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Abstract. Thermoelectric power of a quantum dot is studied in a coherent region. Pronounced peaks are shown in the
thermoelectric power, corresponding to a transmission zero in the conductance. Phase information of wavefunction in the
quantum dot can be extracted from peak-and-dip structures of the thermoelectric power without the use of a magnetic field.
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A series of systematic experiments for a quantum dot
(QD) embedded in an Aharonov-Bohm (AB) ring [1, 2]
has shown that the phase of AB oscillations changes
by π across a resonance peak as expected by coherent
transmission of electrons through the QD. A surprising
and unexpected finding is that the phase becomes the
same between adjacent peaks by the presence of a phase
lapse by π between those peaks. Recent observation
of Fano-type asymmetric conductance peaks has also
revealed that the adjacent peaks tend to have the same
phase [3, 4]. In order to understand the phase lapse,
the existence of ‘zero transmission’ coefficient has been
pointed out theoretically [5].

In this paper, we show that measurement of a ther-
moelectric power (TEP) is suitable for detection of zero
transmission in coherent transport through a QD. We also
show that, by observation of zero transmission points, the
phase information of the wavefunction in the QD can be
obtained without the use of a magnetic field.

The conductance and TEP for quasi-one-dimensional
systems is obtained from the Landauer formula as
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e
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∫

dεT (ε)

[

−∂ f
∂ε

]

, (1)
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e
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with transmission probability T (ε), the Fermi distribu-
tion function f , and the Fermi energy µ in leads. The
Sommerfeld expansion with taking up to the first order
to T gives the Mott formula
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∂ µ
. (3)

From this expression, we can expect that transmission
zeros induce a singular behavior in energy dependences

of TEP due to suppression of conductance in the denom-
inator.

We first consider transmission through a quantum dot
by the Hamiltonian

H =∑εk,αC†
k,αCk,α+∑

j
ε jd

†
j d j+ ∑

k,α, j

[Vα, jC
†
k,α d j+H.c.],

(4)
where the operators ck,α refer to electronic states in
the left and right leads (α = L,R) and the operators
d j describe QD levels. Following to the derivation by
Silva et al. [6], one obtains the transmission coeffi-
cient and calculates TEP as well as conductance for a
non-interacting electron model [7]. Transmission prob-
abilities exhibit resonance peaks with the conventional
Breit-Wigner line-shape with a width Γ. Transmission
probability vanishes (transmission zero) with the phase
lapse between adjacent transmission peaks j and j +
1 for the case that the relative coupling sign, σ ≡
sign(VL, jVR, jVL, j+1VR, j+1), equals +1, while no phase
lapse occurs between them for σ =−1. Corresponding
to the transmission zeros, we have shown a significant
enhancement of TEP and then jump from positive to neg-
ative. The peak and the dip of the TEP around the trans-
mission zero are±(π/

√
3)(kB/e)∼±1.81(kB/e) for tem-

peratures lower than a level spacing ∆. The prominent
structure shows clearly the transmission zero, while it is
hard to see it in the tail of conductance. For high temper-
atures kBT � Γ we have observed a sawtooth shape of
TEP with amplitude of ∼ (kB/e)(∆/2kBT ) as predicted
in a sequential tunneling regime [8].

Next we consider another example of the zero trans-
mission. When the double-slit condition is valid, the
transmission through an AB ring with a QD on one arm
and a reference path on the other is given by t = t0 + td,
where t0 is a transmission coefficient through a contin-
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FIGURE 1. TEP and conductance for the Fano-type trans-
mission with q=10 (solid line), 20 (dotted line) and 50 (dashed
line) in low temperature kBT =0.2Γ.

uum state of the reference path, essentially independent
of energy [4]. The transmission td =α/(ε/Γ+ i) through
a QD shows the Breit-Wigner line-shape, where the peak
energy is chosen as the origin of ε . Total transmission
probability is given by

T (ε)= |t|2 = |t0|2 |ε/Γ+q|2
(ε/Γ)2+1

, (5)

with a Fano parameter q = α/t0+ i that relates on the
phase of QD states through the constant α . Note that, we
can chose real q in the presence of time-reversal symme-
try. Then conductance shows the asymmetric Fano line
shape. For large q = 10,20 and 50, however, calculated
conductance with the normalization |t0|2 = 1/(|q|2+1)
shown in Fig. 1 is almost symmetric and difficult to dis-
tinguish. Actually the Fano line shape converges in sym-
metric Breit-Wigner line shape in the limit of infinite q.
The Fano parameter q can be observed from the trans-
mission zero, where transmission probability vanishes at
ε =−qΓ due to the interference of Fano effects, although
it is not clearly seen in the tail of conductance. On the
other hand, calculated TEP’s shown in Fig. 1 exhibit a
significant enhancement at ε =−qΓ, and then jump from
positive to negative. At ε =0, corresponding to the peak
of conductance, TEP shows an additional small struc-
ture. With the increase of temperature, thermal averaging
smears these structures for kBT >Γ, as shown in Fig. 2.

Transmission zeros are expected to be sensitive to de-
phasing in the QD. For TEP of QD’s with short dephas-
ing time, the picture of an inelastic co-tunneling will be-
come valid by suppression of higher-oder hopping pro-
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FIGURE 2. Temperature dependence of TEP for the Fano-
type transmission with q = 10.

cesses, and then pronounced peaks and dips of TEP will
disappear [9].

In summary, we have shown pronounced structures in
the thermoelectric power that gives us phase information
of wavefunction in the quantum dot. Because of its sim-
pleness, observation of zero transmission by TEP’s has
advantages for detection of phase information in com-
parison with conductance measurement of the Aharonov-
Bohm ring with a quantum dot in the magnetic field. Fur-
thermore the structure in TEP’s is clearly observed even
when the transmission zero is well separated from reso-
nance peaks. This can not be revealed from the conduc-
tance, which may be too small to accurately measure in
the tail of these peaks.
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