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The analysis of wave functions shows that states in a quantum dot embedded in an Aharonov-Bohm ring are
classified into two groups, a large number of weekly coupled states and a small number of strongly coupled states.
Coexistence of these states leads to a phase persistence in the Fano and Aharonov-Bohm effects, which has been

observed in experiments.
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1. INTRODUCTION

In an Aharonov-Bohm (AB) ring containing a quan-
tum dot, a series of consecutive conductance peaks with a
Fano type interference with similar asymmetry and phase
of an AB oscillation have been observed.’>?) A Fano-type
lineshape was reported also in a weakly coupled single
quantum dot.>* The purpose of this work is to the-
oretically explore Fano resonances in a realistic model
through the analysis of wavefunctions in the quantum
dot for the purpose of understanding some of interesting
experimental findings.

In earlier experiments, AB oscillations were observed
in an AB ring with a quantum dot and the phase of the
oscillation was shown to change by 7 across a resonance
peak.”®) A surprising and unexpected finding is that the
phase becomes the same between adjacent peaks, show-
ing that it has to change by another m between those
peaks. Since then, various theoretical studies have been
reported on the phase of the AB oscillation and the Fano
effect within one-dimensional (1D) models in which the
AB ring consists of a chain.? 18)

It was suggested, for example, that because the Friedel
sum rule leading to a 7w change across a peak is still valid
in the presence of a Fano-type interference, the extra
change between neighboring peaks is likely to be due to
hidden electron charging events that do not cause con-
ductance peaks.!®) The possible disappearance of some
peaks due to an interference inside the AB ring!!) and
the vanishing of the transmission coefficient occurring in
a 1D model due to the Fano-type interference!® were
suggested as possible candidates for the mechanism giv-
ing rise to such an extra phase change. A mechanism
giving rise to the extra m phase-change between neigh-
boring peaks in a near chaotic dot is provided,'® and
an effects of lossy channels is discussed in the Aharonov-
Bohm ring.10)

Since the more recent observation of a clear Fano ef-
fect,) various calculations were made further, including
those in a 1D model!”18) and in a realistic model.'® In
particular, the phase persistence of AB and Fano effects
has been qualitatively reproduced in the latter calcula-
tion.'®) In the model, the AB ring contains several con-
ducting channels and a quantum dot with dimensions
comparable to those in the experiments. The coexistence
of a small number of strongly coupled states and many

weakly coupled states in the dot with finite width has
been suggested to be responsible for the phase persis-
tence.

In this work, we calculate wave functions in the quan-
tum dot with the use of the same model and confirm this
suggestion. The organization of the paper is as follows:
After introducing the realistic model in Sec. II, numerical
results are shown in Sec. III. Discussion on the relation
to experiments is given in Sec. IV and a summary and
conclusion are given in Sec. V.

2. Model and Method

We use a model of the AB ring with radius a, straight
up and down arms with length L, a quantum dot with
length Lp in the down arm separated by wall barriers
with length Ly, and a control gate with length Ly as
shown in Fig. 1. The strength of a magnetic field applied
perpendicular to the AB ring is characterized by ¢/¢o,
where ¢ is magnetic flux passing through the stadium
with area aL + mwa?/4 and ¢q is the magnetic flux quan-
tum given by ¢g = ch/e.

To construct the model potential, we first consider a
hexagon defined by six vertices at r = +a/2, +b/2, and
+(a—b)/2 with a = (v/3/2,1/2)a and b = (0,1)a and
define an antidot potential which vanishes outside the
hexagon and is given by

Vantidot (I‘)

Ta-r wb-r w(a—b)-ry\4/3
:u(]‘cos( 5 )cos( 5 )cos( 5 )‘ ,
a a a

inside the hexagon. This potential was used in previous
studies on transport properties of antidot lattices.2?)
We consider next the rectangular region near the top-
right corner as shown in Fig. 1 and define the originr = 0
at the bottom-left corner of this region. The rectangle
is divided into four different regions denoted by I, II,
ITI, and IV by dotted lines. The region I is defined by
y < x/\/§ and y < —v/3z+a, the region II is defined
by y < x/\/g and y > —v/3x+a, and the region IV is
defined by \/z2 + y2 > 2a. The potential is defined by
v(r) = Vantidot(r) in I, v(r) = Vantidot(r—a) in I, and
v(r) = ug in region IV. In region III the potential along
the line y = x/v/3 of the regions I and II is rotated
around the origin. The potential in the up arm is the
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Fig. 1. Equi-potential lines of the model AB ring with a dot,

plotted with energy interval of Fermi energy Er. The thick lines
correspond to the Fermi energy. In this example Vy/Ep = 0,
Ve/Er = 0.95, and W/Er = 1.03. The rectangular region near
the top-right corner is separated into four regions I, II, III, and
IV. The rectangular region denoted by dashed lines covering the
dot in the lower arm denoted is used for estimating the width of
the wave function in the dot.

same as that along z = 0 of the region III. The potential
in the rectangular regions near other corners and in the
down arm are defined in a symmetric way. Two ideal
leads with a uniform cross section same as that in the
up and down arms are continuously connected to the left
and right entrances of the AB ring.

The wall potential separating the dot from the arm is
defined as

V(r) = W cos (ﬂ>, (2)

Lw

for —Ly /2<x< Lw/2 and —a < y < 0, where an origin
of = is chosen at the center of each wall. The potential
of the control gate is given by the same expression for
—Lw/2 <x < Lw/2 and 0 < y < a except that the
height W is replaced by V.. They are superposed on the
potential of the AB ring. A gate potential Vj is uniformly
applied in the dot in the region of —a < y < 0 with length
Lp.

For a realistic quantum dot embedded in the AB
ring, the adiabatic conditions are nearly satisfied, i.e.,
|dD(x)/dz| < 1 and |D(x)d®>D(z)/dz?| < 1 with D(z)
being the width of the wave-guide at the Fermi energy
Ep. Therefore, we choose Ly /Ar = 5 with Fermi wave
length Ap. Calculations of transmission and reflection
probabilities for the single wall with height W< FER re-
veal that essentially electrons in the lowest 1D subband
with the highest velocity in the incident direction can
get over the wall and there is very little mixing between
different 1D subbands or channels. In order to simulate
actual situations, further, we introduce a weak random
potential in the dot. The amount of the disorder corre-
sponds to a mean free path of 10xAr or level broadening
of 0.015 x Er in the two-dimensional system.

We use some fixed parameters in numerical calcula-
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tions, W/Erp = 1.03, the ring radius a/Ar = 6, the
arm length L/Ar = 20.8, and the width of arms and
leads 1.8 x Ap at the Fermi energy, which results in
uo/Er = 5.44. In comparison with the geometry of the
actual experiments for which Ap =40 nm," the system
size is roughly half except for Lp of a comparable length.
There are three sets of the traveling modes in the arms
and leads, which can describe the actual feature of the
experiment in which there are several channels. Further,
we shall consider the magnetic flux around ¢/¢g = 80
corresponding to 1.3 T, which is typical magnetic field
in the experiments.

A self-consistent calculation in quantum wires fabri-
cated at GaAs/AlGaAs heterostructures suggests that
the potential is nearly parabolic for a wire with small
width, but consists of a flat central region and a parabolic
increase near the edge for a wider wire.2!>22) In the above
the exponent 4/3 in Vaptidos (r) has been chosen in such a
way that the total exponent of cosine function becomes
4, for which the potential gradient at the Fermi energy
corresponds to that of such a realistic confinement po-
tential. The model is essentially same as that described
in a previous study apart from the presence of the dot
and the control gate.20)

The conductance is calculated by the use of the Lan-
dauer formula

2
_ £ 12
G—%Z“Jﬂa (3)
Ji

where t;; is the transmission coefficient for a wave in-
coming from the j’th channel in the left lead and out-
going to the jth channel in the right.2?) The summation
is taken over all traveling modes in the leads. To calculate
tj5:, we use recursive Green’s function technique on the
lattice model with a lattice constant a’.2% For explicit
numerical calculations we choose Ap/a’ = 7.

3. Fano Peaks and Dot States

We consider the case where the up arm is nearly
pinched off by the control gate. In this case the situa-
tion is close to that of so-called double slit experiments,
because the transmission probability of an electron pass-
ing through the up arm is small and not so much different
from that through the down arm and therefore multiple
scattering in the AB ring is less important.

Figure 2 (a) shows an example of the calculated con-
ductance as a function of the gate potential for the con-
trol gate V./Er = 1 and ¢/¢¢ = 80. Many peaks appear
in the conductance, but they can be classified into two
groups, small numbers of wide peaks with large broad-
ening and large numbers of narrow peaks. In this ex-
ample, the wide peaks are at V,;/Er = —0.18, —0.06,
0.07, and 0.18 indicated by arrows in the figure. All res-
onance peaks in the conductance are asymmetric with
a dip in the right or left side. This asymmetry is due
to interference of the waves passing through the up arm
and transmitted resonantly through the dot in the down
arm, i.e., the so-called Fano interference.

In order to analyze such interference effects including
the AB oscillation, we first consider transmission coeffi-
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Fig. 2. (a) Fano resonances in the calculated conductance at both
wide and narrow peaks for flux ¢/¢o = 80. The arrows indicate
the position of the wide peaks when the up arm is pinched off.
The region for positive and negative values of the asymmetry
parameter ¢’ are also shown by (+) and (—), respectively. (b)
A width of the wavefunction in the dashed rectangle in Fig. 1
as a function of energy. The vertical arrows indicate the energies
corresponding to the wide peaks in (a) and the inverted triangles
show energies for which the actual wave function is shown in Fig.
3.
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cients t;lj, through a quantum dot embedded in a straight

wave-guide. In the vicinity of a dot level with energy E,,

the transmission coefficient through the dot is given by
o —27miV;, (E)V,;(E)D(E) (4)
77 E—-E,—-F,+il, ’

where Vj,(E) and V,;/(FE) are the matrix elements of

transitions from the dot state to the out-going states and

from the incident to the dot state, respectively, D(FE) is
the density of states in each wave-guide, and
VLEDN e
F,=p [ 2220 pphaE,
F —E, ( ) (5)

T, = x|V, (E)]*D(E),

with |V, (E’)|? being the total intensity of the transition
between the dot and the left and right wave-guides. This
is rewritten as

4 _ %y
Gi = o (6)
with

—27iV;, (E)V,; (E)D(E)T,*

Qg5 = v o

¢e=(E—E,—F,)T;" ™

The transmission probabilities exhibit a resonance with
the conventional Breit-Wigner lineshape.

When the double-slit condition is valid, the transmis-
sion through the AB ring incoming from the j’th channel
in the left lead and out-going to the jth channel in the
right lead is given by

tig =15y +15, (8)

where t0, is a transmission coefficient for the up arm,
essentially independent of energy in the energy scale de-
termined by I',,. Effects of scattering at entrances of the
AB ring can be absorbed in the coefficients «;;+ for t?j,.
The total transmission probability is written as

> 0 g2 let gl
|tjj'| - |tjj’| €2 +1 s (9)
with a complex Fano parameter
aiir
Gy = S0 i (10)
Ji’

As a result, the total conductance is given by

Z|t |2 |€+Q|
33’

ey
with a complex Fano parameter ¢=¢’'+i¢” and a param-
eter Ty, which are given by

To=> It %
i
—1
¢ =T5 ") [yl
i
—1
7") Z Grn(C

The real part ¢’ of ¢ determines the asymmetry of the
conductance lineshape, i.e., a dip appears in the left hand

(11)

()] = (d)*
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Fig. 3. Calculated squared amplitude of the wave function for
(a) a wide peak at Vy/Ep = —0.062 and (b) a narrow peak at
Vy/Er = —0.049 in the dashed rectangular region in Fig. 1. The
corresponding gate voltages are pointed by triangles in Fig. 2

(b)-

side of a peak for positive ¢’ and in the right hand side
for negative ¢'.

Figure 2 (a) shows that ¢’ changes sign alternately
when the gate potential crosses wide peaks denoted by
arrows. For the narrow peaks, on the other hand, the sign
of ¢’ does not show such an alternate change from peak
to peak but follows the sign of the nearest wide peaks. In
fact, four narrow peaks in the range —0.11 < V;/Ep <
—0.01 have a dip in the right side of peaks, in agreement
with the behavior of the wide peak at —0.06. Further,
five narrow peaks in —0.01 < V;/EFr < 0.13 have a dip
in the left side of the peak again following the nearest
wide peak at 0.07. In Fig. 2 (a) the sign of ¢’ of narrow
peaks is denoted by (+) and (—).

In the adiabatic limit, where the confinement potential
varies slowly in the scale of the Fermi wave length, each
one-dimensional channel has its own effective potential
and mixing between different channels are small. There-
fore, the transmissions through dot states with the same
1D subband index are possible and in particular those
associated with the lowest subband having the largest
kinetic energy in the wave-guide direction contribute to
transmissions because of the lowest effective tunneling
barrier. The wide resonances shown in Fig. 2 (a) actu-
ally correspond to such states.

The selection rule is violated slightly due to the devia-
tion from the adiabatic limit and also by the presence of
unavoidable disorder. Let H' be the Hamiltonian describ-
ing effects of such deviation, 99 be a dot state uncoupled
to wave-guide states in the absence of H' , and 9} be the
nearest dot state coupled to wave-guide states even in the
absence of H'. Then, apart from energy shift, the state
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ty, associated with 1% now contains a contribution of
@ZJ?\,, i.e.,

(N|H'|n)
E,—-En’
where the lowest order energy shift has been taken into
account already in energies F, and Epy. Then, in the

vicinity of F,, the matrix element for the transmission
through the dot becomes

n Y + Uy (13)

(VA )
(E,—EN)?’

This shows that the phase of V},V,,;s is given by that of
VinVij of the nearest wide peak, explaining the essen-
tial feature of the numerical result that the asymmetry
of the Fano interference of narrow peaks follows that of
a neighboring wide peak.

Examples of the squared amplitude of the wave func-
tion p(r) are shown in Fig. 3 for (a) a wide peak at
Vy/Er = —0.062 and in (b) a narrow peak at V,/Ep =
—0.049. These values of the control gate are marked in
Fig. 2 (b) by triangles. First, we should note that the
large amplitude near left and right ends in Fig. 3 (a)
demonstrates a large contribution to the conductance.
The wave function (a) at the wide peak is less nodal
and narrower in the direction perpendicular to the wave-
guide direction, but has many nodes in the wave-guide
direction. This shows that a large kinetic energy in the
wave-guide direction and a small kinetic energy in the
perpendicular direction, which is consistent with the fact
that the dot state is associated with the lowest 1D sub-
band. On the contrary, the wave function (b) at the nar-
row peak shows a smaller kinetic energy in the wire di-
rection and a larger kinetic energy in the perpendicular
direction, corresponding to a dot state associated with a
higher 1D subband.

The nature of the wave function in the dot can be char-
acterized by an effective width Ay, which is an extention
of the wave function in y direction, defined by

Ay =/ {(y = (¥)?),

) = [ upteya( [ plwyr)

where the integral is in the dashed rectangular region
shown in Fig. 1.

Figure 2 (b) shows the width Ay as a function of the
gate potential. The calculated width takes a sharp max-
imum at narrow peaks of the conductance, but does not
exhibit any appreciable structure at wide peaks. Further,
the width at the wide peaks does not vary so much from
peak to peak and is about the same as the width of
the lowest 1D subband in the wave guide. These results
clearly show the validity of the assignment of narrow
peaks to dot states associated to excited 1D subbands
and wide peaks to those associated to the lowest sub-
band.

When only the transport through a dot embedded in
a wave-guide is possible, i.e., when the control gate is
pinched off, a Fano type interference is possible between

VinVajr & Vin Vi (14)

(15)
with

(16)
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Fig. 4. Resonant peaks in the conductance in the presence of a
magnetic field ¢/¢o = 80, when the control gate is pinched off
with Vo/Ep = 2. The conductance averaged over the gate po-
tential with width 0.01 Er is shown by a dotted line. The arrows
indicate the position of the wide peaks.

different processes within a dot. A nonresonant trans-
mission through the dot state Fn becomes significant,
which is ignored in the previous consideration for Fig. 2,
because it is much smaller than waves passing through
the up arm. In the vicinity of the resonance at a narrow
peak at E,, we have

thy ~ —2miD(B)| 2 NN
ij D) 5o . VB By
o VinVny (N H'|n)|?
— _27iD(E)- J( : +1).
( )EnfEN (EnfEN)(E*Enﬁ’?,Fn)

(17)
This shows that the Fano interference of the resonance
at F, with the nonresonant transmission through the
dot state Fn changes sign when the energy crosses Ey,
ie.,, ¢ <0 and ¢’ > 0 in the left and right hand side,
respectively.

Figure 4 shows the calculated conductance when the
up arm is pinched off with V./Er = 2. The conductance
averaged over a finite width of the gate potential is also
included, which shows only the structure due to broad
peaks because narrow peaks are all averaged out. For
the narrow peaks, we see the Fano line-shape with a dip.
In the vicinity of a wide peak, the asymmetry of narrow
peaks is such that ¢’ <0 in the left hand side and ¢’ >0 in
the right hand side, in agreement with the above simple
approximation (Eq. (17)).

4. Discussion

In actual experiments, as the charging energy of a dot
is dominant, it causes a Coulomb blockade effect and de-

5

termines a typical scale of the gate potential. As has been
shown in above mentioned examples, most of dot states
contributing to the Coulomb oscillation are those of nar-
row peaks because of their dominance in the number and
only a few of those of wide peaks appear. This means that
the asymmetry of the Fano resonance stays the same for
several consecutive narrow conductance peaks as long as
they are connected with the same wide peak (Eq. (13))
and also the phase of the AB oscillation does not change
among such peaks.1?)

The asymmetry of a narrow peak changes, when the
dot state contributing to the narrow peak is mixed to
a different dominant wide-peak state. In the region of
such crossover gate potential, the asymmetry may ex-
hibit a complicated behavior because a dominant wide-
peak state may vary from a peak to a peak. Further, the
phase of the AB oscillation changes only when the gate
potential crosses the wide peak.'® These behaviors can
account for the most of the features of the experimental
results (Fig. 2(a) of Ref. 1, for example).

In the absence of a random potential, the result is
qualitatively same as the results given above with a few
exceptions on the asymmetry of the Fano resonance of
narrow peaks. Without randomness, the dot is symmet-
ric and therefore the symmetry of the wavefunction can
play important roles in causing mixing between dot lev-
els. In fact, the exception can appear more easily, if the
symmetry of wavefunction prevents a narrow level from
coupling to a nearest wide level but allows to a different
wide level.

5. Summary and Conclusion

We have numerically calculated the conductance and
wavefunctions using a realistic model of an AB ring with
a quantum dot in a down arm and a control gate in the
up arm which controls the channel number. Many peaks
appear in the conductance, but they can be classified
into two groups, small numbers of wide peaks with large
broadening and large numbers of narrow peaks. The sign
of the asymmetry parameter of the Fano-type interfer-
ence of narrow peaks is almost always same as that of a
nearest wide peak.

When the control gate is such that the up arm is
nearly pinched off, the situation is close to that of double-
slit experiments, and therefore the asymmetry parameter
changes at the middle of neighboring wide peaks and the
phase of the AB oscillation changes by ~ 7 only when
the gate potential crosses the wide peak.

Most of dot states contributing to the Coulomb os-
cillation are those of the narrow peaks because of their
dominance in the number. Consequently, the asymmetry
of the Fano line-shape stays the same for the several con-
secutive narrow conductance peaks as long as they are
connected with the same wide peak and also the phase
of the AB oscillation does not change among such peaks,
which explains essential features of experiments.
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