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The e�ective potential of an impurity in a k�p scheme is derived in two-dimensional graphite
sheet. When the potential range is smaller than the lattice constant, it has an o�-diagonal matrix
element between K and K' points comparable to the diagonal element. With the increase of the
range, this o�-diagonal element decreases rapidly and the diagonal element for envelopes at A
and B sites becomes identical. The crossover between these two regimes occurs around the range
smaller than the lattice constant. In the latter regime, back scattering between states with +k
and �k vanishes identically for the bands crossing the Fermi level in the absence of a magnetic
�eld, leading to an extremely large conductivity. The absence of the back scattering disappears in
magnetic �elds, giving rise to a huge positive magnetoresistance.

KEYWORDS: graphite, carbon nanotube, fullerene tube, Landau level, magnetoresistance, e�ective-
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x1. Introduction
A carbon nanotube (CN) consists of coaxially rolled

graphite sheets.1) Because the distance between di�erent
sheets is much larger than the nearest neighbor carbon
atoms, electronic properties of CN's are dominated by
those of a single-shell CN. A single-shell CN can be ei-
ther a metal or a semiconductor depending on the cir-
cumference length and the helical fashion. The purpose
of this paper is to study e�ects of impurity scattering in
CN's and demonstrate a possibility of absence of back
scattering for conventional scatterers.

Various calculations have been performed to predict
energy bands of CN's.2�12) It has been found that the
characteristic properties are all reproduced quite well in a
k�p method,13;14) which is e�ective in the study of e�ects
of external �elds such as magnetic and electric �elds.
In fact, it has been successful in the study of magnetic
properties including the Aharonov-Bohm (AB) e�ect on
the band gap,15;16) optical absorption spectra,17�19) and
lattice instabilities in the presence and absence of a
magnetic �eld.20;21)

Transport properties of CN's are interesting because
CN's have a structure topologically di�erent from that
of conventional quantum wires fabricated using semicon-
ductor heterostructures. There have been some reports
on experimental study of transport in CN bundles.22)

Quite recently, measurements of magnetotransport of
a single nanotube became possible.23;24) The tunneling
at a �nite-length CN25) and a connection of di�erent

CN's26�29) were calculated. The conductivity was calcu-
lated also in a constant-relaxation-time approximation
in the absence of a perpendicular magnetic �eld.30)

The conductivity of CN's was previously calculated
using the Boltzmann transport equation31) and in Lan-
dauer' approach32) for a model of short-range scatterers.
In this paper, we shall study the impurity scattering in
CN's more carefully. In x2 an e�ective-mass Hamiltonian
is derived in the presence of an impurity potential and
its properties are discussed. In x3, scattering probabil-
ities are calculated explicitly for metallic CN's both in
the presence and in the absence of a magnetic �eld. The
absence of back scattering is demonstrated for scatterers
having a range comparable to or larger than the lattice
constant in x4. A summary and conclusion are given in
x5.

x2. E�ective-Mass Equation

The structure of a two-dimensional (2D) graphite is
shown in Fig. 1 together with the �rst Brillouin zone and
the coordinates system to be used in the following. In
a 2D graphite, two bands having approximately a linear
dispersion cross the Fermi level (chosen at "=0) at K and
K' points of the �rst Brillouin Zone. The wave vectors of
the K and K' points are given byK=(2�=a)(1=3; 1=

p
3)

and K 0 = (2�=a)(2=3; 0). For states in the vicinity of
"=0, the amplitude of the wavefunction at RA of a site
A and RB of site B is written as

(
 A(RA) = exp(iK �RA)F

K
A (RA) + ei� exp(iK 0 �RA)F

K0

A (RA);

 B(RB) = �!ei� exp(iK �RB)F
K
B (RB) + exp(iK 0 �RB)F

K0

B (RB);
(2:1)

with !=exp(2�i=3), where � is the angle between the chiral vector L and the x0 direction �xed on the graphite plane,
and FK

A , FK
B , FK0

A , and FK0

B are envelope functions assumed to be slowly-varying in the scale of the lattice constant a.
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Fig. 1 (a) Lattice structure of two-dimensional graphite sheet. The coordinates (x0; y0) are �xed on the graphite
sheet and (x; y) are chosen in such a way that x is along the circumference of a nanotube and y is along the
axis. (b) The �rst Brillouin zone and K and K' points. (c) The coordinates for a nanotube.

We have RA=naa+nbb+~� and RB=naa+nbb, where a=a(1; 0), b=a(�1=2;
p
3=2), ~�=~�3=a(1=2;�1=2

p
3), and na

and nb are integers. We de�ne also ~�1 and ~�2 as shown in Fig. 1(a), where ~�1=a(0; 1=
p
3) and ~�2=a(�1=2;�1=2

p
3).

In the nearest-neighbor tight-binding approximation, the equation of motion for site A is given by

["�~uA(RA)] A(RA) = �
0
3X

l=1

 B(RA�~�l); (2:2)

where 
0 is the transfer integral and ~uA(RA) is the local site energy. When we substitute eq. (2.1) into the above
equation and use the slowly-varying nature of the envelope functions, we have

["�~uA(RA)]
�
eiK�RAFK

A (RA) + ei�eiK
0�RAFK0

A (RA)
�

=eiK�RA
ei�(k̂0x�ik̂0y)FK
B (RA) + eiK

0�RA
(k̂0x+ik̂0y)F
K0

B (RA);
(2:3)

with 
=(
p
3=2)a
0 and k̂

0=�i~r0.

In order to derive a Schr�odinger equation for the envelopes at the K point, we �rst rewrite the above as

["�~uA(RA)]
�
FK
A (RA) + ei�ei(K

0�K)�RAFK0

A (RA)
�

=
ei�(k̂0x�ik̂0y)FK
B (RA) + ei(K

0�K)�RA
(k̂0x+ik̂0y)F
K0

B (RA):
(2:4)

Introduce a function g(R) normalized in such a way thatX
R

g(R) = 1: (2:5)

We assume that g(R) is real, has an appreciable amplitude in the region where jRj is smaller than a few times of the
lattice constant, and decays rapidly with increasing jRj. This means that spatial variation of envelope functions in
this region can be safely neglected. Multipling both sides of eq. (2.4) by g(R�RA) and summing over RA, we have

"FK
A (R) = 
ei�(k̂0x�ik̂0y)FK

B (R) + uA(R)F
K
A (R) + ei�u0A(R)F

K0

A (R); (2:6)

with

uA(R) =
X
RA

g(R�RA)~uA(RA); (2:7)

and

u0A(R) =
X
RA

g(R�RA)e
i(K0�K)�RA ~uA(RA): (2:8)
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Similarly, the Schr�odinger equation for the envelopes at the K' point is obtained as

"FK0

A (R) = 
e�i�(k̂0x+ik̂0y)F
K0

B (R) + uA(R)F
K0

A (R) + e�i�u0A(R)
�FK

A (R): (2:9)

The equation of motion for site B is given by

["�~uB(RB)] B(RB) = �
0
3X

l=1

 A(RB+~�l); (2:10)

where ~uB(RB) is the local site energy. The Schr�odinger equation is derived as

"FK
B (R) = 
e�i�(k̂0x+ik̂0y)F

K
A (R) + uB(R)F

K
B (R) � !�1e�i�u0B(R)F

K0

B (R); (2:11)

and

"FK0

B (R) = 
ei�(k̂0x�ik̂0y)FK0

A (R) + uB(R)F
K0

B (R) � !ei�u0B(R)
�FK

B (R); (2:12)

with

uB(R) =
X
RB

g(R�RB)~uB(RB); (2:13)

and

u0B(R) =
X
RB

g(R�RB)e
i(K0�K)�RB ~uB(RB): (2:14)

In summary, the e�ective-mass equation in the presence of an impurity potential is written as0
BB@

uA(r) 
(k̂x�ik̂y) ei�u0A(r) 0


(k̂x+ik̂y) uB(r) 0 �!�1e�i�u0B(r)

e�i�u0A(r)
� 0 uA(r) 
(k̂x+ik̂y)

0 �!ei�u0B(r)� 
(k̂x�ik̂y) uB(r)

1
CCA
0
BB@
FK
A (r)
FK
B (r)

FK0

A (r)

FK0

B (r)

1
CCA = "

0
BB@
FK
A (r)
FK
B (r)

FK0

A (r)

FK0

B (r)

1
CCA ; (2:15)

where use has been made of the relation:

k̂x�ik̂y = e�i�(k̂0x�ik̂0y); (2:16)

and the e�ective potentials are given by eqs. (2.7), (2.8),

(2.13), and (2.14) except that R should be replaced by

the continuous variable r. In a magnetic �eld, we have

to replace k̂ by �i~r+eA=�hc with vector potential A.

When the impurity potential has a range larger than

the lattice constant, we have uA(R) = uB(R). Further,

u0A(R) and u0B(R) become much smaller and can be

neglected because of the phase factor ei(K
0�K)�RA and

ei(K
0�K)�RB in eqs. (2.8) and (2.14). This means that

intervalley scattering between K and K' points can be

neglected for such impurities. This corresponds to the

limit of the usual k�p approximation where the impurity

potential is incorporated as a diagonal matrix with equal

elements.33)

When the potential range is shorter than the lattice

constant, we can safely replace the potentials in eq.

(2.15) by delta potentials, because they have a range

determined by g(R) which is much shorter than the

electron wave length, i.e.,

uA(r) = uAÆ(r�r0);
u0A(r) = u0AÆ(r�r0);
uB(r) = uBÆ(r�r0);
u0B(r) = u0BÆ(r�r0);

(2:17)

with

uA =

p
3a2

2

X
RA

~uA(RA);

u0A =

p
3a2

2

X
RA

ei(K
0�K)�RA ~uA(RA);

uB =

p
3a2

2

X
RB

~uB(RB);

u0B =

p
3a2

2

X
RB

ei(K
0�K)�RB ~uB(RB);

(2:18)

where
p
3a2=2 is the area of a unit cell and r0 is the

impurity position.

Consider an impurity potential with its center at a

B site (chosen at the origin, for example) and symmetric

under a 120Æ rotation. An A site can be represented as

naa+nbb+~�3. For this lattice point, we have nab�nb(a+
b)+~�2 and �na(a+b)+nba+~�1 corresponding to +120Æ
and �120Æ rotation around the origin. We have

(K 0�K)�(naa+nbb) = 2�

3
(na+nb) (mod 2�);

(K 0�K)�[nab�nb(a+b)] = 2�

3
(na+nb) (mod 2�);

(K 0�K)�[�na(a+b)+nba] = 2�

3
(na+nb) (mod 2�);

(2:19)
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and

(K 0�K)�~�1 = �2�

3
;

(K 0�K)�~�2 = 0;

(K 0�K)�~�3 = +
2�

3
:

(2:20)

These show immediately that u0A vanishes identically
while u0B remains nonzero. In fact, when the potential
is localized only at a B site, we have u0B = uB and
uA=u

0
A=0.

x3. Scattering Probabilities

3.1 Metallic nanotubes in magnetic �elds

We consider a metallic nanotube with circumference
L in the presence of a magnetic �eld H perpendicular
to the axis direction. The coordinate system is shown
in Fig. 1(c). The energy levels and wavefunctions are
analytically obtained for "�0 in this case.32) The results
for the gauge

A =
�
0;
LH

2�
sin

2�x

L

�
; (3:1)

are

FK
sk =

1p
2A

��is(k=jkj)F�(x)
F+(x)

�
exp(iky);

FK0

sk =
1p
2A

�
+is(k=jkj)F+(x)

F�(x)

�
exp(iky);

(3:2)

with

F�(x) =
1p

LI0(�)
exp

h
� 1

2
� cos

2�x

L

i
; (3:3)

where A is the length of the nanotube, s=+1 and �1
for the conduction and valence band, respectively, � is
the parameter proportional to the magnetic �eld de�ned

as

� = 2
� L

2�l

�2
; (3:4)

with l=
p
c�h=eH being the magnetic length, and I0(z)

is the modi�ed Bessel function of the �rst kind de�ned
as

I0(z) =

Z �

0

d�

�
exp(z cos �): (3:5)

In high magnetic �elds (�� 1), F� is localized around
x=�L=2, i.e., at the bottom side of the cylinder and F+

is localized around the top side x=0. The corresponding
eigenenergies are given by "s(k) = s
jkjI0(�)�1, which
gives group velocity v = (
=�h)I0(�)

�1 and density of
states D(0)=I0(�)=�
 at "=0.

Apart from the lattice constant a and e�ective range
d of an impurity potential, the nanotubes are character-
ized by various length scales such as wave length 2�=k in
the axis direction, wave length L in the circumference di-
rection, and magnetic length l in strong magnetic �elds.
In this section we shall restrict ourselves to an impurity
potential whose range is much smaller than these length
scales, i.e., d� 2�=k, d�L, and d� l. In this case the
e�ective potential is replaced by delta potentials given
by eq. (2.17).

The matrix elements for an impurity located at
r=r0 are calculated as

VK�K+ =
1

2A
[�uAF�(x0)2+uBF+(x0)2];

VK0�K0+ =
1

2A
[�uAF+(x0)2+uBF�(x0)2];

VK0�K+ =
1

2A
[�u0�Ae�i��!ei�u0�B ]F+(x0)F�(x0);

VK�K0+ =
1

2A
[�u0Aei��!�1e�i�u0B ]F+(x0)F�(x0):

(3:6)
Averaging over the impurity position, we have

hjVK�K+j2i = hjVK0�K0+j2i = 1

A2L2

1

4I0(�)2
�
u2AI0(2�)+u

2
BI0(2�)�2uAuB

�
;

hjVK0�K+j2i = hjVK�K0+j2i = 1

A2L2

1

4I0(�)2
�ju0Aj2+ju0Bj2�2Re(!e2i�u0Au0�B)�:

(3:7)

This shows that the scattering probabilities do not depend on the structure, i.e., on �, for scatterers with the
symmetry under 120Æ rotations, because u0Au

0�
B=0 as discussed in the previous section.

The Boltzmann conductivity is calculated in the procedure discussed in a previous paper.31) When we assume
equal amount of scatterers at A and B sites, the results are

� =
e2

2��h
�; (3:8)

with a mean free path

� =
2�h2v2I0(�)

ni[(hu2Ai+hu2Bi)I0(2�)�2huAuBi+hju0Aj2i+hju0Bj2i�2Re(!ei�hu0Au0�Bi)]
; (3:9)

where ni is the impurity concentration per unit area

and h� � �i represents an average over impurities. In the

limit d=a�1, in particular, we have

� = �0
2

I0(2�)+1
; (3:10)

with

�0 =
e2

2��h
�; � =

�


�h
;

�h

�
=

4nihu2i

L

; (3:11)

where hu2i=hu2Ai=hju0Aj2i=hu2Bi=hju0B j2i.
Consider the case that d=a > 1 where uA = uB
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Fig. 2 Calculated e�ective strength of the poten-
tial for a model Gaussian impurity at a B site.
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Fig. 3 Calculated e�ective scattering matrix ele-
ments versus the potential range at " = 0 in the
absence of a magnetic �eld.

and u0A = u0B = 0. In the absence of a magnetic �eld,

F+(x0)=F�(x0)=1=
p
L and the back scattering matrix-

elements VK�K+, VK+K�, VK0�K0+, and VK0+K0� van-

ish identically together with intervalley matrix elements.

This leads to an interesting and important conclusion

that both mean free path and conductivity become in-

�nitely large, �!1 and �!1. This absence of the

back scattering will be discussed further in a following

section.

0.0 0.5 1.0 1.5
0.0

0.5

1.0

1.5

2.0

 Potential Range (units of a)
 A

ve
ra

ge
 A

m
pl

itu
de

 (
un

its
 o

f u
)

(L/2πl)2 = 0.20
  K+ => K-
  K+ => K+
  K+ => K’

Fig. 4 Calculated e�ective scattering matrix ele-
ments versus the potential range at "=0 in magnetic
�eld (L=2�l)2=0:2.

3.2 Model impurity

As a model of a scatterer, we consider a Gaussian
potential with its center at a B site and its range d such
that d�L. The potential is given by

V (r) =
f(d=a)u

�d2
exp

�
� r2

d2

�
; (3:12)

where f(d=a) is determined by the normalization condi-
tion:

X
R

p
3a2

4

f(d=a)

�d2

h
exp

�
�R

2

d2

�
+exp

�
� (R+~� )2

d2

�i
= 1:

(3:13)
The e�ective potential can be represented as eq. (2.17).
Obviously, we have the following relations for the coeÆ-
cient of the delta function:

uA + uB = 2u;

u0A = 0:
(3:14)

In the limit of short-range scatterers, i.e., d�a, we have

uA = 0; uB = 2u; u0A = 0; u0B = 2u: (3:15)

In the limit of long-range scatterers, i.e., d� a, on the
other hand, we have

uA = u; uB = u; u0A = 0; u0B = 0: (3:16)

3.3 Numerical results

Figure 2 gives an example of calculated e�ective
potential uA, uB , and u0B as a function of d=a for a
Gaussian potential located at a B site. As has been
mentioned, we have u0A = 0 independent of d=a. When
the range is suÆciently small, uB and u0B stay close to
2u because the potential is localized only at the impurity
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Fig. 5 Calculated e�ective scattering matrix ele-
ments versus the potential range at "=0 in magnetic
�eld (L=2�l)2=0:5.
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Fig. 6 Calculated e�ective scattering matrix ele-
ments versus the potential range at "=0 in magnetic
�eld (L=2�l)2=1.

B site. With the increase of d the potential becomes

nonzero even at neighboring A sites and uA starts to

increase and at the same time both uB and u0B decrease.

The diagonal elements uA and uB rapidly approach u

and the o�-diagonal element u0B vanishes more slowly.

The same results can be obtained for an impurity at an

A site if we exchange A and B in the above.

Figure 3 shows calculated averaged scattering ampli-
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Fig. 7 Calculated conductivity at "=0 as a func-
tion of the e�ective magnetic �eld for various values
of d=a. At (L=2�l)2=0, the conductivity becomes
extremely large for d=a>1.

tude, de�ned as AL
phjVK�K+j2i and AL

phjVK0�K+j2i
where hjVK�K+j2i and hjVK0�K+j2i are de�ned in eq.
(3.7), as a function of d in the absence of a magnetic
�eld. The back scattering probability decreases rapid-
ly with d and becomes exponentially small for d=a� 1.
The same is true of the intervalley scattering although
the dependence is slightly weaker because of the slower
decrease of u0B shown in Fig. 2.

This singular behavior disappears in the presence
of magnetic �elds as shown in Figs. 4, 5, and 6. In
high magnetic �elds, the intervalley scattering is reduced
considerably because of the reduction in the overlap of
the wavefunction as shown in eq. (3.2). The conductivity
in the region d=a�1 varies strongly as a function of the
magnetic �eld.

Figure 7 gives examples of the calculated Boltzmann
conductivity as a function of the e�ective magnetic �eld
(L=2�l)2. The positive magnetoresistance present even
for d=a� 1 becomes stronger with the increase of d=a.
The conductivity in the absence of a magnetic �eld is
extremely large when d=a > 1 because of the vanishing
back scattering probability.

It is straightforward to calculate a scattering matrix
for an impurity given by eq. (2.17) and a conductance
of a �nite-length nanotube containing many impurities,
combining S matrices as discussed previously.32) Figures
8 and 9 show some examples of calculated conductance
at " = 0 in the case that the impurity potential has a
range larger than the lattice constant, i.e., uA=uB=u.
A typical mean free path � de�ned in eq. (3.11) for the
present u is �=L = 10 in the former case and �=L= 1
in the latter case (the de�nition of � is actually quite
ambiguous because of the singular dependence on the
magnetic �eld). The conductance in the absence of a



1710 T. Ando and T. Nakanishi

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

 Magnetic Field: (L/2πl)2

 C
on

du
ct

an
ce

 (
un

its
 o

f 2
e2

/π
h)

Length (units of L)
10.0
20.0
50.0
100.0

ν = 0
φ/φ0 = 0.00
εL/2πγ = 0.0
Λ/L = 10.0
u/2Lγ = 0.10

Fig. 8 Calculated conductance of �nite-length nan-
otubes at "=0 as a function of the e�ective strength
of a magnetic �eld in the case that the e�ective mean
free path is much larger than the circumference. The
conductance is always given by the value in the ab-
sence of impurities at H=0.
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Fig. 9 Calculated conductance of �nite-length nan-
otubes at "=0 as a function of the e�ective strength
of a magnetic �eld in the case that the e�ective mean
free path is comparable to the circumference.

magnetic �eld is always quantized into 2e2=��h because

of the complete absence of back scattering. With the

increase of the magnetic �eld the conductance is reduced

drastically and the amount of the reduction becomes

larger with the increase of the length.

x4. Absence of Back Scattering

As has been shown in the previous section, the back
scattering probability vanishes when the potential range
exceeds the lattice constant and the e�ective potential
for the A site is the same as that of the neighboring B
site. We can show that this result is not limited to the
lowest order Born approximation but is quite general in
metallic nanotubes.

We consider the K point. In this case the wave
function and the energy are given by

Fnsk(r) =
1p
2AL

�
b(n; k)
+s

�
exp

�
i�(n)x+iky

�
;

"ns(k) = s
p
�(n)2+k2;

(4:1)

with

b(n; k) =
�(n)�ikp
�(n)2+k2

;

�(n) =
2�

L
n;

(4:2)

where n is an integer. In particular, for n= 0, s=+1,
and k>0, we have

F0+k(r) =
1p
2AL

��ik=jkj
1

�
exp(iky): (4:3)

Consider a T matrix de�ned by

T = V + V
1

"�H0
V + V

1

"�H0
V

1

"�H0
V + � � � ; (4:4)

where V is the impurity potential which is just a scalar
because it is same for both A and B sites, " is the energy,
andH0 is the Hamiltonian in the absence of the impurity.
We consider the matrix

T̂ =

�
T++ T+�
T�+ T��

�
; (4:5)

where T++ represents the matrix element for the scatter-
ing within the state with positive wave vector +k along
the axis direction for the band index n= 0 and s=+1
(conduction band), T+� from �k to +k, T�+ from +k
to �k, and T�� within �k.

The matrix element of the impurity potential is
given by

(nskjV jn0s0k0) = 1

AL
Vn�n0(k�k0)

� 1

2
( b(n; k)� s )

�
b(n0; k0)

s0

�
;

(4:6)

with

Vn(k) =

Z
dx

Z
dy V (x; y) exp

�� i�(n)x�iky�: (4:7)

Therefore, the lowest order term becomes

T̂ (1) =
1

AL
V0[(�k)�(�k)]U+U

=
1

AL
V0[(�k)�(�k)]

�
1 0
0 1

�
;

(4:8)

with

U =
1p
2

��i i
1 1

�
: (4:9)
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This shows the vanishing of the back scattering matrix
element in the lowest order.

The second order term is written as

T̂ (2) =
1

AL

1

AL

X
n1k1

V�n1 [(�k)�k1]Vn1 [k1�(�k)]
"0+(k)�"n1s1(k1)

� [1�s1(n(n1; k1)�~�)];
(4:10)

where n=(nx; ny; nz) is a unit vector de�ned as

nx(n; k) = 0;

ny(n; k) =
�(n)p

�(n)2+k2
;

nz(n; k) =
kp

�(n)2+k2
;

(4:11)

and ~�=(�x; �y ; �z) is the Pauli spin matrix. In the above
use has been made of

U+

�
b(n; k)
s

�
( b(n; k)� s )U = 1�s(n(n; k)�~�): (4:12)

It is easy to show that the o�-diagonal element of T (2)

vanishes after being summed for pair states (s1; n1; k1)
and (s1;�n1;�k1). In fact, under the transformation
(s1; n1; k1) ! (s1;�n1;�k1), both energy denominator
and potential matrix elements are invariant while the o�-
diagonal elements of eq. (4.12) change their signature.

The next order term is give by

T̂ (3) =
1

AL

1

AL

X
n1k1

1

AL

X
n2k2

� V�n1 [(�k)�k1]Vn1�n2(k1�k2)Vn2 [k2�(�k)]
["0+(k)�"n1s1(k1)]["0+(k)�"n2s2(k2)]

� [1�s1(n1 �~�)][1�s2(n2 �~�)];
(4:13)

where

nj = n(nj ; kj): (4:14)

If we note that

(n1 �~�)(n2 �~�) = (n1 �n2) + i(n1�n2)�x; (4:15)

with n1�n2=n1xn2y�n1yn2x, we have
[1�s1(n1 �~�)][1�s2(n2 �~�)]

=1+s1s2(n1 �n2)�s1(n1 �~�)�s2(n2 �~�)
+is1s2(n1�n2)�x:

(4:16)

The o�-diagonal elements of the above quantity change
their signature when we make the exchange (s1; n1; k1)!
(s2;�n2;�k2) and (s2; n2; k2)! (s1;�n1;�k1), leading
immediately to vanishing of the o�-diagonal elements of
T̂ (3).

More generally, the (p+1)th order term is written
as

T̂ (p+1) =
1

AL

1

AL

X
n1k1

1

AL

X
n2k2

� � � 1

AL

X
npkp

� V�n1 [(�k)�k1]Vn1�n2(k1�k2) � � �Vnp [kp�(�k)]
["0+(k)�"n1s1(k1)] � � � ["0+(k)�"npsp(kp)]

� [1�s1(n1 �~�)][1�s2(n2 �~�)] � � � [1�sp(np �~�)]:
(4:17)

As will be shown in Appendix A, the o�-diagonal element
of

(n1 �~�)(n2 �~�) � � � (nq �~�) (4:18)

can be shown to have a value whose sign is opposite to
the o�-diagonal element of

(�nq �~�) � � � (�n2 �~�)(�n1 �~�); (4:19)

for arbitrary q. This leads to the vanishing of the o�-
diagonal element of T̂ (p+1) by changing the variables into
those obtained by the time reversal operation, (s1; n1; k1)
! (sp;�np;�kp), (s2; n2; k2) ! (sp�1;�np�1;�kp�1),
. . .. This completes the proof that no backscattering
process is present for any impurity potential within the
band n=0 in metallic nanotubes.

When the electron energy exceeds 2�
=L or be-
comes lower than �2�
=L, new scattering channels open
up because of the presence of bands with n=�1. In this
case the scattering into these bands makes back scat-
tering possible, although the back scattering within the
band n= 0 is still absent, leading to a �nite mean free
path and conductivity.

The absence of back scattering in nanotubes corre-
sponds to the vanishing matrix elements for back scatter-
ing in a 2D graphite sheet. In a graphite sheet, however,
it does not give rise to any singular e�ect because the
mean free path remains �nite due to the presence of s-
cattering into various other directions.34) In nanotubes,
the quantization of the electron motion perpendicular to
the tube axis singles out the complete absence of back
scattering, leading to an in�nitely large mean free path
in the absence of a magnetic �eld.

It is highly likely that the absence of back scattering
can be explained by a much simpler argument based on
some symmetry of the system and interpreted more intu-
itively. This problem is left for a future study, however.

x5. Summary and Discussion

In summary, we have derived e�ective potential of
an impurity in two-dimensional graphite sheet appearing
in a k�p scheme. When the potential range is smaller
than the lattice constant, it has an o�-diagonal matrix
element between K and K' points comparable to the
diagonal element. With the increase of the range, this
o�-diagonal element decreases rapidly and the diagonal
element for envelopes at A and B sites becomes identical.
The crossover between these two regimes occurs around
the range smaller than the lattice constant.

When intervalley terms can be neglected and the
diagonal e�ective potential is identical for neighboring
A and B sites, the back scattering between states with
+k and �k vanishes identically for the bands crossing
the Fermi level in the absence of a magnetic �eld. This
leads to an extremely large conductivity or mean free
path. The absence of the back scattering disappears in
magnetic �elds, giving rise to a huge positive magnetore-
sistance.

There has essentially been no information on main
scattering mechanisms in nanotubes. Charged impurites
may give rise to a potential with a range much larger
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than the lattice constant. A possible deformation or
distortion of a nanotube may give rise to an e�ective
long-range potential. The present results show that such
long- or medium-range perturbatons can be neglected as
scattering mechanisms in metallic nanotubes. Lattice
defects such as carbon vacancies may likely give rise to
a perturbation described by a strong potential with a
range comparable to the lattice constant. Only such
short-range scatterers can be a mechanism of limiting
the mean free path and the conductivity.

The conductance of a single-wall nanotube was ob-
served quite recently,35) but experiments show large
charging e�ects presumably due to nonideal contacts. It
is highly desirable to become able to measure transport
of a single-wall nanotube with ideal Ohmic contacts in
order to observe this interesting prediction experimen-
tally.
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Appendix A: Some Properties of Spin Matrix

We de�ne

P (n1; . . . ;np) = (n1 �~�)(n2 �~�) � � � (np �~�): (A1)

We consider �rst the case of even p. Using eq. (4.15), we
�rst perform multiplication of pairs (1,2), (3,4), . . ., and
(p�1; p). Then, we have

P (n1; . . .np) =[(n1 �n2)+i(n1�n2)�x] � � �
�[(np�1 �np)+i(np�1�np)�x]

(A2)

The o�-diagonal element consists of the term propor-
tional to �x which is proportional to the sum of terms
consisting of an odd number of nj�nj+1. These terms
change their signature when we make the transformation:

n1!�np; n2!�np�1; . . . ;np!�n1: (A3)

This immediately shows that the o�-diagonal element of
P changes its signature under the above transformation.

In order to discuss the case of odd p, we �rst consider
the product of three terms. Using eq. (4.15), we have

(n1 �~�)(n2 �~�)(n3 �~�) = [(n1 �n2)+i(n1�n2)�x](n3 �~�)
= (n1 �n2)(n3 �~�) + (n3 �n2)(n1 �~�)� (n1 �n3)(n2 �~�)
= (n3 �~�)(n2 �~�)(n1 �~�):

(A4)
By using this relation repeatedly, we can show that for
odd p

P (n1;n2; . . . ;np) = P (np; . . . ;n2;n1)

= �P (�np; . . . ;�n2;�n1):
(A5)

In the case of p=5, for example, we have 12345! 32145
! 32541! 52341! 54321. In the case of p=7, we have
1234567 ! 3214765 ! 3274165 ! 7234561 ! 7236541

! 7632541 ! 7652341 ! 7654321. This immediately
leads to the conclusion that the o�-diagonal element of
P changes its signature under the transformation (A3).
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