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1. Introduction

Carbon nanotubes are novel quantum wires consisting of
rolled graphite sheets.1) Single-wall nanotubes can be
synthesized in structures �1 nm in diameter and millimeters
long.2–4) Their cylindrical shape leads to a strong Aharonov–
Bohm (AB) effect in the band structure due to a magnetic
field parallel to the axis.5,6) The purpose of this paper is to
study conductivity in the presence of AB flux.

The electronic states change from metallic to semi-
conducting depending on the tubular circumferential vector
characterizing a nanotube. The characteristic properties were
predicted by calculations in tight-binding models7–16) and
also in a k�p scheme or an effective-mass approxima-
tion.17,18) The AB effect on the band gap in nanotubes was
theoretically predicted in the effective-mass approxima-
tion.5,6,19,20) Recently, splitting of optical absorption and
emission peaks due to the AB effect was observed.21) A shift
in the gate voltage corresponding to the conductance peak
was also observed in Fabry–Perot interference regime and
attributed to the AB effect.22)

Metallic nanotubes are known as a ballistic conductor due
to the absence of backward scattering as long as the potential
range of scatterers is not smaller than the lattice constant of
two-dimensional graphite.23–25) When several bands are
occupied, a perfectly conducting channel transmitting
through the system without being scattered back is pres-
ent.26) These intriguing features are due to the existence of a
special symmetry present in the Schrödinger equation in the
lowest-order k�p equation. The absence of backscattering is
robust, but the perfect channel is fragile against various
symmetry breaking effects such as a magnetic field and
flux,27) short-range scatterers,28) and trigonal warping of the
bands appearing in higher-order k�p terms.29) Metallic
nanotubes are almost ballistic with a mean free path
exceeding 1 mm even at room temperature.30,31) A lattice
vacancy with strong and short-range potential causes an
interesting conductance quantization.32–37)

Mechanical deformation is known to modify the band
gap.38,39) In fact, the presence of a lattice distortion can be
incorporated in the k�p scheme as an effective flux.20,31,40–42)

It is also shown in the k�p scheme that the nonzero

curvature causes an effective flux.20,40,43) Recent experi-
ments on the conductance in metallic nanotubes are under-
stood by taking a small gap induced by an effective flux into
account.22,44) Nanotubes millimeters long synthesized re-
cently by a water-assisted technique is likely to show a
diffusive behavior.4)

In this paper, we shall calculate the Boltzmann conduc-
tivity in the k�p scheme and explore effects of AB flux on
transport properties of nanotubes in the diffusive region. In
§2, the k�p scheme is reviewed very briefly. Some examples
of explicit results of the conductivity in the presence of flux
are presented in §3 for impurity scatterings and in §4 for the
electron–phonon scattering, demonstrating a possibility to
directly determine a small gap present in metallic nanotubes
experimentally. The results are discussed in §5 and summa-
rized in §6.

2. Effective-Mass Approximation

2.1 Energy bands and wave functions
The structure of a two-dimensional graphite is shown in

Fig. 1 together with the first Brillouin zone and coordinate
systems to be used in the following. In a two-dimensional
graphite, two bands having approximately a linear dispersion
cross the Fermi level (chosen at " ¼ 0) at K and K0 points of
the first Brillouin zone. Electronic states of the �-bands near
a K point are described by the k�p equation:17,20,45)

�ð�xk̂kx þ �yk̂kyÞFðrÞ ¼ "FðrÞ; ð2:1Þ

where � is a band parameter, �x and �y are the Pauli spin
matrices, and k̂k ¼ ðk̂kx; k̂kyÞ ¼ �ir is a wave-vector operator.
Two components of the wave function FðrÞ correspond to
the amplitude at A and B sites in a unit cell.

The structure of a nanotube is specified by a chiral vector
L corresponding to the circumference as shown in Fig. 1. It
is written as

L ¼ naaþ nbb; ð2:2Þ

in terms of two integers na and nb, where a and b are the
primitive translation vectors of a graphite sheet. In the
following we shall choose the x axis in the circumference
direction and the y axis in the axis direction, i.e., L ¼ ðL; 0Þ,
where L is the circumference. The angle � between L and
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the horizontal axis is called the chiral angle. Electronic states
of a nanotube with a sufficiently large diameter are obtained
by imposing the boundary conditions around the circum-
ference direction:

Fðrþ LÞ ¼ FðrÞ expð2�i�Þ; ð2:3Þ

where � ¼ ��=3 with integer � ¼ 0 or �1 determined by

na þ nb ¼ 3M þ �; ð2:4Þ

with integer M. Metallic and semiconducting nanotubes
correspond to � ¼ 0 and �1, respectively.

A nonzero curvature causes a shift in the origin of k̂kx and
k̂ky in the k�p Hamiltonian. The shift in the y direction is
irrelevant and that in the x direction can be replaced by an
effective flux ’s. The flux was estimated as20,43)

’s ¼
2�

4
ffiffiffi
3

p
a

L
p cos 3�; ð2:5Þ

with a being the lattice constant of the two-dimensional
graphite, p ¼ 1� ð3=8Þ� 0=�, � ¼ �ð

ffiffiffi
3

p
=2ÞV�

ppa, and � 0 ¼
�ð

ffiffiffi
3

p
=2ÞðV�

pp � V�
ppÞa, where V�

pp (¼ ��0) and V�
pp are the

conventional tight-binding parameters for neighboring p

orbitals.43) The curvature effect is largest in zigzag nanotubes
with � ¼ 0 and absent in armchair nanotubes with � ¼ �=6.

The presence of a lattice distortion u ¼ ðux; uy; uzÞ causes
also an effective flux. It is estimated as31)

’s ¼
Lg2

2��
½ðuxx � uyyÞ cos 3�� 2uxy sin 3��; ð2:6Þ

where u�� (�, � ¼ x, y) denotes the lattice strain given by

uxx ¼
@ux

@x
þ

2�uz

L
; uyy ¼

@uy

@y
;

2uxy ¼
@ux

@y
þ

@uy

@x
;

ð2:7Þ

and g2 is the electron–phonon interaction energy given by
g2 ¼ ð�=2Þ�0 with � � 1, where � ¼

ffiffiffi
3

p
a�0=2.

31,42) This
shows that twist and stretch deformation give rise to nonzero
flux in armchair � ¼ �=6 and zigzag � ¼ 0 nanotubes,
respectively.

In the presence of such flux ’s due to finite curvature and
strain, we have � ¼ ’e with

’e ¼ �
�

3
þ ’s: ð2:8Þ

In the presence of flux � due to a magnetic field parallel to
the axis, further, we have

� ¼ ’þ ’e; ð2:9Þ

where ’ ¼ �=�0 with the magnetic flux quantum �0 ¼ ch=e.
An effective flux, defined by

�e ¼ ’e�0; ð2:10Þ

is used also in the following.
The energy bands are specified by s ¼ �1, integer n

corresponding to the discrete wave vector along the circum-
ference direction, and the wave vector k in the axis direction,
where s ¼ þ1 and �1 denote the conduction and valence
bands, respectively. The wave function for a band associated
with the K point is written as

FK ¼
1ffiffiffiffiffiffiffiffiffi
2AL

p
b’þ’e ðn; kÞ

s

� �
exp½i	’þ’e ðnÞxþ iky�; ð2:11Þ

where A is the tube length,

	’þ’e ðnÞ ¼
2�

L
ðnþ ’þ ’eÞ; ð2:12Þ

and

b’þ’e ðn; kÞ ¼
	’þ’e ðnÞ � ikffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	’þ’e ðnÞ2 þ k2

q : ð2:13Þ

The corresponding energy is given by


s’þ’e
ðn; kÞ ¼ s�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	’þ’e ðnÞ2 þ k2

q
: ð2:14Þ

The energy bands and wave functions for the K0 point are
obtained by replacing k̂ky by �k̂ky and in the boundary
conditions ’e by �’e. Correspondingly, we have 	0 ¼
	’�’e ðnÞ and b0 ¼ b’�’e ðn; kÞ�.

Figure 2 shows an example of the energy dispersion of the
band n ¼ 0 near the Fermi energy for small ’e. In the
absence of magnetic flux ’, as shown by dotted lines, the
energy dispersions are the same between the K and K0 points
with gap 2j’ejð2��=LÞ. When ’e > 0, the gap diminishes at

η

η

η

η

η π

η

η

φ

Fig. 1. (a) Lattice structure of a two-dimensional graphite sheet. The coordinates ðx0; y0Þ are fixed on the graphite sheet and ðx; yÞ are chosen in such a way

that x is along the circumference and y is along the axis. � is the chiral angle. (b) The first Brillouin zone and K and K0 points. (c) The coordinates for the

nanotube. An Aharonov–Bohm flux � is applied in the axis direction of the nanotube.
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the K0 point by applying ’, while it increases at the K point,
as shown by solid lines. The Fermi wave-number in the axis
direction is denoted by k0 for the K point and k00 for the K0

point, with

k0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð"=�Þ2 � 	2’þ’e

q
;

k00 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð"=�Þ2 � 	2’�’e

q
;

ð2:15Þ

for the Fermi energy ", where

	’�’e � 	’�’e ð0Þ; ð2:16Þ

for simplicity. When the electron concentration is suffi-
ciently small, the K point or the K0 point is depopulated by
electrons for sufficiently large magnetic flux ’. At ’ ¼ ’e,
the dispersion becomes completely linear at the K0 point.
The same thing happens for the K point at ’ ¼ �’e.

The conductivity is evaluated under two different con-
ditions, fixed energy and electron density. The latter is
expected to be more appropriate for long nanotubes
exhibiting diffusive conduction. The electron density is
characterized by the average Fermi wave number kþ defined
by

kþ ¼
1

2
ðk0 þ k00Þ: ð2:17Þ

2.2 Effective potential of impurity
Most of scatterers including charged centers are expected

to be characterized by a potential with range larger than the
lattice constant a. For such scatterers, the Hamiltonian is
given by a diagonal matrix for both K and K0 points, and
matrix elements between K and K0 points are safely
neglected.23) These scatterers will be called long-range
although their potential range can be comparable to the
lattice constant and therefore can actually be much shorter
than the electron wavelength typically of the order of the
nanotube circumference. In the following, we shall confine
ourselves to the case that the potential range of long-range

scatterers is sufficiently smaller than the circumference. In
this case we can replace the potential of each scatterer by a
delta function with strength uL.

When the potential range becomes shorter than the lattice
constant, the potential for A and B sub-lattice points in a unit
cell can be different and matrix elements between K and K0

points can no longer be neglected. As such scatterers, we
shall consider those with potential range much smaller than
the lattice constant and strength uS, giving rise to the same
amplitude for scattering within the K and K0 points and for
scattering between the K and K0 points. These scatterers are
called short-range in the following.

In the lowest Born approximation the scattering strength
for long- and short-range scatterers is characterized by the
dimensionless quantity WL and WS, respectively, with

WL ¼
nLhjuLj2i
4��2

; WS ¼
nShjuSj2i
4��2

; ð2:18Þ

where nL and nS are the concentration of long- and short-
range scatterers in a unit area, respectively.28) In the
following, we shall fix the total strength W with

W ¼ WL þWS; ð2:19Þ

and vary the parameter � defined by

� ¼
WS

W
; ð2:20Þ

in order to see effects of short-range scatterers.28)

2.3 Effective potential for phonon
The electron–phonon interaction is considered in a

continuum model for long-wavelength acoustic phonons.
An effective Hamiltonian for the electron–phonon interac-
tion for the K point is given by31)

Hel{ph ¼
V1 V2

V�
2 V1

� �
; ð2:21Þ

with

V1 ¼ g1ðuxx þ uyyÞ;
V2 ¼ g2e

3i�ðuxx � uyy þ 2iuxyÞ;
ð2:22Þ

where the strain tensor is defined in eq. (2.7). The
Hamiltonian for the K0 point is obtained by replacing V2

with �V�
2 and V�

2 with �V2. The diagonal term represents
coupling through the deformation potential g1 and the off-
diagonal coupling g2 through the bond-length change. It has
been shown that g1 � g2.

31) Note that eq. (2.6) is derived
easily from eq. (2.21).

Phonons contributing to the electron scattering are
described well by the potential-energy functional

U½u� ¼
Z

dx dy
1

2
fBðuxx þ uyyÞ2

þ �½ðuxx � uyyÞ2 þ 4u2xy�g;
ð2:23Þ

where B and � are the bulk and shear modulus, respectively.
An elastic scattering approximation is employed, because
the phonon velocity is much slower than the electron.
Further, a high-temperature approximation is used for the
phonon distribution function. Then, the relaxation time due
to electron–phonon scattering becomes independent of the
chirality �.31)

KK’ k

ε
EF

k0k’0

4πγ|φe|/φ0L

Fig. 2. A schematic view of the bands near the Fermi energy. In the

absence of a magnetic flux shown by dotted lines, the energy gaps of

4��j’ej=L are present at the K and K0 point. As shown by solid lines, the

band gap diminishes at the K0 point and increases at the K point in the

presence of magnetic flux � for ’e > 0. k0 and k00 are the Fermi wave-

number measured from K and K0 points, respectively.
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2.4 Boltzmann conductivity
In this study, we calculate the Boltzmann conductivity

� ¼
e2

�h�

X
m

�mð"Þ; ð2:24Þ

where �mð"Þ is the mean free path.27,46) It satisfies the
transport equationX

m0

ðKm�m0þ � Kmþm0þÞ�m0 ð"Þ ¼ 1; ð2:25Þ

where m and m0 denote the bands crossing the energy ", and
þ (�) the wave vector corresponding to the positive
(negative) velocity in the y direction. The kernel for the
transport equation is given by

K�� ¼
AhjV��j2i
h�
2jv�v�j

; ð2:26Þ

for � 6¼ �, where v� is the velocity of mode � � ðm�Þ and
h� � �i denotes an average over impurities or a thermal
average. The diagonal elements are defined by

K�� ¼ �
X
�6¼�

K��: ð2:27Þ

3. Impurity Scattering

3.1 Conductivity
When a magnetic flux is present, the occupation of the

bands varies and some bands can be depopulated by
electrons completely. First, we shall consider the case that
such depopulation does not occur and the lowest conduction
band is occupied by electrons for both K and K0 points. In
this case the Fermi energy " is related to kþ given by
eq. (2.17) through

" ¼
2��

L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

2�’e

kþL

� �2
" #

’2 þ ’2
e þ

kþL

2�

� �2

vuut : ð3:1Þ

This shows that " increases with the magnetic flux ’.
The conductivity is given by

�ð’Þ ¼
e2

�h�
ð�K þ�K0

Þ; ð3:2Þ

where �K and �K0
are the mean free path for the K and K0

points. For the K point, we have

1

�K
¼

1

�K
L

þ
1

�K
S

;

1

�K
L

¼
2�Wð1� �Þ

L

	2’þ’e

k20
;

1

�K
S

¼
2�W�

L
1þ

	2’þ’e

k20

 !1=2

	 1þ
	2’þ’e

k20

 !1=2

þ 1þ
	2’�’e

k00
2

 !1=2
2
4

3
5;

ð3:3Þ

where �K
L and �K

S are contributions of long- and short-range
scatterers, respectively. The results for the K0 point, �K0

,
�K0

L , and �K0

S , are given by exchanging k0 and k00 and
replacing ’e with �’e.

The absence of backward scattering23) corresponds to the

divergence of �K
L at ’ ¼ �’e and �K0

L at ’ ¼ þ’e, giving
rise to infinitely large conductivity in the absence of short-
range scatterers, i.e., � ¼ 0. At these values of the flux,
therefore, the mean free path and the conductivity of the
corresponding point are determined by scattering by short-
range scatterers.

3.2 Metallic nanotubes
In metallic nanotubes, the effective flux is very small, i.e.,

j’ej 
 1, and therefore the condition ’ ¼ þ’e or ’ ¼ �’e

can be reached easily using a conventional magnet. In the
vicinity of ’ ¼ �’e, for example, the mean free path for the
K point is written as

1

�K
¼

2�W

L

2�

Lk0

� �2

ð1� �Þ½ð’þ ’eÞ2 þ�’2�; ð3:4Þ

with

�’ ¼
ffiffiffiffiffiffiffiffiffiffiffi
�

1� �

r
Lk0

2�
1þ 1þ 4’2

e

2�

Lk00

� �2
" #1=2

0
@

1
A

1=2

: ð3:5Þ

Therefore, the mean free path exhibits a Lorentzian-like
peak at ’ ¼ �’e with width �’. The condition that �ð’Þ has
actually a peak can be obtained approximately by the
condition �ð’eÞ > �ð0Þ as �’ <

ffiffiffi
2

p
j’ej. For Lkþ=2� �

j’ej, for example, we have k0 � k00 � kþ and therefore the
condition for the peak appearance becomes

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�=ð1� �Þ

p
ðLkþ=

2�Þ < j’ej.
When

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�=ð1� �Þ

p
ðLkþ=2�Þ � j’ej, the contribution of

long-range scatterers can be neglected safely and the
conductivity is given by

�ð’Þ ¼
e2L

2�2h�W�
1þ

	2’þ’e

k20

 !�1=2

1þ
	2’�’e

k20

 !�1=2

: ð3:6Þ

This does not exhibit any peak structure at ’ � �’e, but
rather decreases with the increase of ’ and approaches the
value independent of ’ and ’e,

�ð’Þ !
e2L

2�2h�W�
: ð3:7Þ

for Lkþ=2� � j’ej.
Figure 3 shows some examples of the conductivity for

� ¼ 0:01 as a function of ’=’e with the fixed electron
density. A prominent peak appears for the small electron
density kþ. Note that, results for a fixed Fermi energy are
similar to those for the fixed density in this region of the
electron density.

Figure 4 shows the conductivity for several values of � at
ðkþL=2�Þ=’e ¼ 5. For � ¼ 0 the conductivity diverges at
’ ¼ ’e. For nonzero �, the peak appears and its height
decreases with the increase of �. The peak disappears around
� ¼ 0:04, in agreement with the condition obtained above.

3.3 Semiconducting nanotubes
In semiconducting nanotubes, the effective flux is given

by ’e � �1=3 (� depending on the structure). It is almost
impossible to reach this amount of the flux using conven-
tional magnets for which ’ 
 1. We can discuss only
whether the flux tends to increase or decrease the con-
ductivity. The first derivative d�=d’ at ’ ¼ 0 vanishes
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identically because d�K=d’ and d�K0=d’ cancel each other,
and therefore we have

�ð’Þ ¼ �ð0Þ þ
1

2
�00ð0Þ’2 þ � � � : ð3:8Þ

When the electron concentration is not extremely large we
have Lkþ=2� 
 1=3. In this case, we have

�00ð0Þ ¼
4e2

�h�W

2�

L

1� 4�� �2

ð1þ �Þ3
1

k2þ
; ð3:9Þ

for a fixed electron density. It is positive for � <
ffiffiffi
5

p
� 2 ¼

0:236 . . . and negative otherwise.
It is concluded, therefore, that a usual semiconducting

nanotube exhibits a positive magnetoconductivity, its
amount being strongly dependent on the electron concen-
tration. Only dirty semiconducting nanotubes containing
large amount of short-range scatterers exhibit a negative
magnetoconductivity. The tendency that dominant long-
range scatterers cause a positive magnetoconductivity, while
short-range scatterers cause a negative magnetoconductivity,
corresponds to the behavior of the peak structure in metallic
nanotubes, discussed in the previous section.

3.4 Band depopulation
When the electron concentration is small and the band

edge of K and K0 points cross the Fermi level as a function
of the flux, the conductivity exhibits a singular behavior
depending strongly on whether the electron density or the
Fermi level is fixed. Several examples of calculated Fermi
energy are shown with the fixed electron densities as a
function of the magnetic flux for ’e > 0 in Fig. 5. The band
edges �j	’�’e j and �j	’þ’e j are also shown by thin solid and
dotted lines, respectively. Only the K0 point is populated in
the region between the solid and dotted thin lines, and both
K and K0 points are populated above the dotted thin lines.
Near the band edges, the corresponding energy strongly
depends on the magnetic flux.

The conductivity under the condition of a fixed energy
and a fixed electron density are shown in Figs. 6 and 7,
respectively. At a critical flux the conductivity vanishes due
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Fig. 3. Calculated Boltzmann conductivity for several values of the

electron density kþ, when electrons occupy the lowest conduction band of

the K and K0 points. The ratio of the short-range scatterers is chosen as

� ¼ 0:01.
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to the divergence in the scattering probability caused by the
infinite density of states characteristic of the one-dimen-
sional system. Beyond this flux the K point is depopulated
completely and electrons are only in the band associated
with the K0 point. Apart from this singular behavior, the
conductivity has a general tendency to exhibit a peak at
’ ¼ ’e (also at ’ ¼ �’e).

4. Electron–Phonon Scattering

In the presence of the electron–phonon interaction

eq. (2.21), where the scattering is only within the K point
or K0 point, we have the conductivity

�ð’Þ ¼
e2

�h�
ð�K þ�K0

Þ; ð4:1Þ

with

1

�K
¼

2�

L

kBT

�2
g21
B

	2’þ’e

k20
þ

g22
�

1þ
	2’þ’e

k20

 !" #
; ð4:2Þ

and �K0 obtained by replacing 	’þ’e with 	’�’e and k0 with
k00. When only a single valley is occupied, the conductivity is
given by its contribution alone. For ’ ¼ ’e ¼ 0, in partic-
ular, this expression is reduced to

�A ¼
e2

h

2L�2�

g22kBT
; ð4:3Þ

obtained previously.31)

Figure 8 shows the conductivity of a metallic nanotube as
a function of the magnetic flux under the condition of a fixed
electron density for g1=g2 ¼ 10 and B=� ¼ 3=

ffiffiffi
2

p
.31) A peak

with height � �A=2 appears at ’ ¼ ’e when the electron
density is low. With the increase of the electron density, the
peak becomes less prominent and disappears around
ðkþL=2�Þ=ð�e=�0Þ � 10. This behavior is very similar to
the case of the impurity scattering in Fig. 3 for � ¼ 0:01.
The conductivity approaches �A for sufficiently large
electron density. The figure contains also some results for
a small electron density [ðkþL=2�Þ=’e ¼ 1, 0.5, and 0.25]
for which the K or K0 valley is depopulated with the increase
of the flux. No singular behavior appears even in such a case.

In semiconducting nanotubes with ’e � �1=3 and
kþL=2� 
 1, we have eq. (3.8) with

�00ð0Þ ¼ �A
2Bg22

Bg22 þ �g21

2�

kþL

� �2

: ð4:4Þ
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Therefore, a semiconducting nanotube almost always ex-
hibits a positive magnetoconductivity and its amount is
strongly dependent on the electron concentration.

5. Discussion

An effective flux due to the curvature of a nanotube
[eq. (2.5)] is estimated as ’s � 0:05	 p cos 3� for a typical
nanotube with L � 5 nm with a parameter jpj < 1.43) This
flux is the greatest in the zigzag tubes with � ¼ 0, followed
by chiral tubes, and is nonexistent in the armchair tubes with
� ¼ �=6, as confirmed by an experiment with numerical
simulations.22) An effective flux appears in the presence of
uniaxial stress as well as a hydrostatic pressure because of
eq. (2.6). The total effective flux can vary among different
nanotubes although their structure is the same. The present
calculation shows that the effective flux can be measured
directly by a sharp peak as a function of the applied
magnetic flux in metallic nanotubes. In fact, the flux can be
as large as �=�0 ¼ 5	 10�3 at 10 T for a typical nanotube
with L � 5 nm.

The sharpness of the conductivity peak as a function of
the flux is sensitive to the electron density and the amount of
short-range scatterers. The electron density may be con-
trolled by a gate voltage and therefore a careful analysis of
the gate-voltage dependence in the presence of a flux can
give important information on dominant scatterers in me-
tallic nanotubes.

At a room temperature, electron–phonon scattering con-
stitutes the main origin of the resistivity, and the conduc-
tivity is likely to exhibit a peak structure as a function of an
applied flux in metallic nanotubes. A careful analysis of
possible gate-voltage dependence can reveal the relative
strength of the electron–phonon interaction through a
deformation potential and a bond-length change.

In metallic nanotubes with linear dispersion, effects of
electron–electron interaction of a Tomonaga–Luttinger
type47–53) can be important and may modify the flux
dependence. The fact that the conductivity exhibits a sharp
peak as a function of a magnetic flux is expected to be valid
even if such interaction effects are considered.

Whether we have positive or negative magnetoconduc-
tivity in semiconducting nanotubes in the presence of a flux
can depend on the change in the strength of screening
effects. The static screening constant in the long-wavelength
limit is determined by the density of states

Dð’Þ ¼
h�

�
1þ

	2’þ’e

k20

 !1=2

þ
h�

�
1þ

	2’�’e

k00
2

 !1=2

¼ Dð0Þ þ
1

2
D00ð0Þ’2 þ � � � :

ð5:1Þ

For ’e � �1=3 and kþL=2� 
 1, we have

D00ð0Þ �
4

27

h�

�

2�

kþL

� �5

; ð5:2Þ

under the condition of a fixed electron density. The second
derivative is positive also under the condition of a fixed
energy. Thus, the screening has a tendency to be enhanced
due to flux. For the conductivity, however, screening for the
wave number 2kþ is important. The logarithmic divergence
of the screening function at 2kþ is known to be responsible

to a power-law temperature dependence of the conductiv-
ity.54,55) This screening problem in the presence of flux is left
for a future study.

6. Conclusion

We have calculated the Boltzmann conductivity in carbon
nanotubes in the presence of a magnetic flux in the k�p
scheme. A gap induced by strain or curvature effects can be
identified as a peak in the conductivity by applying an
Aharonov–Bohm flux in metallic nanotubes. The peak
corresponds to the absence of backscattering in metallic
nanotubes with no effective flux. Various information on
curvature and strain effects and the relative amount of short-
range scatterers can be obtained by careful measurement of
the conductivity in the presence of the magnetic flux and by
changing the electron density through a gate voltage.
Semiconducting nanotubes exhibit a positive magnetocon-
ductivity and its amount increases with the decrease of the
electron concentration. Experiments along these lines are
highly desired.

Acknowledgments

This work has been supported in part by a NAREGI nano-
science project, by a 21st Century COE Program at Tokyo
Tech ‘‘Nanometer-Scale Quantum Physics’’, and by Grant-
in-Aid for Scientific Research from the Ministry of Educa-
tion, Culture, Sports, Science and Technology, Japan.

1) S. Iijima: Nature (London) 354 (1991) 56.

2) S. Iijima and T. Ichihashi: Nature (London) 363 (1993) 603.

3) D. S. Bethune, C. H. Kiang, M. S. de Vries, G. Gorman, R. Savoy,

J. Vazquez and R. Beyers: Nature (London) 363 (1993) 605.

4) K. Hata, D. N. Futaba, K. Mizuno, T. Namai, M. Yumura and

S. Iijima: Science 306 (2004) 1362.

5) H. Ajiki and T. Ando: J. Phys. Soc. Jpn. 62 (1993) 2470 [Errata; 63

(1994) 4267].

6) H. Ajiki and T. Ando: Physica B 201 (1994) 349.

7) N. Hamada, S. Sawada and A. Oshiyama: Phys. Rev. Lett. 68 (1992)

1579.

8) J. W. Mintmire, B. I. Dunlap and C. T. White: Phys. Rev. Lett. 68

(1992) 631.

9) R. Saito, M. Fujita, G. Dresselhaus and M. S. Dresselhaus: Phys. Rev.

B 46 (1992) 1804.

10) R. Saito, M. Fujita, G. Dresselhaus and M. S. Dresselhaus: Appl. Phys.

Lett. 60 (1992) 2204.

11) M. S. Dresselhaus, G. Dresselhaus and R. Saito: Phys. Rev. B 45

(1992) 6234.

12) R. A. Jishi, M. S. Dresselhaus and G. Dresselhaus: Phys. Rev. B 47

(1993) 16671.

13) K. Tanaka, K. Okahara, M. Okada and T. Yamabe: Chem. Phys. Lett.

191 (1992) 469.

14) Y. D. Gao and W. C. Herndon: Mol. Phys. 77 (1992) 585.

15) D. H. Robertson, D. W. Brenner and J. W. Mintmire: Phys. Rev. B 45

(1992) 12592.

16) C. T. White, D. C. Robertson and J. W. Mintmire: Phys. Rev. B 47

(1993) 5485.

17) H. Ajiki and T. Ando: J. Phys. Soc. Jpn. 62 (1993) 1255.

18) H. Ajiki and T. Ando: Physica B 216 (1996) 358.

19) T. Ando: Semicond. Sci. Technol. 15 (2000) R13.

20) T. Ando: J. Phys. Soc. Jpn. 74 (2005) 777.

21) S. Zaric, G. N. Ostojic, J. Kono, J. Shaver, V. C. Moore, M. S. Strano,

R. H. Hauge, R. E. Smalley and X. Wei: Science 304 (2004) 1129.

22) J. Cao, Q. Wang, M. Rolandi and H. Dai: Phys. Rev. Lett. 93 (2004)

216803.

23) T. Ando and T. Nakanishi: J. Phys. Soc. Jpn. 67 (1998) 1704.

24) T. Ando, T. Nakanishi and R. Saito: J. Phys. Soc. Jpn. 67 (1998) 2857.

25) T. Nakanishi and T. Ando: J. Phys. Soc. Jpn. 68 (1999) 561.

J. Phys. Soc. Jpn., Vol. 74, No. 11, November, 2005 T. NAKANISHI and T. ANDO 3033



26) T. Ando and H. Suzuura: J. Phys. Soc. Jpn. 71 (2002) 2753.

27) T. Ando: J. Phys. Soc. Jpn. 73 (2004) 1273.

28) T. Ando and K. Akimoto: J. Phys. Soc. Jpn. 73 (2004) 1895.

29) K. Akimoto and T. Ando: J. Phys. Soc. Jpn. 73 (2004) 2194.

30) H. Suzuura and T. Ando: Physica E 6 (2000) 864; H. Suzuura and

T. Ando: Mol. Cryst. Liq. Cryst. 340 (2000) 731; H. Suzuura and

T. Ando: in Proc. 25th Int. Conf. Physics of Semiconductors, ed.

N. Miura and T. Ando (Springer, Berlin, 2001) p. 1525; H. Suzuura

and T. Ando: in Nanonetwork Materials, ed. S. Saito, T. Ando,

Y. Iwasa, K. Kikuchi, M. Kobayashi and Y. Saito (American Institute

of Physics, New York, 2001) p. 269.

31) H. Suzuura and T. Ando: Phys. Rev. B 65 (2002) 235412.

32) L. Chico, L. X. Benedict, S. G. Louie and M. L. Cohen: Phys. Rev. B

54 (1996) 2600 [Errata; 61 (2000) 10511].

33) M. Igami, T. Nakanishi and T. Ando: J. Phys. Soc. Jpn. 68 (1999) 716;

M. Igami, T. Nakanishi and T. Ando: J. Phys. Soc. Jpn. 68 (1999)

3146; M. Igami, T. Nakanishi and T. Ando: Physica B 284–288

(2000) 1746; M. Igami, T. Nakanishi and T. Ando: Mol. Cryst. Liq.

Cryst. 340 (2000) 719.

34) T. Ando, T. Nakanishi and M. Igami: J. Phys. Soc. Jpn. 68 (1999)

3994.

35) T. Nakanishi, M. Igami and T. Ando: Physica E 6 (2000) 872.

36) H. J. Choi, J.-S. Ihm, S. G. Louie and M. L. Cohen: Phys. Rev. Lett. 84

(2000) 2917.

37) M. Igami, T. Nakanishi and T. Ando: J. Phys. Soc. Jpn. 70 (2001) 481.

38) L. Yang, M. P. Anantram, J. Han and J. P. Lu: Phys. Rev. B 60 (1999)

13874.

39) L. Yang and J. Han: Phys. Rev. Lett. 85 (2000) 154.

40) C. L. Kane and E. J. Mele: Phys. Rev. Lett. 78 (1997) 1932.

41) C. L. Kane, E. J. Mele, R. S. Lee, J. E. Fischer, P. Petit, H. Dai,

A. Thess, R. E. Smalley, A. R. M. Verschueren, S. J. Tans and

C. Dekker: Europhys. Lett. 41 (1998) 683.

42) T. Ando: J. Phys. Soc. Jpn. 73 (2004) 3351.

43) T. Ando: J. Phys. Soc. Jpn. 69 (2000) 1757.

44) P. Jarillo-Herrero, J. Kong, H. S. J. van der Zant, C. Dekker, L. P.

Kouwenhoven and S. de Franceschi: Nature 434 (2005) 484.

45) J. C. Slonczewski and P. R. Weiss: Phys. Rev. 109 (1958) 272.

46) T. Seri and T. Ando: J. Phys. Soc. Jpn. 66 (1997) 169.

47) S. Tomonaga: Prog. Theor. Phys. 5 (1950) 544.

48) J. M. Luttinger: J. Math. Phys. 4 (1963) 1154.

49) L. Balents and M. P. A. Fisher: Phys. Rev. B 55 (1997) R11973.

50) Yu. A. Krotov, D.-H. Lee and S. G. Louie: Phys. Rev. Lett. 78 (1997)

4245.

51) C. Kane, L. Balents and M. P. A. Fisher: Phys. Rev. Lett. 79 (1997)

5086.

52) R. Egger and A. O. Gogolin: Eur. Phys. J. B 3 (1998) 281.

53) H. Yoshioka and A. A. Odintsov: Phys. Rev. Lett. 82 (1999) 374.

54) K. A. Matveev, D. Yue and L. I. Glazman: Phys. Rev. Lett. 71 (1993)

3351.

55) A. Kawabata: J. Phys. Soc. Jpn. 63 (1994) 2047.

3034 J. Phys. Soc. Jpn., Vol. 74, No. 11, November, 2005 T. NAKANISHI and T. ANDO


