di{Ωb
iα

2
i +Ωf

i (1−αi)2}

(8)
where sij indicates similarity between pixel i and j,
and di =

∑
j sij . The second term (Ωb,Ωf ) is derived

from the discrimination for fore/background at every
pixel. Thus, in addition to three parameters (ε,M, Tα)
in [7], there are two parameters: the number of neigh-
boring pixels N used for the discrimination and bal-
ancing parameter λ in Eq.(8). The range of these pa-
rameters is that N ∈ {1, 27}, λ ∈ [0, 0.5] with 33
steps, and M ∈ {1, 2, 3, 4, 5, 6} while ε and Tα are
fixed as 1e−5 and 0.05, respectively. In total, 396 al-
pha mattes are produced.

Our method of automatic evaluation is tested in several im-
ages, and the selected alpha mattes for each matting algo-
rithm are shown in Fig.4. In this experiment, the point is
not the comparison among methods but the quality of the
selected alpha matte in the parameter space. In the evalua-
tion, both criteria, CC and MI, are simultaneously applied
and two alpha mattes are chosen as a result. Since the char-
acteristics of the criteria are different as discussed below,
it is easy for a user to select the better one of the two by
comparing them. The caption in Fig.4 indicates the cri-
terion used for the better matte shown in the figure. The
results except Fig.4(i,x) are favorable and much similar (or
the same) to the manually selected optimal ones. As to the
result of (i,x), the method [5] could not produce completely
favorable matte in its parameter range. Even though there is
inherently no optimal parameter, these mattes (i,x) are ac-
tually better ones in the parameter range of [5]. Therefore,
it is found that our evaluation method favorably selects the
alpha mattes which are also chosen in case of manual se-
lection. For demonstrating the effectiveness of the crite-
ria, the alpha mattes which are not selected due to its low
evaluation score are also shown in Fig.3. In the parameter
range, various alpha mattes are produced and not-selected
ones are apparently worse than the selected one. Thus, it
is shown that the proposed evaluation criteria are useful for
automatic selection and agree with human impression.

The two criteria tend to specialize different types of
images: CC works particularly well for transparent objects
such as fire, face and peacock in Fig.4, while MI appears to
be suitable for solid objects such as dog in Fig.4. Gradients
change gradually in transparent objects while they change
drastically around the borders in solid objects. These ten-
dencies are associated with the linear and nonlinear cor-
relations of gradients for which CC and MI are suitable,
respectively. This distinction, however, is not clearly but
moderately appeared, particularly for the image of child in
Fig.4 which includes both solid region at the side of face
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Automatically selected not selected

Figure 3. Not selected alpha mattes. These alpha mattes are apparently worse results.

and transparent region of hair. Computational time is de-
pendent on that of employed matting algorithm, i.e., the
parameter range and the processing time for one image,
because the evaluation, of which task is only calculation
of gradients, requires little computational cost.

5 Conclusion

In this paper, we have proposed a method for automatically
evaluating alpha mattes and selecting optimal parameter
values for image matting. Since our method is applied as
post-processing after alpha estimation, it can be integrated
with any alpha estimation algorithms including parameters.
The best performance of the alpha estimation method is
provided by automatically searching for the optimal results;
this leads to a significant reduction in user effort for tun-
ing parameters. Our key contribution is the construction
of two types of criteria for the evaluation: mutual informa-
tion and correlation coefficient. In the experiments using
state-of-the-art matting algorithms for various images, the
effectiveness of the proposed method is demonstrated.
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Original image Wang and Cohen [11] Levin et al. [7] Hosaka et al. [5] Kobayashi et al. [6]

(a) dog (b) MI (c) MI (d) CC (e) CC

(f) fire (g) CC (h) CC (i) CC (j) CC

(k) face (l) CC (m) CC (n) CC (o) CC

(p) child (q) CC (r) MI (s) CC (t) MI

(u) peacock (v) CC (w) CC (x) CC (y) CC

Figure 4. Automatically selected alpha mattes. The caption of each alpha matte means which criterion (CC or MI) is used to
automatically select the alpha matte.
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