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Abstract

We propose a scheme for gait recognition using cubic
higher-order local auto-correlation (CHLAC), discriminant
analysis, and k-NN decision rules. CHLAC is based on
three-way (x-, y-, and time-dimensional) auto-correlations
of pixels in motion images, and it effectively extracts mo-
tion features. The method has several properties preferable
for recognition: shift-invariance (rendering the method
segmentation-free) and robustness to noise in data. More-
over, the method is so general as to use neither a pri-
ori knowledge nor heuristics about objects such as human
shapes and is applicable to any three-way data. We made
the scheme more effective for gait recognition by intro-
ducing some knowledge of gait to optimise parameters in
CHLAC. Our scheme was applied to the NIST gait dataset
for human identification, and the result was compared to
those of other methods. Our scheme outperformed the oth-
ers in spite of the simple feature extraction and the simple
classification rule.

1. Introduction
Motion recognition is becoming an important area in com-
puter vision. In particular, human motion, such as gait, is
expected to be a key to human identification [1]. Unlike fin-
gerprinting, this biometric method can identify humans by
observing gaits through video cameras at a distance. How-
ever, in motion recognition, especially in gait recognition,
some difficult problems must be treated: segmenting, track-
ing, and analysing both the human shape and its changes in
a time series. Much effort has so far been made to solve
these problems.

Motion images have spatial and temporal information
that is difficult to effectively handle all together. In usual
approaches to motion image analysis, these two kinds of
information are processed individually: first, each image
frame is processed and usually compressed to a feature vec-
tor, and then the time series of the obtained feature vectors
is analysed. For example, recent approaches to gait recog-
nition are as follows.

Sarkeret al. [2] used template matching of silhouettes
that were roughly extracted using background subtraction.
The silhouette extraction method was refined by Leeet
al. [3] by using HMM. The template matching method was
improved by Tolliveret al. [4] by using a variance-weighted
metric and by detecting key frames in human gaits. Sun-
daresanet al. [5] applied HMM to the time series analysis
of silhouettes. These methods are all based on human sil-
houettes and template matching (including spatio-temporal
cross-correlation) for calculating the silhouette-based sim-
ilarities. Wanget al. [6] extracted features from the outer
contours of silhouettes without much consideration of the
temporal information.

Johansson [7] performed one of the earliest psycholog-
ical studies related to gait recognition, in which the exper-
iment, called “point lights display,” indicated that we can
perceive human motion by the cue of only moving patterns
of point lights in the dark. In terms of human identifica-
tion through gaits, Cuttinget al. [8] found that humans can
recognize a particular walker by observing point lights even
if familiarity cues are omitted. They also suggested that
dynamic cues such as the speed, bounciness, and rhythm
of the walker are more important than static cues such as
the height of the walker. Note that almost exclusively dy-
namic cues enable us to recognize human gaits. On the
other hand, Veeraraghavanet al. [9] compared the role of
body shapes (static) with that of kinematics (dynamic) and
concluded that body shape is more important than kinemat-
ics. Vergeset al. [10] statistically showed that static parts of
body shapes are important for recognition tasks. These two
studies (and most of the previous work described above)
used silhouette-based recognition, i.e., recognition based on
static forms, but Cuttinget al. [8] noted that “the perception
of dynamic forms is probably not derived from the percep-
tion of static forms” and “snapshot recognition is a special
case of motion recognition, where the dynamic invariance
is null.”

From the point of view that gait recognition is compiled
from successive snapshot (shape) recognition, static cues
surely play an important role, and body shapes contribute to



human identification. Dynamic cues, however, are equally
or more important for identification through gaits, as Cut-
ting et al. [8] pointed out (and Veeraraghavanet al. [9]
showed that using both body shapes and kinematics outper-
forms using either one alone).

In the previous work [13], we proposed a method of
motion recognition using the cubic higher-order local auto-
correlation (CHLAC) features which compute the spatio-
temporal correlations of pixels indicating movements and
incorporate static and dynamic cues in a natural (unified)
way. The basic idea of CHLAC is related to that in [8]:
dealing equally with the spatial axes and time axis, not
with compilations of snapshots. The key point is that the
relations among the moving points of light connected to
dynamic perception is formulated as spatio-temporalauto-
correlationsof the moving points (see Sect. 3 for details).

The concept of regarding motion images as spatio-
temporal data goes back to XYT in [11], where spatio-
temporal information is used as the XT-slice. The spatio-
temporal information, however, was only for detecting hu-
man contours, not for recognition. Recently, Laptev [12]
dealt with the spatio-temporal concept more explicitly by
detecting “interest points” (called motion events) in the
spatio-temporal space of image sequences and describ-
ing these events as local feature vectors based on spatio-
temporal derivatives.

In this paper, we propose a new approach to gait recogni-
tion by using a simple scheme comprising CHLAC feature
extraction, discriminant analysis, andk-NN decision rules.
In [13], CHLAC was simply applied to motion recognition,
such as recognition of walking and running, where the eval-
uation was done by small data set and the parameter setting
in CHLAC was not so much crucial. However, the differ-
ence of gaits among persons is much more fine and delicate
than that of motions and we must carefully treat the param-
eters in the recognition scheme. Some knowledge of hu-
man gaits is introduced for parameter optimisation and in-
tegration with classifiers to make our scheme more effective
for gait recognition. In an experiment using the NIST gait
database [2], we compared the performance of our scheme
to other algorithms and found it to be effective and superior.

2. Preprocessing

Before applying CHLAC, we preprocess input image se-
quences.

First, as shown inFig. 1, an image sequence is regarded
as three-way data using thex- andy-axes in an image frame
(X × Y ) and thet-axis along the frame sequence. Motion
is usually composed of characteristic (sub-) motions over
certain amounts of time, such as the gait period we used.
By capturing the characteristics, we set a time window that
includes a constant number of frames along the time-axis.
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Figure 1: Cubic data showing frame motion as white pixels,
which are extracted by subtracting the previous frame from
the current frame and by binarizing.

The frames within a window are assigned as one unit, called
“cubic data” (X × Y × T ), as inFig. 1. A series of cubic
data is obtained by shifting the window, say, one frame at
a time, along the time-axis, where the widthT of the win-
dow is a parameter to be determined later. Human motion is
recognized in each framet by classifying the feature vector
associated with the cubic data.

Second, we apply frame differencing and then automatic
thresholding to binarize and detect motion pixels and to
filter out both inherent noise and brightness information,
such as clothing, which is irrelevant to motion information.
Consequently, pixel values in each frame become 1 or 0:
“moved” or “static.” In Fig. 1, a moving human contour
is visible, and the contour is sufficient for motion recog-
nition [10]. A little isolated noise might be left in result-
ing frames, but need not be eliminated because CHLAC is
robust to such noise (see Sect. 3.3). In this preprocess-
ing, the frame differencing could be replaced by another
method, such as silhouette extraction. The extraction of
silhouettes, however, requires more complicated process-
ing (background subtraction, etc.) while frame differenc-
ing (and binarization) is easily processed. Note that our
method can use frame differencing or silhouette extraction
in preprocessing, while the other methods based on tem-
plate matching use only silhouette extraction as preprocess-
ing.

3. Cubic Higher-Order Local Auto-
Correlation

We now describe the details of cubic higher-order local
auto-correlation (CHLAC), which was proposed in [13].
Higher-order local auto-correlation (HLAC) was proposed
for extracting spatial “auto-correlations,” and it was demon-
strated to work effectively in image (two-way data) recogni-
tion [14]. We extended this naturally to cubic higher-order
local auto-correlation to deal directly with three-way data.



In this framework, HLAC related to the static perception is
considered a special case of CHLAC related to the dynamic
perception.

3.1. Definition
Letf(r) represent three-way data defined on the region (cu-
bic data)D : X ×Y ×T with r = (x, y, t)T , whereX and
Y are the width and height of the image frame andT is
the length of the time window. Then, theN -th order auto-
correlation function is defined as

RN (a1, · · · , aN ) =
∫

Ds

f(r)f(r + a1) · · · f(r + aN )dr

(1)

Ds = {r|r + ai ∈ D ∀i}

where theai (i = 1, · · · , N) are displacement vectors from
a reference pointr. Although Eq. (1) can take many differ-
ent forms by varyingN andai, we limit N ≤ 2 andai to a
local region because local voxels (pixels) are considered to
be highly correlated.

A CHLAC feature corresponds to a value of
RN (a1, · · · , aN ), and we can obtain many features
by varying a1, · · · , aN in the local region and us-
ing N = 0, 1, 2. However, in the case that the point
configuration of (r(1), r(1) + a

(1)
1 , · · · , r(1) + a

(1)
N )

matches that of(r(2), r(2) + a
(2)
1 , · · · , r(2) + a

(2)
N ) by

shifting it, RN (a(1)
1 , · · · ,a

(1)
N ) takes the same value

as RN (a(2)
1 , · · · , a

(2)
N ). Therefore, we eliminate such

duplicated sets for CHLAC features. The following section
gives the details of computing CHLAC features.

3.2. Computation
First, we translate Eq. (1) from a continuous form to a dis-
crete one:

RN (a1, · · · , aN )

=
∑

x,y,t∈Ds

f(x, y, t)f(x + a1x, y + a1y, t + a1t)

· · · f(x + aNx, y + aNy, t + aNt), (2)

where the components ofa1, · · · , aN are limited to±∆r
or 0 for aix andaiy and to±∆t or 0 for ait, andN ≤ 2. We
use∆r to denote the spatial interval along thex- or y-axis in
an image frame, and∆t denotes the temporal interval along
the t-axis in the frame sequence. The interval along the x-
axis is taken identically to that along they-axis because of
the isotropy in the x-y plane. On the other hand, the spatial
interval∆r may be different from the temporal interval∆t
because the resolution of space and time may differ. The
determination of these parameters will be discussed later.

Figure 2: Examples of independent mask patterns: (0)N =
0; (1) N = 1, a1 = (−∆r,−∆r,−∆t)T ; and (2)N =
2, a1 = (−∆r,−∆r,−∆t)T , a2 = (∆r,∆r,∆t)T .

The set(r, r+a1, · · · , r+aN ) is represented as a local
mask pattern, of which examples are shown inFig. 2. In
Eq. (2), we first multiply the voxel values of the gray posi-
tions in the mask pattern (correlation term), and then sum
up the resulting value in the whole region of cubic data by
shifting the mask pattern (integral term). For example, in
the case ofa1 = (−∆r,−∆r,−∆t)T andN = 1 as in
Fig. 2 (1), we obtain the feature value

R1(a1) =
∑

x,y,t∈Ds

f(x, y, t)f(x − ∆r, y − ∆r, t − ∆t).

Next, we describe how to construct such mask patterns.
There are many mask patterns including duplicated patterns
in terms of point configurations. The mask patterns that can
be matched by shifting can be eliminated (Fig. 3): 279 in-
dependent mask patterns result. In cases where each voxel
value is either 0 or 1 in the three-way data, 251 mask pat-
terns are possible becausef(r)2 = f(r) and f(r)3 =
f(r), e.g.,

R0 =
∫

f(r)dr =
∫

f(r)2dr = R1(0)[
a1 = (0, 0, 0)T

]
.

The dimensions of CHLAC features correspond to the num-
ber of mask patterns. We use the latter 251 dimensional fea-
tures because the voxel values in cubic data are binarized
(Sect. 2).

3.3. Desirable properties
This CHLAC method extracts spatio-temporal features
from three-way data in only one step, which differs from the
traditional approaches requiring two steps: shape feature
extraction and temporal feature extraction. The CHLAC
features are easily calculated because they consist only of
multiplication and addition, so this is a simple and concise
method. Furthermore, it has the following three desirable
properties for recognition.



Figure 3: Example of duplicate mask patterns: (a)N =
1, a1 = (−∆r,−∆r,−∆t)T ; (b) N = 1,a1 =
(∆r,∆r,∆t)T . The mask pattern in (a) corresponds to that
in (b) shifted by(∆r,∆r,∆t)T .

• Shift-invarianceto data: This is because the features
are based on an integral (summation). Note that the
shift-invariance renders the methodsegmentation-free.

• Additivity for data: Suppose that regionsA andB are
disjoint (A ∩ B = ϕ); then, the feature value of this
data is given as

Rwhole =
∫

r∈(A∪B)s

g(r)dr

≈
∫

r∈As

g(r)dr +
∫

r∈Bs

g(r)dr = RA + RB ,

whereg(r) = f(r)f(r + a1) · · · f(r + aN ). This
holds because auto-correlations are almost limited to
each region (A or B) due to their locality. This property
makes it possible to simultaneously identify multiple
objects [13].

• Robustness to noisein data: The auto-correlation is
robust to additive noise, as shown in the following. Let
si be signal and andni be random noises with means of
0 and variances ofσ2 at thei-th voxel; then, assuming
thatsi ≫ ni,

E(si + ni)(sj + nj) = E(sisj + σ2δij) ; Esisj ,

whereE is the expectation, andδij is the Kronecker
delta. In addition, noise such as isolated points hardly
affects CHLAC feature values because the portion of
such noise is usually much smaller than the portion of
the object; furthermore, the correlations between the
noise point and surrounding points are mostly zero.

4. Recognition Scheme
After CHLAC feature extraction, we apply discriminant
analysis andk-NN decision rules for gait recognition as fol-
lows.

Learning¶ ³
Input : All training image sequences
For (∆r,∆t, T ) ∈ ParamRange
Do

1. Defining Cubic Databy usingT
2. Frame Differencing and Binarization
3. CHLAC Feature Extraction using∆r,∆t
4. Discriminant Analysis

4.1 Applying DA for All features
to createS(∆r,∆t, T )

4.2 Mapping all features intoS(∆r,∆t, T )
Doneµ ´

Figure 4: Learning phase

In the learning phase, CHLAC features of a certain pa-
rameter set,R(∆r,∆t, T ), are extracted from all cubic data
of the whole image sequence of a training set. Fisher Dis-
criminant Analysis (DA) is applied to these features, and
then the features belonging to each person are clustered
in the discriminant spaceS(∆r,∆t, T ) that is preferable
for the recognition. Many different discriminant spaces are
constructed for all parameter sets that lie in the parameter
range (see Sect. 5.2). This learning phase is summarized in
Fig. 4.

In the recognition phase, the classifier is based on ak-
NN decision rule (say,k = 10). At each timet, a CHLAC
feature is extracted for each parameter set,Rt(∆r,∆t, T ),
and thek-NN decision is made in the corresponding dis-
criminant space,S(∆r,∆t, T ). We repeat thisk-NN deci-
sion for all discriminant spaces constructed in the learning
phase. The frame att is classified as follows:

ResultF (t)
= arg max

i
max

∆r,∆t,T
kNNS(∆r,∆t,T )(Rt(∆r,∆t, T ), Pi),

(3)

where (∆t, ∆r, T ) ∈ ParamRange (4)

kNNS(∆r,∆t,T )(x, Pi) counts the number of training sam-
ples belonging toi-th person,Pi, in thek-nearest neighbors
of x in the spaceS(∆r,∆t, T ). This k-NN number is re-
garded as the confidence of the person on the parameter set,
and by searching the maximum confidence over∆r,∆t, T ,
andP in Eq. (3), the recognition result is more stable and
accurate because the parameter sets may have different dis-
criminant power for each person. The constraints in (4) are
determined in Sect. 5.2.



Recognition¶ ³
Input : Test image sequence (Ts image frames)
confp ← 0
For t ≤ Ts

Do
For (∆r,∆t, T ) ∈ ParamRange
Do

1. Defining Cubic Data
Image frames (t ∼ t + T − 1) as cubic data

2. Frame Differencing and Binarization
3. CHLAC Feature Extraction using∆r,∆t
4. Mapping the feature intoS(∆r,∆t, T )

Done

k-NN Classifier
1. Calculate confidence (i.e. ResultF ) by Eq. (3)
2. confp[ResultF ]++

Done
Result← arg maxi confp[i]µ ´

Figure 5: Recognition phase

Finally, the sequence is identified as a person as

Result= arg max
i

∑
RresultF (t)∈Pi

1. (5)

Namely, in the image sequence, the person that the
most number of frames support is the final classifica-
tion/identification result, which makes it possible to avoid
the effect of imprecise recognition results derived from
noisy cubic data. Recognition phase is summarized in
Fig. 5.

5. Experiment
5.1. Gait data
To evaluate the performance of our scheme, we used the
NIST gait dataset, which is the largest such dataset avail-
able. It consists of 456 video sequences of 71 individuals
(persons) walking around an elliptical course, with labels:
Gallery (for training) and probes A through G (for testing).
The details are given by Sarkeret al. [2].

5.2. Optimising parameters in CHLAC
Three parameters must be determined: the spatial and tem-
poral intervals∆r,∆t, andT , which cannot be optimally
defined without knowledge and can take any values. There-
fore, we take into account some knowledge about the char-
acteristics of human gaits to restrict the range of these pa-
rameters.
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Figure 6: Trajectories of different humans walking in an
XT-slice. (a): slowest, (b): middle speed, and (c): fastest
walks.

5.2.1 Spatial and temporal intervals,∆r and ∆t

The only constraint on∆r and ∆t is locality; however,
many combinations remain. Some knowledge of human
gaits further constrains the relationship between∆r and∆t.

Suppose we have a fronto-parallel view of a human walk.
If the image sequence is sliced horizontally at the middle of
the human shape, the sliced surface also forms an image
plane (in thex− t plane): a so-called XT-slice [11] (Fig. 6).
This shows that the trajectory of human walking can be ap-
proximated as a straight line, of which the gradient denotes
the walking velocity. The relationship between the spatial
and temporal intervals is closely connected to this gradient
(velocity). If arg(−∆r,∆t)T is far from the gradients of
the human trajectories, almost of the CHLAC feature values
are close to zero because no human is at the time and place
(−∆r,∆t)T from the current human position in the XT-
slice. Therefore,arg(−∆r,∆t)T = −∆t/∆r should be
close to most of the gradients, that is, the mean of the gradi-
ents (Fig. 6 (b)). We adopted principal component analysis
(PCA) to approximate each person’s trajectory by a straight
line and then estimate the gradient. After applying PCA
to the dot patterns(x, t) composing the trajectory in the im-
age sequence, the eigenvector associated with the maximum
eigenvalue represents the gradient vector of the human tra-
jectory in an XT-slice. From the first eigenvectors of all im-
age sequences, the mean gradient of the trajectories is cal-
culated. In practice, however, preprocessing causes some
noise in XT-slices, which makes the estimation imprecise.
Thus, we use the contribution rate,η1 = λ1/

∑
i λi, to eval-

uate the appropriateness of the straight-line approximation.
The eigenvectors of which the contribution rates are less
than a threshold (say, 0.99) are discarded, and the mean gra-
dient is estimated by averaging only good (reliable) eigen-
vectors. The mean gradient over persons was computed as
−0.49, which showed that∆t/∆r = 1/2.

On the other hand, in the image frame, knowledge about
the human body (the width of human figures) restricted∆r



�
��� �
��� �
��� �
��� �
��� �
��� �
��� 	
��� 

��� �
�

� � � � � � � � � � � � � 	 � 
 �
��
 ����� ��
 �����

� ��
� �
��
 

Figure 7: Variance vs. time-width. The variance is aver-
aged through all image sequences. It becomes enough small
around 30 frames.

to 16 or less.

5.2.2 Time-width,T

As the time-widthT of cubic data increases, more informa-
tion on cyclic gaits is obtained, and the CHLAC features
become stable. However, ifT is too large, the effect of un-
reliable frames that include much noise could remain for
a long time, i.e., much cubic data could include the noisy
frames. Because of this trade-off,T should have a limited
length. If we assume that human gaits are periodic motions,
the CHLAC features of cubic data whoseT is close to the
period would be ideally stable. To investigate the stability
of CHLAC features, we checked the variance of features
in each image sequence for various time-widthsT under
the assumption that the gait period is constant within each
image sequence. The variance vs. time-widthT is shown
in Fig. 7. The variance became enough small around 30
frames, so we set this as the average gait period. In [5]
and [2], the gait period was also 30-40 frames. Here, note
that the gait period was calculated using the stability of
features (i.e., variance) without applying an object-model
(such as the angle of legs) based analysis used in the other
studies. Thus, the time-width,T , was determined as 30
frames or less. We did not assume that the gait periods of
all persons are 30 frames, but roughly set the upper bound
of T using data. The same is true of∆r.

As a result, the parameter range, i.e., the constraints of
the parameters in (4), is determined as

∆t/∆r = 1/2, ∆r ≤ 16, T ≤ 30. (6)

Discriminant spaces are constructed for every parameter
satisfying the constraints in (6), andk-NN decisions are
made in these spaces. These constraints are not so heuristic
and not so strong because they are truly derived from the
data (training set) by introducing a little knowledge about

human gaits. They make it possible to extract CHLAC fea-
tures more effectively for human gaits, and by combining
this knowledge with the decision rules in Eq. (3) and (5),
our scheme becomes much more efficient.

5.3. Results
The identification results compared with those of the meth-
ods in [5] [2] [4] [3] and [6] are shown inFig. 8. The identi-
fication rate of our scheme is also given inTable 1, column
(a). Our scheme outperformed the others in all probes. The
identification results of probes D to G are worse than those
of probes A to C for all methods. This is caused by the dif-
ference of walking surfaces: A to C are on grass, D to G
are on concrete, and Gallery is on grass. The surface may
affect gait periods, preprocessing, and recognition. Thus,
probes D to G, whose surfaces are different from that of
Gallery, are difficult and challenging problems. However,
our scheme performs much better than any other method
even in these probes because CHLAC is robust to the re-
sults of preprocessing, which is shown as follows.

Table 1 shows our method’s dependence on the qual-
ity of preprocessed data: noise in the background and in
human regions. The term “bbox” means that the human
region (bounding box) is extracted, and pixels in the other
regions are set to 0 (noiseless) after binarization, which con-
trols (suppresses) the amount of background noise. The
term “half-threshold” means binarization with half of the
value suggested by automatic thresholding, which controls
the amount of noise and thickness of human contours at the
same time. “Half-threshold” increases noise but makes hu-
man contours thicker, which is the opposite of “automatic-
threshold.” If we compare columns (b) and (c) inTable 1,
our method is slightly affected by background noise, but if
we compare columns (a) and (b), we see that using infor-
mation on human contours overcomes noise.

Here, we discuss the reason that our scheme is so effec-
tive. A preprocessed frame contains only dot patterns of a
human contour, and a frame sequence contains the manifold
formed by successive human contours (dot patterns) in three
dimensions(x, y, t). This manifold includes all information
about the person’s movement. It consists of global and lo-
cal characteristics that correspond to the motion speed and
gait, respectively. Cubic higher-orderlocal auto-correlation
extracts theselocal characteristics. CHLAC is not only de-
rived from the concept of correlation but is also closely con-
nected to gradients and curvatures (local characteristics) in
the particular case of binary (1 or 0) data. The gradient of
the manifold is approximated by the configuration of ev-
ery two neighbouring points, i.e., which direction the next
point is shifted in. In a similar way, the curvature is char-
acterized by the configuration of every three neighbouring
points. These configurations of two or three points are di-
rectly described by the first and second order mask patterns,
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Figure 8: The identification rate (%) for each probe using the following methods: CHLAC, UMD [5], USF [2], CMU [4],
MIT [3], and CAS [6] (these are the top-ranked results). See each paper for detailed identification rates, or [2] for collective
results. The details of our method (CHLAC) are given inTable 1, column (a).

Table 1: The identification rates (%) for various conditions
of our method. Details are in text.

bbox non-bbox
Probe half-threshold automatic-threshold

A 100 100 99
B 93 90 90
C 90 90 83
D 77 67 61
E 75 70 61
F 49 39 40
G 52 45 45

(a) (b) (c)

respectively: each mask pattern denotes the direction of the
gradient or the curvature (seeFig. 2). Furthermore, the gra-
dient and curvature can be regarded as the velocity and ac-
celeration of an individual point by considering the time-
axis and can also be understood as the characteristics of the
human shape in thex- and y-axes. In addition, CHLAC
roughly extracts global characteristics by an integral of lo-
cal characteristics. Thus, CHLAC can effectively extract
the characteristics of human gaits.

Note that CHLAC is applicable to three-dimensional ge-
ometrical(x, y, z) data and to any other form of three-way
data.

6. Conclusion
We have proposed a novel scheme for human identifica-
tion by gaits in image sequences. The scheme consists
of feature extraction using cubic higher-order local auto-
correlation (CHLAC), discriminant analysis, andk-NN de-
cisions. While traditional silhouette-based approaches re-

quire at least two steps of shape and time series anal-
ysis, CHLAC enables directly extracting spatio-temporal
features as the spatio-temporal auto-correlations of mo-
tion voxels in an image sequence. The range of param-
eters of spatial and temporal intervals and the time-width
in CHLAC was derived from data by considering the char-
acteristics of human gaits, and then utilized effectively for
optimal recognition. It is noted that the parameter range
was adaptively and analytically determined from data, not
by hand.

Our experiments using the NIST gait dataset showed that
our scheme is greatly superior to other methods, especially
on more challenging problems (probes D to G).

CHLAC is robust to noise in data and is applicable as
a segmentation-freemethod for various motion recognition
tasks other than gait recognition. Moreover, the geomet-
ric meaning of CHLAC, such as gradients and curvatures,
makes this method applicable to three-dimensional geomet-
rical analysis, such as object recognition.
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