ISSP International Summer School for Young Researchers on
"Quantum Transport in Mesoscopic Scale & Low Dimensions" Aug. 13 - 21, 2003. (My talk is given at 16 Aug. 2003.)

Electrical Conduction in Carbon Nanotubes

T. Nakanishi (AIST)

- 1. What is Carbon Nanotubes? Quasi-one dimensional system
- 2. Effective-Mass Scheme Electronic properties of carbon nanotubes
- 3. Impurity Scattering Ballistic transport (Absence of back-scattering for Slowly varying potential)
- 4. Point defects
- 5. Topological defect
- 6. Conclusion

Collaborators Tsuneya Ando (TIT) Masatsura Igami (NISTEP) Riichiro Saito (Tohoku Univ.)

Carbon Nanotubes

Single-wall

Quantum wire growing naturally

Electron micrographs of CN S. Iijima, Nature 354, 56 (1991)

> Length $\sim 1\mu m$ Diameter $2 \sim 30$ nm

Diameter $\sim 4 \text{ nm}$ 1D level spacing $\sim 0.8 \text{ eV}$

Graphene with periodic boundary condition

Effective-mass scheme

$$\begin{split} \mathbf{K} &= (2\pi/a)(1/3, 1/\sqrt{3}), \qquad \mathbf{K}' = (2\pi/a)(2/3, 0) \\ \psi_A(\mathbf{R}_A) &= \exp(i\mathbf{K}\cdot\mathbf{R}_A)F_A^K(\mathbf{R}_A) + e^{i\eta}\exp(i\mathbf{K}'\cdot\mathbf{R}_A)F_A^{K'}(\mathbf{R}_A), \\ \psi_B(\mathbf{R}_B) &= -\omega e^{i\eta}\exp(i\mathbf{K}\cdot\mathbf{R}_B)F_B^K(\mathbf{R}_B) + \exp(i\mathbf{K}'\cdot\mathbf{R}_B)F_B^{K'}(\mathbf{R}_B), \\ F_{A,B}^{K,K'}(\mathbf{R}_{A,B}): \text{ Envelope Functions} \\ &\omega = \exp(2\pi i/3) \\ \hline \\ \hline \\ \mathbf{tight-binding model} \\ \hline \\ -\gamma_0\sum_{l=1}^3\psi_B(\mathbf{R}_A - \vec{\tau}_l) &= \varepsilon\psi_A(\mathbf{R}_A), \\ -\gamma_0\sum_{l=1}^3\psi_A(\mathbf{R}_B + \vec{\tau}_l) &= \varepsilon\psi_B(\mathbf{R}_B). \end{split} \\ F_B^{K,K'}(\mathbf{R}_A - \vec{\tau}_l) &= F_B^{K,K'}(\mathbf{R}_A) - \vec{\tau}_l \cdot \frac{\partial}{\partial r_l}F_B^{K,K'}(\mathbf{R}_A) \\ F_A^{K,K'}(\mathbf{R}_B - \vec{\tau}_l) &= F_A^{K,K'}(\mathbf{R}_B) - \vec{\tau}_l \cdot \frac{\partial}{\partial r_l}F_A^{K,K'}(\mathbf{R}_B) \\ \hline \\ \mathbf{k}\cdot\mathbf{p} \text{ approximation} \end{split}$$

Effective–Mass Equation

$$\mathbf{k} \cdot \mathbf{p} \text{ Hamiltonian}$$

$$\mathbf{K} \text{ point} - \mathbf{K} \text{ point} - \mathbf{K} \text{ point} - \mathbf{K} (r)$$

$$\left(\begin{array}{c} 0 & \gamma(\hat{k}_x - i\hat{k}_y) \\ \gamma(\hat{k}_x + i\hat{k}_y) & 0 \end{array}\right) \left(\begin{array}{c} F_K^A \\ F_K^B \\ \end{array}\right) = \varepsilon \left(\begin{array}{c} F_K^A \\ F_K^B \\ \end{array}\right) = \varepsilon \left(\begin{array}{c} F_K^A \\ F_K^B \\ \end{array}\right) - \mathbf{K} \text{ point} - \mathbf{K} \text{ point}$$

Electronic States of CN's

Wave functions

$$\mathbf{F}_{K}(r) = \frac{1}{\sqrt{2}} \begin{pmatrix} b_{\nu}(n,k_{y}) \\ \pm 1 \end{pmatrix} \exp\left[i\kappa_{\nu}(n)x + ik_{y}y\right]$$
$$\mathbf{F}_{K'}(r) = \frac{1}{\sqrt{2}} \begin{pmatrix} b_{-\nu}(n,k_{y})^{*} \\ \pm 1 \end{pmatrix} \exp\left[i\kappa_{-\nu}(n)x + ik_{y}y\right]$$

$$b_{\nu}(n,k_y) = \frac{\kappa_{\nu}(n) - ik_y}{\sqrt{\kappa_{\nu}(n)^2 + k_y^2}}$$

Energy levels

$$\varepsilon_{\nu}^{\pm}(n) = \pm \gamma \sqrt{\kappa_{\nu}(n)^2 + k_y^2}$$

Discritized wave number in circumference direction

$$k_x = \kappa_\nu(n) = \frac{2\pi}{L}(n - \nu/3)$$

Ajiki and Ando, J. Phys. Soc. Jpn., 62, 1255 (1993)

$$n_a + n_b = 3N + \nu$$

 $\nu = 0 \quad \text{metallic CN}$ Linear dispersion $\varepsilon_0^{\pm}(0) = \pm \gamma |k_y|$ $\nu = \pm 1 \quad \text{semiconducting CN}$ Band gap $E_g = 2\gamma |\kappa_{\pm 1}(0)| = \frac{4\pi\gamma}{3L}$

M. S. Dresselhaus, G. Dresselhaus and R. Saito, Sol. State Com., 84, 201 (1992).H. Ajiki and T. Ando, J. Phys. Soc. Jpn.,62,1255 (1993).

Effective–Potential

T. Ando and T. Nakanishi, J. Phys. Soc. Jpn. 67,1704 (1998)

 $(n_a, n_b) = (2, 1)m$ armchair CN

Lowest Born Approximation

$$\bigcirc \text{ Inter-valley Scattering}$$

$$V_{K\pm K'+} = \frac{1}{2AL} \int d\mathbf{r} \left(\pm i \ 1\right) \begin{pmatrix} e^{i\eta} u'_A(\mathbf{r}) & 0\\ 0 & -\omega^{-1} e^{-i\eta} u'_B(\mathbf{r}) \end{pmatrix} \begin{pmatrix} i\\ 1 \end{pmatrix}$$

$$= \frac{1}{2AL} \int d\mathbf{r} \left\{ \mp e^{i\eta} u'_A(\mathbf{r}) - \omega^{-1} e^{-i\eta} u'_B(\mathbf{r}) \right\}$$

$$= \frac{1}{2AL} (\mp u'_A e^{i\eta} - \omega^{-1} e^{-i\eta} u'_B) = V^*_{K'\pm K+}$$

$$\bigcirc \text{ Intra-valley Scattering}$$

$$V_{K\pm K+} = \frac{1}{2AL} \int d\mathbf{r} \left(\pm i \ 1\right) \begin{pmatrix} u_A(\mathbf{r}) & 0\\ 0 & u_B(\mathbf{r}) \end{pmatrix} \begin{pmatrix} -i\\ 1 \end{pmatrix}$$

$$= \frac{1}{2AL} \int d\mathbf{r} \left\{ \pm u_A(\mathbf{r}) + u_B(\mathbf{r}) \right\}$$

$$= \frac{1}{2AL} (\pm u_A + u_B) = V_{K'\pm K'+}$$

Absence of back-scattering for slowly varying potential $V_{K-K'+} = V_{K'-K+}^* = 0$, $V_{K-K+} = V_{K'-K'+} \propto u_B - u_A = 0$

Magnetic Field

Solutions for
$$V = 0, |\varepsilon| < \varepsilon(1)$$

Gauge: $\mathbf{A} = (0, \frac{LH}{2\pi} \sin \frac{2\pi x}{L})$
 $\mathbf{F}_{sk}^{K} = \begin{pmatrix} F_{A}^{K}(\mathbf{r}) \\ F_{B}^{K}(\mathbf{r}) \end{pmatrix} = \frac{1}{\sqrt{2A}} \begin{pmatrix} -is(k/|k|)F_{-}(x) \\ F_{+}(x) \end{pmatrix} \exp(iky),$
 $\mathbf{F}_{sk}^{K'} = \begin{pmatrix} F_{A}^{K'}(\mathbf{r}) \\ F_{B}^{K'}(\mathbf{r}) \end{pmatrix} = \frac{1}{\sqrt{2A}} \begin{pmatrix} +is(k/|k|)F_{+}(x) \\ F_{-}(x) \end{pmatrix} \exp(iky).$
 $F_{\pm}(x) = \frac{1}{\sqrt{LI_{0}(\alpha)}} \exp\left[\pm \frac{1}{2}\alpha \cos \frac{2\pi x}{L}\right]$
 $\alpha = 2\left(\frac{L}{2\pi l}\right)^{2}$: Magnetic Field
 $l = \sqrt{c\hbar/eH}$: Magnetic Length
 $I_{0}(z)$: Modified Bessel function of the
first kind
 $I_{0}(z) = \int_{0}^{\pi} \frac{d\theta}{\pi} \exp(z \cos \theta)$

s = +1 conduction band s = -1 valence band

T. Ando and T. Seri, J. Phys. Soc.Jpn. 66,3558 (1997)

Absence of Back Scattering $(d \gg a)$

$$T = V + V \frac{1}{\varepsilon - \mathcal{H}_0} V + V \frac{1}{\varepsilon - \mathcal{H}_0} V \frac{1}{\varepsilon - \mathcal{H}_0} V + \cdots$$

$$\mathcal{H}_0 = \gamma \left(\begin{array}{cc} 0 & \hat{k}_x - i\hat{k}_y \\ \hat{k}_x + i\hat{k}_y & 0 \end{array} \right)$$

Long range $V = \begin{pmatrix} V(\mathbf{r}) \\ 0 \end{pmatrix}$

 $\varepsilon_s(\mathbf{k}) = s\gamma|\mathbf{k}|,$

$$\varepsilon_s(-\mathbf{k}) = \varepsilon_s(\mathbf{k})$$

$$\mathbf{F}_{s\mathbf{k}} = \exp[i\phi_{s}(\mathbf{k})] R^{-1}[\theta(\mathbf{k})] |s),$$

$$\mathbf{F}_{s\mathbf{k}} = \exp\left[\frac{V(\mathbf{r}) \quad 0}{0 \quad V(\mathbf{r})}\right]$$

$$\mathbf{F}_{s\mathbf{k}}(\mathbf{r}) = \frac{1}{\sqrt{LA}} \exp(i\mathbf{k} \cdot \mathbf{r}) \mathbf{F}_{s\mathbf{k}},$$

$$\varepsilon_{s}(\mathbf{k}) = s\gamma |\mathbf{k}|,$$

$$s = +1 \quad \text{conduction band}$$

$$s = -1 \quad \text{valence band}$$

$$\mathbf{F}_{s\mathbf{k}} = \exp\left[i\phi_{s}(\mathbf{k})\right] R^{-1}[\theta(\mathbf{k})] |s),$$

$$\mathbf{F}_{s\mathbf{k}} = \exp\left[i\phi_{s}(\mathbf{k})\right] R^{-1}[\theta(\mathbf{k})] |s),$$

$$\mathbf{F}_{s\mathbf{k}} = \exp\left[i\phi_{s}(\mathbf{k})\right] R^{-1}[\theta(\mathbf{k})] |s),$$

$$\mathbf{F}_{s\mathbf{k}} = i\mathbf{k} \left[e^{i\theta(\mathbf{k})} \mathbf{s} - e^{i\mathbf{k}}\right]$$

$$\mathbf{F}_{s\mathbf{k}} = \exp\left[i\phi_{s}(\mathbf{k})\right] R^{-1}[\theta(\mathbf{k})] |s),$$

$$\mathbf{F}_{s\mathbf{k}} = i\mathbf{k} \left[e^{i\theta(\mathbf{k})} \mathbf{s} - e^{i\mathbf{k}}\right]$$

$$\mathbf{F}_{s\mathbf{k}} = e^{i\mathbf{k}} \left[i\phi_{s}(\mathbf{k})\right] R^{-1}[\theta(\mathbf{k})] |s),$$

Berry's Phase and Absence of Back Scattering

T. Ando, T. Nakanishi, and R. Saito, J. Phys. Soc. Jpn. 67,2857 (1998)

Experiments 0 Voltage Drop Good Contact $2G_0 = 4e^2/h$ (a) Almost perfect transmission 2.0 **(a)** 1.5K Conductance (G₀) 100 mV 1.9 1.8 1.6 -14 -12 -10 -8 -6 V_g(V) 200 nm VAC

Bachtold et~al. (Basel) PRL ${\bf 84}$ (2000) 6082

J. Kong et al. (Stanford) PRL 87 (2001) 106801

P. L. McEuen *et al.* (Berkeley) PRL **83** (1999) 5098

Impurity Potential in Carbon Nanotubes

- 1. Metallic CN and Semiconducting CN Linear dispersion
- 2. Absence of Back Scattering (Long-Range Potential) Ballistic transport, Huge Conductivity Berry's Phase, Huge Positive Magnetoresistance

What is impurity? Long-Range: Nano Particle, Metallic Particle, etc.,

Short-Range: Lattice Defects

Tight-Binding ModelT. Nakanishi, and T. Ando, J. Phys. Soc. Jpn. 68,561 (1999)OLandauer's Formular $G = \frac{2e^2}{h} \sum_{m,n} |t_{mn}|^2$, t_{mn} : Transmission Coefficients $\{m, n\} = \{\mathbf{K}, \mathbf{K}\}, \{\mathbf{K}', \mathbf{K}\},$ r_{mn} : Reflection Coefficients $\{m, n\} = \{\mathbf{K}, \mathbf{K}\}, \{\mathbf{K}', \mathbf{K}\},$ Recursive Green's Function TechniqueT. Ando: PRB42, 5626 (1990).

Short Range Potential $(d/a \rightarrow 0)$

T. Ando, T. Nakanishi, and R. Saito, Microelectronic Engineering, 47 (1999) 421

- 1. Vacancy I: three sublattice Kekulé pattern Standing Wave (K and K' point)
- 2. Vacancy IV: Large amplitude at B sites no component on A sites (left-hand side)
- 3. Vacancy II: not disturbed by the vacancy

M. Igami, T. Nakanishi, and T. Ando, J. Phys. Soc. Jpn. 68 (1999) 3146

 1.6×10^5 different CN's with a

 N_A, N_B : number of removed A and B sublattice sites

vacancy

$ N_A - N_B $	1	The Others (≥ 2)	0
Conductance	$e^2/\pi\hbar$	0	$\sim 2e^2/\pi\hbar$

Defects in Carbon Nanotubes

H. J. Choi, et al. PRL 84, 2917 (2000)

 $ab\ initio\ {\bf study}\ {\bf on}\ {\bf transport}\ {\bf in}\ {\bf CN}\ {\bf with}\ {\bf B}\ {\bf and}\ {\bf N}$ Point vacancy

R. Tamura, et al. PRB 56 (1997) 1404; 49 (1994) 7697

Carbon Nanotube Junction

S. Iijima, T. Ichihashi and Y. Ando, Nature (London), **356**, 776 (1992).

R5 (A): five-membered ring

a

R7 (B): seven-membered ring

Conductance of CN Junctions (H = 0)

R. Tamura and M. Tsukada, PRB55, 4991 (1997).

CN Junction with Magnetic Field

T. Nakanishi and T. Ando, J. Phys. Soc. Jpn., 66, 2973 (1997)

a

Conclusion

Interesting Electronic Properties of Carbon nanotubes

- 1. Long quasi-one dimensional system
- 2. Metallic CN and Semiconducting CN
- 3. Linear dispersion
- 4. Neutrinos on cylinder surface

Collaborators Tsuneya Ando (ISSP→TIT) Masatsura Igami (NISTEP) Riichiro Saito (Tohoku Univ.)

Quantum transport in Carbon Nanotubes

- 1. Absence of Back Scattering for Long-Range Potential Ballistic transport, Huge conductivity, Quantized conductance, Berry's phase, Huge positive magnetoresistance
- 2. Lattice Vacancy

Conductance quantization, Donor and accepter

3. Carbon Nanotube Junctions