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Abstract

The conductance image between two probes of scanning-tunneling-microscopy (STM) is calculated in a graphene within a tight-
binding model and a realistic model for STM probes. A Kekulé-type pattern appears due to interference of states at K and K’
points.
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1. Introduction

In an effective-mass approximation, an electron in a graphene
is described by Weyl’s equation for a massless neutrino [1].
Transport properties in such an exotic electronic structure are
quite intriguing and studied theoretically, including universal
minimum conductivity [2] and quantum correction to the con-
ductivity [3]. It is known that scanning tunneling microscopy
(STM) and spectroscopy (STS) are a powerful technique for
directly viewing electronic wave functions at the atomic level.
Quite recently multi-probe STM was developed [4]. The pur-
pose of this paper is to explicitly visualize interference effects
in two-probe STM images in graphene.

STM measurements have been conducted in order to observe
the electronic wavefunctions in graphene [5, 6]. A characteris-
tic
√

3×
√

3 structure due to interference is observed near edge
of a graphite [7, 8]. Electron transmission has been studiedbe-
tween two STM tips as leads which contact the nanotube via
single carbon atoms [9], and associated orbital magnetic mo-
ments were discussed [10]. Recently, a Kekulé type pattern
or
√

3×
√

3 structure was shown to appear in two-probe STM
images in carbon nanotubes due to interference of states at K
and K’ point except in special cases [11, 12]. In this paper, we
calculate the conductance in a graphene and discuss robuster
Kekulé pattern for tip position than that in carbon nanotubes.

2. Formulation

2.1. Preliminaries

Figure 1 (a) shows the structure of two–dimensional (2D)
graphite or graphene, two primitive translation vectorsa andb,
and three vectors~τl (l = 1, 2, 3) connecting nearest-neighbor
atoms. A unit cell contains two carbon atoms denoted as A
(open circle) and B (closed circle). The origin of the coor-
dinates is chosen at a B site,i.e., a B site is given byRB =

naa+nbb and an A site isRA = naa+nbb+~τwith na andnb being
integers and~τ≡~τ1 = (a+2b)/3. In the coordinate system (x, y),

we havea = a(1, 0), b = a(1/2,
√

3/2), and~τ = a(0, 1/
√

3),
wherea = 0.246 nm is the lattice constant. In the following
we use a tight–binding model with a nearest–neighbor hopping
integral−γ0.

In a 2D graphite, two bands having approximately a linear
dispersion cross the Fermi level at corner K and K’ points of the
first Brillouin zone. The wave vectors of the K and K’ points are
given byK = (2π/a)(1/3, 1/

√
3) andK′ = (2π/a)(2/3, 0). For

states in the vicinity of the Fermi levelε = 0, the wavefunction
is written as [1]

ψA(RA) = eiK·RAFK
A (RA) + eiK′·RAFK′

A (RA), (1)

ψB(RB) = −ωeiK·RBFK
B (RB) + eiK′ ·RBFK′

B (RB), (2)

with ω = e2πi/3 in terms of the slowly–varying envelope func-
tionsFK

A , FK
B , FK′

A , andFK′
B . Then, in the vicinity of the K point,

for example, they satisfy thek·p equation:

γ(~σ · k̂)FK(r) = εFK(r), (3)

FK(r) =

(

FK
A (r)

FK
B (r)

)

, (4)

whereγ =
√

3aγ0/2 is the band parameter,k̂ = (k̂x, k̂y) = −i~∇
is a wave vector operator,ε is the energy, andσx andσy are the
Pauli spin matrices.

Green’s function is written as [13]

GK =

(

g0 g1

ḡ1 g0

)

, GK′ =

(

g0 ḡ1

g1 g0

)

, (5)

whereḡ1(x, y) = g1(x,−y) with elements calculated atε = 0
andr ≫ a as

g0 = 0, (6)

g1 = −i
A
2π

1
r

e−iϕ. (7)

Herex = r cosϕ, y = r sinϕ, andA is a linear dimension of the
system.
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Figure 1: (a) Lattice structure of a two–dimensional graphite sheet. (b) The left STM-tip positions for which the STM image of the right tip is calculated. The actual
coordinates are given in Table 1. (c) A model of the STM tip above a graphene with aπ orbital on a carbon atom atR. ∆ is the normal distance of the STM tip to
the graphene.

2.2. Interference between K and K’ Points
We consider the conductance between two STM tips in a

graphene. First, we consider propagating wave withε ≈ 0 in-
jected from the B siteRB = 0. We may approximately take the
lowest order of the coupling between the STM tip and carbon
atoms, because the coupling is usually very weak. Further, the
wavefunction of the injected electron is decomposed into those
at the K and K’ point with the same amplitude. Then, Eq. (2)
shows that the envelope functions outside the distance much
longer thana from the injection pointRB = 0 become

FK(r) = −ω−1GK
δ
√

2A

(

0
1

)

, (8)

FK′ (r) = GK′
δ
√

2A

(

0
1

)

, (9)

with δ being the amplitude. Upon substitution of the above into
Eq. (2), we have

ψA(RA) = − iδ

2π
√

2

1
r

(−ω−1e−iϕeiK·RA + eiϕeiK′ ·RA),

= − iδ

2π
√

2

1
r
ωei(θ+ϕ)

[

1− e−i(θ+2ϕ)
]

, (10)

ψB(RB) = 0,

with θ = 2π(na − 2nb)/3. The conductance between the STM
probe at the origin and that atRA is approximately proportional
to the probability density

|ψA(RA)|2 =
(

δ

2π

)2 1
r2

[1 − cos(θ + 2ϕ)]. (11)

The conductance decays in proportion to the inverse of the
square of the distance with oscillation. Aroundϕ ∼ 0 that

is along x axis, for example, conductance is finite∝ (δ/r)2

for na − 2nb = 3m ± 1 with an integerm and vanishes for
na − 2nb = 3m.

The sitesR̃ = naa+nbb satisfyingna−2nb = 3mwith integer
m form a honeycomb lattice. Its basis vectors can be chosen
as ã = −a − 2b and b̃ = 2a + b as shown in Fig. 1 (a), for
example, and therefore the lattice constant is

√
3a and the area

of the unit cell is 3Ω0 with Ω0 = (
√

3/2)a2 being the area of
the original honeycomb lattice spanned by the basis vectorsa
andb. The maximum conductance is observed when two STM
probes couple to atoms on this enlarged lattice for both A and
B sublattices. This so-called Kekulé pattern is a result ofthe
interference of traveling waves at the K and K’ points as clearly
shown in Eq. (10). The pattern also appears in the wavefunction
around a single vacancy or edges [7, 8, 14].

2.3. Tip Model

We consider a more realistic model of a graphene and an
STM tip with coupling to several carbon atoms. The hopping
integral between the tips atom and aπ orbital atR of the tube
is given byspSlater–Koster form [15]:

tR = t0wR exp
(

−
dR

λ

)

cosθR, (12)

wR = exp(−α2d2
R)

[

∑

R′
exp(−α2d2

R′)
]−1
, (13)

wheredR is the distance between the tip atom and the carbon
atom, θR is the angle with the orientation of theπ orbital as
shown in Fig. 1 (c). This model hopping integral with parame-
tersλ = 0.085 nm,α−1 ≈ 0.13 nm, and∆ = 0.5 nm has been
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Table 1: The coordinates of the left STM tip shown in Fig. 1 (b)and the maxi-
mum values of the conductance,Gmax, used for plotting Figs. 2.

3∆x/a
√

3∆y/a Gmax(10−12e2/π~)
(a) 0 0 17.5
(b) 0 -0.5 8.06
(c) 0 -1 7.76× 10−4

(d) 0.4 -0.6 7.33
(e) 0.75 -0.25 11.5
(f) 0 0.5 11.5

introduced in previous works [15, 11]. The STM tip is mod-
eled by a chain ofs-like atoms with nearest neighbor hopping
integral−t and the Fermi energy being fixed at the center of the
one-dimensional band.

Coupling between a graphene and STM probes is so weak
that we may ignore mutual couplings and take only the low-
est order oftR. We solve numerically Green’s functionGK and
GK′ on a lattice model of infinite graphene and calculate the
transmission probability between two STM tips. In terms of
the transmission probabilityT, the conductanceG is given by
G = (e2/π~)T using the Landauer formula. In actual calcula-
tions we choose fixed parameterst0/γ0 = −10, t/γ0 = 1. Even
if the Fermi wave length is shorter than the tip distance and
thus the Fermi energy is away from zero energy, the calculated
conductance images exhibit the same behavior except for an
interference-like modulation due to the finite wave length.

3. Numerical Results

In the following, the left STM tip is fixed at several points
marked by open circles in Fig. 1 (b) and the right tip is continu-
ously swept over the wide region. The actual coordinates of the
left tip are given in Table 1.

Figure 2 shows the conductance for varying the position of
the right STM tip when the left tip is fixed at points ‘a’ to ‘f’
shown in Fig. 1 (b). The position of the left tip is denoted by an
open circle, but its actual position is shifted by (102, 0)a in the
coordinate system (x, y) shown in the Fig. 1 (a) and therefore is
quite far from the right tip position.

When the left tip is on top of site B1 denoted by ‘a’ in Fig.
2 (a), the conductance exhibits a clear Kekulé pattern and fol-
lows the simplified estimation presented in the previous sec-
tion. In fact, the conductance is largest at A sitesR̃B + τ2 and
R̃B + τ3 related to the left-tip atom by the basis vectorsã and
b̃. Further, it vanishes at the other A and B sites. With the in-
crease in the displacement ‘b’ to the hexagon center ‘c’ along
the axis corresponding to (b) and (c), respectively, the similar
image appears with the Kekulé pattern. At the hexagon cen-
ter ‘c’, the image drastically changes and the maximum value
of conductance becomes vanishingly small because of cancel-
lation among couplings through several carbon atoms to propa-
gating waves. Considering a states with uniform envelope func-
tion, which is mainly contribute to propagation atǫ = 0, we
can show cancellation of their phases on three nearest-neighbor

sites on the same sublattice with 1+ ω + ω−1
= 0. With the

increase in the deviation from the hexagon center, the image
drastically changes at the center and varies continuously from
(c) to (e). Around ‘a’ the images continuously vary from (e) to
(f).

It has previously been demonstrated that in armchair nan-
otubes the Kekulé pattern disappears for special cases andorig-
inal periodicity is recovered in the conductance images, due to
the lack of interference between K and K’ states [11, 12]. This
is possible because there are only two modes propagating along
the axis direction and the amplitude of one of the modes van-
ishes for a certain ratio of the injection from neighboring Aand
B sites. This also makes the STM image very sensitive to the
left-tip position.

In graphene, on the other hand, there are propagating modes
in all directions because of the two-dimensional nature and
therefore the vanishing amplitude for a certain mode with a
specific direction does not give rise to any visible effect. As
a result, the STM images become robust for the change in the
left-tip position. This allows us the observation of interference
effects sensitive to intrinsic scatters such as ripples and point
defects in graphene, avoiding ambiguity in the tip position.

4. Conclusions

We have calculated numerically the conductance between
two STM probes in a graphene. The STM probes have been
modeled withsp Slater-Koster hopping terms. It has been
shown that a Kekulé pattern usually appears due to interference
between propagating waves at K and K’ points.
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tronics,” by Grant-in-Aid for Scientific Research, by Global
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Figure 2: Calculated conductance as a function of right STM tip position for the left-tip position from ‘a’ to ‘f’ of Fig. 1(b). The left STM tip is fixed above a
position denoted by a open circle, but its actual position isat (102, 0)a in the coordinate system and therefore is quite far from the right tip. The conductance is
shown by the density in the maximum listed in a Table 1 as plot range.
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