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Abstract. The origin of strong valley polarization of electron wave transmitted through
boundary between mono- and bi-layer graphenes can be ascribed to an evanescent wave in
the bilayer graphene. The valley polarization is further enhanced across a ribbon-like region
formed by partially overlapping of two monolayer graphenes.

Graphene consists of a two-dimensional hexagonal crystal of carbon atoms, in which electron
dynamics is governed by the Dirac equation [1]. The electronic states have various intriguing
features. In fact, the wave functions are characterized by spinor whose orientation is inextricably
linked to the direction of the electron momentum in a different manner between monolayer
and bilayer graphenes [2, 3, 4]. The purpose of this paper is to elucidate the origin of valley
polarization [8] induced in transmission probability through the boundary between monolayer
and bilayer graphenes.

In graphenes, states associated with K and K’ points or valleys are degenerate. In a graphene
sheet with a finite width, localized edge states are formed, when the boundary is in a certain
specific direction under appropriate conditions, and only a single right- and left-going wave can
carry current at each of the K and K’ points [5]. A way to make valley filtering has been proposed
with the explicit use of this fact [6]. Edge states in bilayer graphene were also studied [7].

We consider a straight boundary (with zigzag form) of monolayer and bilayer graphenes
arranged in the AB (Bernal) stacking as illustrated in Fig. 1 and we choose the y axis along the
boundary. Electronic states are described in an effective-mass scheme. In monolayer graphene,
a unit cell contains two carbon atoms denoted by A and B, and for states in the vicinity of the
K point, the Schrödinger equation and the corresponding wave function are given by

γ(σ⃗ · k̂)FK(r) = εFK(r), FK(r) =

(
FK
A (r)

FK
B (r)

)
=

(
se−iθ

1

)
eik·r, (1)

where γ is a band parameter, k̂ = (k̂x, k̂y) = −i∇⃗ a wave vector operator, (kx, ky) =
k(cos θ, sin θ) a wave vector, s = +1 and −1 for the conduction and valence band, respectively,
σx and σy the Pauli matrices, and FK

A and FK
B slowly-varying envelope functions describing

amplitudes at A and B sites, respectively [1].
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In a bilayer graphene, the bottom layer is denoted as 1 and the top layer as 2. A unit cell
contains two carbon atoms denoted by A1 and B1 in layer 1, and A2 and B2 in layer 2. For the
inter-layer coupling, we include coupling γ1 between vertically neighboring atoms B1 and A2.
The Schrödinger equation becomes(

γ(σ⃗ · k̂) 1
2γ1σ−

1
2γ1σ+ γ(σ⃗ · k̂)

)
FK(r) = εFK(r), (2)

where σ± = σx ± iσy and FK(r) is a four component vector consisting of FK
A1, F

K
B1, F

K
A2, and

FK
B2.
In the energy region close to the Dirac point γk/γ1 → 0, wave functions are mainly described

by two major components on A1 and B2, and other minor components are small due to the
interlayer couplings and can be eliminated. In addition to a traveling mode denoted by F̃K ,
we have evanescent modes GK decaying or growing exponentially in the positive x direction
in low energy region |ε| < γ1. The major components of the traveling mode and the decaying
evanescent mode are given by(

F̃K
A1

F̃K
B2

)
=

(
se−2iθ

1

)
eik·r,

(
GK

A1
GK

B2

)
=

(
sγ(κx − ky)/γ1
γ(κx + ky)/γ1

)
e−κxx+ikyy, (3)

with κx =
√
|ε|(γ1 − |ε|)/γ2 + k2y. For the traveling mode, the wave function for ky < 0 is

complex conjugate of that for ky > 0. For the evanescent mode, however, the absolute value of
the amplitude is quite asymmetric between positive and negative ky. This asymmetry can be
seen by ratio GK

A1/G
K
B2 shown in the upper panel in Fig. 2.

For the K’ point the Schrödinger equations are obtained by replacing k̂y with −k̂y and
therefore the wave functions by replacing ky with −ky in both monolayer and bilayer graphenes.

Therefore, the asymmetry of GK′
A1/G

K′
B2 for the K’ point is opposite to that of the K point. This

asymmetry is the origin of valley polarization of transmitted wave, as will be shown below.
We can derive the boundary condition for wave functions FK and FK′

, using their relation
to the amplitude of the wave function in a tight-binding model [1]. The results for the boundary
shown in Fig. 1 (a) are [8]

(i) F υ
A1(0, y) = F υ

A(0, y); (ii) F υ
B1(0, y) = F υ

B(0, y); (iii) F υ
B2(0, y) = 0, (4)

where υ = K, K ′. These conditions do not cause mixing between the K and K’ points, leading
to the absence of inter-valley transmission through the boundary.

We consider transmission of electron wave injected from the K valley in the monolayer side at
the Fermi level in an oblique direction with wave vector k in the case that electron concentration
is the same in the monolayer and bilayer graphenes. The transmission of the electron wave
through the boundary can explicitly be calculated by considering right- and left-going traveling
modes in the monolayer graphene and a right-going traveling mode and an evanescent mode
decaying in the positive x direction in the bilayer graphene.
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Figure 1. Atomic structure near boundaries
between monolayer and bilayer graphene.
Red (thick) and green (thin) lines represent
the top layer with A2 and B2 sites,
and bottom layer with A1 and B1 sites,
respectively.



aaαa

0

0

2

2

4

4

6

6

 

 

GA1/GB2

G
A

1/
G

B
2

0

0

1

1

2

2

|α|2

|α
|2

aaαa

-1.0

-1.0

-0.5

-0.5

0.0

0.0

0.5

0.5

1.0

1.0

0.0

0.0

0.5

0.5

1.0

1.0

Angle (units of π/2)

Angle (units of π/2)

Transmission Probability

Tr
an

sm
is

si
on

 P
ro

ba
bi

lit
y

2

2

1.0

1.0

0.5

0.5

0.2

0.2

0.1

0.1

kγ/γ1

kγ/γ1

Figure 2. Upper panel: Ratio of GK
A1/G

K
B2

of the evanescent wave and |α|2 in the
limit k → 0. Lower panel: Calculated
transmission probability for several charge
densities specified by k in the monolayer
graphene. The vertical dotted line shows θ0
in the limit k → 0.
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Figure 3. Calculated wave function
in bilayer graphene near a boundary for
incident angle θ = −π/4, 0, and +π/4.
The amplitude is normalized by that of the
incident wave.

In the low energy region γk/γ1 → 0, an approximate boundary condition is straightforwardly
written down for wave functions in monolayer graphene and major components in bilayer
graphene [8]. First, we note that F v

B(0, y) vanishes, because of the condition (ii) of (4) and
F v
B1 becomes negligible for ε → 0. With the use of wavefunctions (1) for incident and reflected

waves, we immediately see that the reflection coefficient becomes rK = −1 and therefore
F v
A(0, y) = 2eikyy cos θ for k → 0. Then, the remaining conditions (i) and (iii) are written

as
αF̃ v

A1(0, y) + βGv
A1(0, y) = F v

A(0, y), αF̃ v
B2(0, y) + βGv

B2(0, y) = 0. (5)

Then, we immediately have

|α|2 = 4 cos2 θ

1 + 2(GA1/GB2) cos (2θ) + (GA1/GB2)2
, (6)

which is also shown in the upper panel in Fig. 2. The amplitude is suppressed for θ < 0 and
enhanced for θ > 0, corresponding to the asymmetry of GK

A1/G
K
B2. Apart from this asymmetry,

the wave function has considerable amplitude in the bilayer except at θ = ±π/2 in spite of the
fact rK = −1.

The transmission probability TK(θ) is obtained by multiplying |α|2 by the ratio of the group
velocity. Then, TK(θ) vanishes for k → 0 and increases in proportion to k, because the velocity
is proportional to k in the bilayer side but constant in monolayer side. It takes a maximum
at θ = sθ0, with θ0 = sin−1(1/

√
3) ≈ 0.196π. For the K’ point, TK′ is obtained by replacing

θ with −θ. The opposite asymmetry between the K and K’ points gives rise to strong valley
polarization across the interface of monolayer and bilayer graphenes.



The lower panel in Fig. 2 shows an example of calculated transmission probability as a
function of incident angle θ. The electron density is specified by k corresponding to the Fermi
energy in the monolayer and the results in the low-density regime γk/γ1 ≤

√
2 are shown. At

the bottom of the first excited conduction band, i.e., kγ/γ1 =
√
2, the transmission completely

vanishes in the region θ ≤ 0. This is closely related to the presence of a perfectly reflecting
state, which emerges only for the zigzag boundary [8]. For sufficiently small kγ/γ1, the result
agrees with approximate TK(θ) obtained above.

Figure 3 shows some examples of the wave function on A1 (dotted lines) and B2 (solid lines)
sites in the bilayer graphene as a function of position along incident direction θ. At the boundary
chosen as the origin, FB2 vanishes and |FA1| =

√
2 and 0 for θ = ±π/4 and 0, respectively, in the

low energy region γk/γ1 ≪ 1. The wave functions consist of traveling and evanescent waves, and
the boundary conditions are satisfied by the presence of considerable amplitude of the evanescent
mode. In fact, the spatially-varying amplitude in the bilayer graphene mostly consists of the
evanescent mode. The constant amplitude at the position away from the boundary corresponds
to amplitude |α| of the transmitted wave. It is small for θ = −π/4 than that for θ = +π/4 as
discussed above.

Next, we consider an interface shown in Fig. 1 (b), i.e., opposite to that shown in Fig. 1 (a).
The boundary conditions become

F υ
A2(0, y) = F υ

A(0, y); F υ
B2(0, y) = F υ

B(0, y); F υ
A1(0, y) = 0, (7)

giving TK(θ) same as that for interface (a) for the transmission probability from the bilayer into
the monolayer with incident angle θ. The situation is the same for boundaries with other three
kinds of atomic structure of zigzag or armchair considered previously [8]. This may be derived
with the use of symmetry relation between (a) and (b), although not discussed here.

The valley polarization of waves transmitted through a single boundary is increased when
waves go through a ribbon-shaped bilayer region formed by partially overlapping monolayer
graphenes, i.e., when (a) and (b) in Fig. 1 are connected with each other, In fact, the total
transmission probability through the bilayer ribbon becomes ∝ TK(θ)2, when interference effects
are neglected [9]. This is quite in contrast to the case that a ribbon-shaped monolayer graphene
is placed on top of a monolayer graphene, where the valley polarization nearly cancels out after
transmission through two boundaries [8].

In conclusion, the significant valley polarization of transmitted waves through a boundary
between monolayer and bilayer graphenes is ascribed to the evanescent wave in the bilayer
graphene possessing strong asymmetry between the K and K’ points. Further, the valley
polarization can be accumulated in sequence of appropriate types of boundaries.
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