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Conductance between two STM probes in carbon nanotubes
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The conductance image between two probes of scanning-tunneling-microscopy (STM) is
calculated in an armchair carbon nanotube within a tight-binding model and a realistic model
for STM probes. A Kekulé-type pattern usually appears due to interference of states at K and K’
points except in special cases.

Keywords: graphite, carbon nanotube, fullerene tube, STM, recursive Green’s function technique

§1. Introduction
Carbon nanotubes are regarded as ballistic conduc-

tors. In metallic nanotubes, in particular, the backward
scattering is entirely suppressed for scatterers with po-
tential range larger than the lattice constant of a two-
dimensional graphite and the conductance is quantized
into 2e2/πh̄.1−3) When several bands are occupied, a
perfectly conducting channel transmitting through the
system without being scattered back is present.4) It is
known that scanning tunneling microscopy (STM) and
spectroscopy (STS) are a powerful technique for directly
viewing electronic wave functions at the atomic level.
Quite recently multi-probe STM was developed.5−14)

In this paper, we calculate two-probe STM image to
explicitly visualize interference effects in ballistic carbon
nanotubes.

STM measurements have been conducted to observe
the electronic wavefunctions in carbon nanotubes.15,16)

Energy-dependent interference patterns in the wave-
functions were observed in nanotubes shortened to less
than 40 nm.16) Numerical calculations were made on
electronic states and STM images in a finite carbon
nanotube.17,18) Topographical STM images have been
calculated within a tight-binding model and the appear-
ance of the honeycomb structure has been demonstrated
in infinitely long nanotubes.19,20) The tight-binding cal-
culation has been applied to investigate native defects in
carbon nanotubes,21) and effects of tip shape.22) Orbital
magnetic moments were shown to be induced in carbon
nanotubes placed between STM probes.23)

In this work, we shall calculate the conductance
between two STM probes in carbon nanotubes and
demonstrate the importance of interference effects. In
§2, a model and method of calculation are discussed
together with a realistic model of STM probes, and
the appearance and disappearance of interference patters
due to the presence of K and K’ points are discussed.
Numerical results are presented in §3. A discussion and
summary are given in §4.

§2. Formulation
2.1 Preliminaries

Figure 1 (a) shows the structure of two–dimensional

(2D) graphite or graphene, two primitive translation vec-
tors a and b, and three vectors �τl (l=1, 2, 3) connecting
nearest-neighbor atoms. A unit cell contains two carbon
atoms denoted as A (open circle) and B (closed circle).
The origin of the coordinates is chosen at a B site, i.e.,
a B site is given by RB = naa+nbb and an A site is
RA = naa+nbb+�τ with na and nb being integers and
�τ ≡ �τ1 = (a+2b)/3. In the coordinate system (x′, y′)
fixed onto the graphene sheet, we have a = a(1, 0),
b = a(1/2,

√
3/2), and �τ = a(0, 1/

√
3), where a = 0.246

nm is the lattice constant. In the following we use
a tight-binding model with a nearest-neighbor hopping
integral−γ0.

In a 2D graphite, two bands having approximately
a linear dispersion cross the Fermi level at corner K and
K’ points of the first Brillouin zone. The wave vectors of
the K and K’ points are given by K =(2π/a)(1/3, 1/

√
3)

and K ′=(2π/a)(2/3, 0). For states in the vicinity of the
Fermi level ε=0, the wavefunction is written as24)

ψA(RA) = eiK·RAFK
A (RA)+eiηeiK′·RAFK′

A (RA),

ψB(RB) =−ωeiηeiK·RBFK
B (RB)+eiK′·RB FK′

B (RB),
(2.1)

in terms of the slowly–varying envelope functions FK
A ,

FK
B , FK′

A , and FK′
B . Then, in the vicinity of the K point,

for example, they satisfy the k·p equation:

γ(�σ · k̂)F K(r)=εF K(r),

F K(r)=
(

FK
A (r)

FK
B (r)

)
,

(2.2)

where γ =
√

3aγ0/2 is the band parameter, k̂=(k̂x, k̂y)=
−i�∇ is a wave vector operator, ε is the energy, and σx

and σy are the Pauli spin matrices.
In nanotubes, the coordinate system (x, y) will be

chosen in such a way that the x axis is in the chiral
direction, i.e., the direction along the circumference or
the chiral vector L, and the y axis in the direction of
the axis. In metallic nanotubes, the k·p equation is
solved under a periodic boundary condition in the x

direction. The wave function for the linear bands at ε=0
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is independent of the position and given by

F K±(r) =
1√
2LA

(∓i
1

)
, (2.3)

F K′±(r) =
1√
2LA

(±i
1

)
, (2.4)

where L= |L|, A is the length of the nanotube, and the
upper and lower signs correspond to right and left-going
waves, respectively.

2.2 Interference between K and K’ Points

In this work, we consider an armchair nanotube with
L = 2na+nb with integer n and chiral angle η =−π/2,
which is metallic without depending on L. We consider
the conductance between two STM tips in an infinitely
long nanotube as illustrated in Fig. 1 (b). In this case,
we have

ψA(RA) = eiK·RAFK
A (RA) − i eiK′·RAFK′

A (RA), (2.5)

ψB(RB) = iω eiK·RBFK
B (RB) + eiK′·RBFK′

B (RB). (2.6)

First, we consider traveling wave with ε≈0 injected
from the B site RB = 0. We may approximately take
the lowest order of the coupling between the STM tip
and carbon atoms, because the coupling is usually very
weak. The injected electron equally propagates to both
right and left directions, because of the symmetry of the
configuration. Further, the wavefunction of the injected
electron is decomposed into those at the K and K’ point
with the same amplitude. Then, eq. (2.6) shows that on
the right hand side of the injection point RB =0, where
the envelope functions become

F K(r) = −iω−1δF K+(r),

F K′
(r) = δF K′+(r),

(2.7)

with δ being the amplitude. Upon substitution of the
above into eqs. (2.5) and (2.6), we have

ψA(RA) =
δ√
2LA

(eiπ/3eiK·RA +eiK′·RA),

= i

√
2

LA
δ eiπna sin

[π

3
(na−2nb)

]
,

ψB(RB) =
δ√
2LA

(eiK·RB +eiK′·RB ).

=

√
2

LA
δ eiπna cos

[π

3
(na−2nb)

]
.

(2.8)

The conductance between the STM probe at the origin
and that at RB is approximately proportional to the
probability density |ψB(RB)|2. It becomes the maxi-
mum ∝ 2δ2 for na−2nb = 3m with an integer m and
becomes ∝(1/2)δ2 for na−2nb =3m±1. The probability
density at A sites vanishes for na−2nb =3m and ∝(3/2)δ2

for na−2nb =3m±1.
The sites R̃ = naa+nbb satisfying na−2nb = 3m

with integer m form a honeycomb lattice. Its basis
vectors can be chosen as ã = −a−2b and b̃ = 2a+b
as shown in Fig. 1 (a), for example, and therefore the
lattice constant is

√
3a and the area of the unit cell is

3Ω0 with Ω0 = (
√

3/2)a2 being the area of the original

honeycomb lattice spanned by the basis vectors a and b.
The maximum conductance is observed when two STM
probes couple to atoms on this enlarged lattice for both
A and B sublattices. This Kekulé pattern is a result
of the interference of traveling waves at the K and K’
points as clearly shown in eq. (2.8). This so-called Kekulé
pattern also appears in the wavefunction around a single
vacancy25) and a cap.26)

Next we consider two interesting cases of injection
through several atoms. It has been shown that the
k·p equation has a special symmetry valid in metallic
nanotubes.27) We consider transformation Π defined as

Π :

⎛
⎜⎜⎝

FK
A (x, y)

FK
B (x, y)

FK′
A (x, y)

FK′
B (x, y)

⎞
⎟⎟⎠ →

⎛
⎜⎜⎝

+iF K
B (−x, y)

−iF K
A (−x, y)

+iF K′
B (−x, y)

−iF K′
A (−x, y)

⎞
⎟⎟⎠ . (2.9)

This operation Π commutes with the Hamiltonian and
the boundary condition in metallic nanotubes. Because
Π2 is an identity, Π has eigenvalues p = ±1, which is
called parity. The physical meaning of this symmetry
is clear in armchair nanotubes. The transformation Π
is nothing but a mirror reflection around the y axis. In
metallic nanotubes, the states are classified by the parity,
i.e., F K+ and F K′− have parity p=−1, while F K− and
F K′+ have parity p=+1.

It is possible in a special case to inject electron into
one of the states with a parity. If a wave is injected
from two neighbor sites at RB and RB + �τ1 aligning in
the circumference direction with the same amplitude, the
injected symmetric state has the parity p = +1. Thus,
the wave traveling in the positive y direction consists
only of the K’ point and that in the negative y direction
consists only of the K point. As a result, there is
no interference between the K and K’ points and the
resulting conductance does not exhibit a Kekulé pattern
but that due to the original lattice.

On the other hand, the injection into the anti-
symmetric (p=−1) state is achieved, for examples, when
the same waves are injected from a B site at RB and two
A sites at RB +�τ2 and RB +�τ3. In fact, because

−γ0

3∑
l=1

ψA(RB +�τl) = εψB(RB) ≈ 0, (2.10)

for ε ≈ 0, the equal injection from these two A sites
corresponds to the injection with opposite sign of the
wavefunction from the A site at RB+�τ1. In this case, the
wave traveling in the positive y direction consists only of
the K point and that in the negative y direction consists
only of the K’ point. As a result, the conductance again
does not exhibit a Kekulé pattern but that due to the
original lattice. These features manifest themselves in
the actual STM images shown in the next section.

2.3 Tip Model

Next, we consider a more realistic model of a nano-
tube with curvature and an STM tip with coupling to
several carbon atoms. First, we assume that each π
orbital is oriented in the direction perpendicular to the
curved cylinder surface and possible lattice distortion
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due to curvature is completely neglected. An STM tip
is located on the surface of a cylinder with the same
axis as the nanotube radius and with a fixed distance
Δ. The STM tip is modeled by a chain of s-like atoms
with nearest neighbor hopping integral −t and the Fermi
energy being fixed at the center of the one-dimensional
band. An actual STM tip usually has a radius larger than
the atomic distance and therefore the present model may
be too simple. Effects associated with this complication
will briefly be discussed in §5.

The hopping integral between the tip s atom and a
π orbital at R of the tube is given by sp Slater–Koster
form:19,20)

tR = t0wR exp
(
− dR

λ

)
cos θR,

wR = exp(−α2d2
R)

[ ∑
R′

exp(−α2d2
R′)

]−1

,
(2.11)

where dR is the distance between the tip atom and the
carbon atom, θR is the angle with the orientation of the
π orbital as shown in Fig. 1 (c). This model hopping
integral with parameters λ = 0.085 nm, α−1 ≈ 0.13
nm, and Δ = 0.5 nm has been introduced in previous
works,19,20) in which the asymmetry between A and B
carbon atoms in multi-layer graphite28) has successfully
been reproduced. This hopping integral has a strong
tendency to pick up contributions of carbon atoms lying
closest to the tip because of the weight factor wR.
The tip-sample coupling depends on the curvature of
nanotubes and therefore the deviation from the hexag-
onal symmetry valid in 2D graphite is significant in the
so-called (10,10) nanotube with L/a = 10

√
3 for which

actual numerical calculations are performed.
In order to deal rigorously with the infinite nano-

tube, we solve numerically a scattering problem in a
finite nanotube between two STM probes connected at
both ends to semi-infinite nanotubes. We calculate the
transmission probability between these two STM tips. In
terms of the transmission probability T , the conductance
G is given by G=(e2/πh̄)T using the Landauer formula.
In actual calculations we consider the so-called (10,10)
nanotube with L=10

√
3a, and choose fixed parameters

t0/γ0 =−10, t/γ0 =1, and ε=0.

§3. Numerical Results
In the following, the left STM tip is fixed at several

points on the lines shown in Fig. 2 and the right tip
is continuously swept over the wide region. The actual
coordinates of the left tip are given in Table I.

Figure 3 shows the conductance for varying the
position of the right STM tip when the left tip is fixed at
points ‘a’ to ‘f’ shown in Fig. 2. The position of the left
tip is denoted by an open circle, but its actual position
is shifted by (0, −45)a in the coordinate system (x, y)
shown in the Fig. 1 (a) and therefore is quite far from the
right tip position. Because the distance between two tips
is much larger than the circumference, the contribution
only of traveling modes is dominant and therefore the
conductance varies periodically in all the cases.

When the left tip is on top of site B1 denoted by ‘a’
in Fig. 2, the conductance exhibits a clear Kekulé pattern

and follows the simplified estimation presented in §2. In
fact, the conductance is largest at B sites R̃B related to
the left-tip atom by the basis vectors ã and b̃. Further,
it is the second largest at A sites R̃B+�τ2 and R̃B+�τ3, the
third largest at B sites other than R̃B , and minimum at
A sites R̃B +�τ1. With the increase in the displacement
‘b’ and ‘c’ corresponding to (b) and (c), respectively, this
Kekulé pattern becomes weaker.

When the amount of the shift in the circumference
x direction reaches 0.63×a/

√
3 as in Fig. 3 (d), the left

tip couples almost equally to the B site at the origin
and two of the neighboring A sites through �τ2 and �τ3.
In this case, only the traveling wave with p = −1 is
injected into F K+ and the Kekulé pattern disappears as
has been mentioned in §2. Because the traveling wave is
anti-symmetric between neighboring A and B sites along
the circumference, the conductance vanishes when the
right STM tip is located between them. Such destructive
interference does not occur between neighboring A and
B sites in other directions because their phase difference
is e±πi/3. As a result, the conductance takes a stripe-like
pattern consisting or parallel lines in the axis direction.

In Fig. 3 (e), a Kekulé pattern is recovered although
weak. In this case, the coupling of the left STM tip to
two A sites at �τ2 and �τ3 is the largest. However, the
conductance is not maximum when the right tip is at
corresponding A sites related through the basis vectors
ã and b̃, but maximum at other A sites. This is to be
expected because the injection from these two A sites
is equivalent to the injection with opposite sign of the
wavefunction from the other A site at �τ1, as mentioned
in §2.

In Fig. 3 (f), the left STM tip is located at the center
of a hexagon. Because of the mirror symmetry, electron
is injected only into the right–going wave at K’ point
with p=1 and thus the Kekulé pattern disappears. The
conductance is the largest at the middle of neighbor car-
bon atoms along the circumference, due to constructive
interference of wavefunctions at these atoms with the
same phase. Such strong constructive interference does
not occur along �τ2 or �τ3, where a phase difference is 2π/3
between the nearest–neighbor atoms.

Figure 4 shows the results for varying the position
from ‘g’ to ‘l’ shown in Fig. 2. As shown in (g), the slight
shift of the left tip near the center of the hexagon gives
rise to a drastic change in the conductance pattern. This
happens due to the variation of interference because the
couplings to several carbon atoms are comparable. With
the increase in the deviation from the hexagon center,
the image varies continuously from (g) to (k). In (k), in
particular, the left STM is located above the middle of
them �τ3/2, where the couplings of the STM tip to two
neighbor carbon atoms are the same. In this case, the
Kekulé pattern is shown with maximum at translational
symmetry position of these two atoms. In (l), while
the left tip shifts toward the initial B site, calculated
conductance becomes similar to Fig. 3 (a), where the
coupling to the B site dominates.

Figure 5 shows the results for the left tip at ‘m’
and ‘n’ shown in Fig. 2. With the deviation of the
left tip from the B site to the neighboring A site in
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the direction �τ1, the Kekulé pattern becomes weaker as
shown in (m). When the tip is at the middle of the A
and B site as in (n), the mirror symmetry is recovered
and the conductance is qualitatively the same as Fig. 3
(f) without the Kekulé interference.

§4. Discussions and Conclusions
The numerical results presented in the previous

section shows that a Kekulé pattern appears in the
conductance of two STM tips due to interference of waves
associated with K and K’ states. This fact is expected to
prevail in all metallic nanotubes other than the armchair
type considered here. Further, in special cases where
an electron is injected into a single propagating state
classified by the parity in the k·p scheme, such interfer-
ence pattern disappears. This fact is also not limited
to armchair nanotubes. In fact, the injection to a single
parity state is shown to be possible for arbitrary chirality
as discussed in Appendix A.

An actual STM tip usually has a radius larger than
the atomic distance and therefore the tunneling process
may be much more complicated than discussed in the
present model. In fact, the tunneling current injected
into a carbon atom of the nanotube is likely to pass
through the closest atom on the tip surface. The relevant
tip atom can be different for each carbon atom depending
on the detailed structure of the STM tip and may even
vary with a slight movement of the tip position.

Although the injection into a single parity state is
possible even in such a case, the tip position is likely to be
different from that obtained above and vary depending
of the local atomic structure of the tip. Therefore,
a very precise control of the tip position is required
for the observation of STM image without a Kekulé
pattern resulting from the injection into a single parity
state. Further improvement of the spatial resolution in
the multi-tip STM measurement may be required for
the observation of the appearance and disappearance of
interference effects predicted in this paper.

In summary, we have calculated numerically the
conductance between two STM probes in an armchair
nanotube. The STM probes have been modeled with sp
Slater–Koster hopping terms. It has been shown that
a Kekulé pattern usually appears due to interference
between traveling waves at K and K’ points. We also
find special cases that the Kekulé pattern disappears
when the electron wave is injected into a single K or K’
point. It is also interesting to study the similar problem
in semiconducting nanotubes and in a narrow graphene
ribbon. Those are left for a future study.
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Appendix A: Disappearance of Interference
We have shown that the injection into a single parity

state is possible in armchair nanotubes in §2. Here
we extend our argument to nanotubes with arbitrary
chirality. As the simplest example, we consider the case
that an STM tip weakly couples with three neighboring
carbon atoms. Consider first the right-going wave at the
K point F K+ with parity p=−1 given by eq. (2.5). The
wave function at a B site denoted by B1 with RB and
those at three neighboring A sites denoted by Al with
RB +�τl (l=1, 2, 3) are

ψA(RB +�τl) = eiK·(RB+�τl)
−i√
2LA

,

ψB(RB) = −ωeiηeiK·RB
1√
2LA

.

(A1)

Therefore, the phases of ψA(RB+�τl) relative to ψB(RB)
are z1 =ie−iη for A1, z2 =iωe−iη for A2, and z3 =iω−1e−iη

for A3. These points are plotted together with z0 = 1
corresponding to B1 in a complex plane in Fig. 6 The
chiral angle has been chosen in the region 0≤η<π/6.

For this choice the triangle consisting of B1, A1, and
A2 contains the origin. By moving A1 to A′

1 along the
line OA1 and A2 to A′

2 along OA2 in appropriate manner,
we can construct a triangle B1A′

1A
′
2 in such a way that

its center-of-mass is at the origin. Let A′
1 and A′

2 be the
distance between the origin and the points A′

1 and A′
2.

Then, we obviously have

ψA(RB +�τ1)A′
1+ψA(RB +�τ2)A′

2 + ψB(RB) = 0. (A2)

At a point satisfying the condition that the coupling to
these three sites A1, A2, and B1 corresponds to A′

1δ,
A′

2δ, and δ, respectively, with appropriate value of δ, the
electron is not injected into F K+ but into F K′+ only,
and therefore no interference pattern appears in the STM
image. A similar condition can be written down for the
right-going wave F K′+ at the K’ point and we can find
out the position where the electron is not injected into
this traveling wave.
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Table I The coordinates of the left STM tip shown in

Fig. 2 and the maximum values of the conductance,

Gmax, used for plotting Figs. 3, 4, and 5.

√
3Δx/a 3Δy/a Gmax (10−10e2/πh̄)

(a) 0 0 9.9
(b) 0.25 0 7.1
(c) 0.5 0 3.2
(d) 0.63 0 1.6
(e) 0.75 0 1.2
(f) 1.0 0 0.24
(g) 0.9 0.1 0.60
(h) 0.8 0.2 1.4
(i) 0.7 0.3 2.4
(j) 0.6 0.4 3.8
(k) 0.25 0.75 6.2
(l) 0.125 0.375 8.1
(m) −0.25 0 8.3
(n) −0.5 0 4.2

Figure Captions

Fig. 1 (a) Lattice structure of a two–dimensional
graphite sheet. The coordinates are chosen in such a
way that x is along the circumference of a nanotube
and y is along the axis. η is the chiral angle. (b) A
schematic view of a carbon nanotube with two STM
tips modeled by 1D wires. (c) A model of the STM
tip and the carbon nanotube with a π orbital on a
carbon atom at R. Δ is the normal distance of the
STM tip to the nanotube.

Fig. 2 The left STM-tip positions for which the STM
image of the right tip is calculated. The actual
coordinates are given in Table I.

Fig. 3 Calculated conductance as a function of right
STM tip position for the left-tip position from ‘a’
to ‘f’ of Fig. 2. The left STM tip is fixed above
a position denoted by a open circle, but its actual
position is at (0,−45)a in the coordinate system and
therefore is quite far from the right tip. The con-
ductance is shown by the density in the maximum
listed in a Table I as plot range.

Fig. 4 Calculated conductance as the function of right
STM tip position for the left-tip position from ‘g’ to
‘l’ of Fig. 2.

Fig. 5 Calculated conductance as the function of right
STM tip position for the left-tip position ‘m’ and ‘n’
of Fig. 2.

Fig. 6 The phases of B1, A1, A2, and A3 of the
right-going wave at the K point in a complex plane.
The phase of B1 has been chosen as real and positive.
The origin is inside the triangle B1A1A2 for 0≤η<
π/6. We can construct the triangle B1A′

1A′
2 with its

center-of-mass point at the origin by choosing A′
1 on

line OA1 in such a way that C2 on line A2O is at
the center of A′

1B1 and then A′
2 in such a way that

C1 on line A1O is at the center of A′
2B1.
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