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Quantum interference effects in antidot lattices in magnetic fields
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A numerical study is performed on quantum interference effects in antidot lattices in a weak magnetic field
with the use of a recursive Green’s function technique. An irregular Aharonov-BaéBi+type oscillation
varying sensitively with antidot diameters and periods is dominant in ideal antidot lattices. The AB-type
oscillation disappears and an Al'tshuler, Aranov, and SpivekS) oscillation manifests itself in the presence
of fluctuations in the size or position of antidots. The AAS oscillation is much stronger in hexagonal lattices
than in square lattices, in good agreement with experimgB€163-18206)08335-X

[. INTRODUCTION system to system and cancels out completely after the aver-
age over many different systems. The AB oscillation was
Recent developments in crystal growth and microfabricaalso observed in a ballistic ring made of a high-mobility 2D
tion technology have made it possible to obtain ballistic elecsystem,” and was theoretically analyzéd.
trons controlled by using artificial structures. A two-  In this paper, we calculate the conductance of antidot lat-
dimensional2D) electron system with a lattice of a depleted tices with a finite size and discuss under which conditions
circular region called an antidot has been realized in a highAAS oscillations become observable. In Sec. Il, the model
mobility GaAs/Al,Ga,_,As heterostructure. Such systems and the procedure of the calculation are described. In Sec.
are usually called antidot lattices. The purpose of the presenti, the conductance is calculated as a function of a magnetic
paper is to study quantum-interference effects on the trandield, and the dependence on the strength of impurity scatter-
port in such antidot lattices. ing, fluctuations in the antidot, and the lattice structure are
During the past several years, magnetoresistance in antiiscussed. Discussions and conclusions are given in Sec. IV.
dot lattices has attracted considerable attention. In antiddd preliminary account of a part of this work was presentgd.
lattices, the elastic and inelastic scattering lengthsl@ There have been various theoretical investigations of
um, typically) are usually much longer than the lattice pe-magnetotransport in antidot lattices in which quantum-
riod (=200 nm, typically. The diagonal resistivity exhibits interference effects are taken into accotit.” Some such
distinct peaks when the classical cyclotron orbit fits around avorks studied dot or antidot arrays in high magnetic fields
certain number of antidofs3 This commensurate oscillation Where edge states play an important i€ Some consid-
can be understood in classical mechafiics. ered only a system having a lattice period much smaller than
On the other hand, measurements at very low temperdhat in realistic antidot8>*’ In the present calculation, both
tures revealed quantum oscillations. A fine structfiie su-  the lattice period and antidot potential are chosen in such a
perimposed upon the commensurate peak, which is exway that the model simulates actual systems quite Welf
plained by the semiclassical quantization of periodic orbits
existing in the chaotic electron motidd:® Recently, an
Al'tshuler, Aronov, and SpivakAAS) oscillatior? was ob-
served in antidot lattices with small lattice periods Z00 In order to study interference effects in antidot lattices, we
nm).10-12 shall consider systems having a finite size and containing a
The Aharonov-Bohm(AB) and AAS oscillations of the finite number of antidots. The potential of an antidot in a
conductance have been known as typical quantumWigner-Seitz cell is given by
interference effects caused by the AB effetThe AAS os-
cillation was observed in a conductor having the form of a vr(N=Ux(R)F(r—R), 2.2
hollow cylinder, and characterized by the oscillation as a
function of the magnetic flux passing through its cross sec
tion with period given by a half of the flux quantum
do=ch/e.* It was also observed experimentafiyand ana-
lyzed theoreticall{ in networks of thin metallic wires. Usu-
ally, the AAS oscillation is characteristic of diffusive sys-
tems, where the mean free path is much smaller than the si
of typical geometric structures.
The AAS oscillation appears in the conductance average
over many different samples, and therefore does not require

Il. MODEL AND METHOD

where Uy(R) is the maximum potential height for the cell
specified by lattice poinR. The lattice point is written as
R=n,a; + n,a, with integersn, andn,, wherea, anda, are
the primitive translation vectors.

For a hexagonal antidot lattice with lattice constantve
2f1(:%lvea1=(\/§/2,%)a and a,=(0,1)a. The potential of each
8ntidot is chosen as

4B13
the whole system to be coherent. On the contrary, the AB F(r)=co may-r) {7 m(ag—ap)-r||*
oscillation characterized by th#, period requires coherence a’ a’ a’ '
in the whole system, because it has a phase varying from (2.2
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FIG. 1. A schematic view of the cross section of the antidot
potential at the Fermi energy for finite-size antidot lattice. The sys-

tem is connected to an ideal wire or lead in thalirection and
confined by an abrupt and infinite barrier in tiiedirection. The

dotted lines denote contour lines of the antidot potential at
vr(r)/EE=0.25 and 2, and the thin solid lines are boundaries of
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of its nearest-neighbor points.g.,R+a,;). In the above the
exponents, 8/3 and 28 in Egs.(2.2) and(2.3), respectively,
have been chosen in such a way that the total exponent of the
cosine function becomes@ for which the potential maxi-
mum U, and the gradient at the Fermi energy are about the
same in the hexagonal and triangular lattices for antidot di-
ametersd/a=0.6~0.7 and steepneg3=1~2.

We shall calculate the conductance of a system with a
rectangular form with length, and widthL, connected to
an ideal wire in thec direction and confined by an abrupt and
infinite barrier in they direction. We shall replace the 2D
system by a rectangular lattice with lattice constamtand
a, and nearest-neighbor transfer integrigl@ndt, . We set
a,=(\3/2)a’, a,2=a’, t,=— 3%, andt,= —t for the hexago-
nal antidot lattice. This choice ensures that the lattice is com-
mensurate with an antidot period. For the model of the
square antidot lattice we symmetrically sgt=a,=a’ and
ty,=t,=—t. A magnetic fieldH is included in terms of a
Peierls phase factor of the transfer integral. This rectangular
lattice simulates the 2D system when we choose
t/Eg=N\g/27a’, with Ng/a’>1, where g is the Fermi
wavelength.

Effects of scattering from impurities are introduced
through the randomness of the site energy distributed uni-
formly with width W. In terms of the mean free path in
two dimensions, we hav&V/Eg=(6)\3/73a’?A)Y2 Real
antidot lattices have an inherent randomness arising from
fabrication processes. In the following this disorder is intro-
duced through fluctuations in antidot diameters distributed
uniformly with width d; around the mean valug

The conductance of a finite antidot lattice is calculated in
the framework of Landauer’s formifa

2¢?
G=TE |tmnl, (2.4
m,n
20 ————m———————
AN dda d/a=0.7
[ — 16 0 Hexagonal

Wigner-Seitz cells(a) Hexagonal lattice(b) Square lattice with a
primitive translation vector parallel or perpendicular to the direction
of the current(c) Square lattice with a primitive translation vector

inclined 45° from the direction of the current.

where B is a parameter describing the steepness of the po-

tential. For a square lattice with lattice constanton the

other hand, we uée
E(wx {wy
co§ —|cod —
a a

anda;=(1,0)a anda,=(0,1)a. An antidot diametedy, is
defined asdg=|r—R|, with vg(r)=Eg, whereEg is the
Fermi energy and is chosen on a line connectifyand one

2B

F(r)= , (2.3

Conductance (units of e2/xf)

e

hS

0.0 0.5 1.0 1.5
Magnetic Flux (units of ¢g)

FIG. 2. Some examples of the magnetic-field dependence of the
conductance of a hexagonal antidot lattice. Solid lahé¢a=0 and
AINg=16 (nearly ballisti¢. Dotted line:d;/a=0 and A/Ag=2
(nearly diffusivg. Dashed lined;/a=0.25 andA/\ =16 (antidot
fluctuationg.
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where a factor 2 due to the spin degeneracy is included, and 14 ————1———
tmn is the transmission amplitude at the Fermi energy from AAg=16
incombing staten to transmitted state of the leads. The | d/a=0.7

scattering matrix is calculated by use of the recursive
Green's-function technique as described in a previous
paper?® For systems witl_,~L,>A>a, the average con-
ductance is expected to provide information about an infi-
nitely large antidot lattice in which the phase coherence
length is of the order of, orL,.

Figure 1 schematically illustrates the system for which
actual numerical calculations are performed. The system has
size L,/\g=18 andL,/\g=20 in the hexagonal cade),
Ly/Ag=Ly/Ag=20 in the square case(b), and
Ly/Ng=Ly/\g=22 in the square cas&) in which the
primitive translation vector is 45° tilted from thedirection.

The antidot period is chosen as=4\g, roughly following

the parameters in actual antidot lattices used in experiments

(a~200 nm forAg~500 A).1°"22|n the following calcula-

tion we usef=1 or 2, andd/a=0.7 or 0'.6’ for WhICh t_he FIG. 3. Conductance of a hexagonal antidot lattice as a function

number of 1_D subbands below the Ferm,' level is t\,NO In theof magnetic flux¢ passing through a unit cell for different values

channel region between the nearest-neighbor antidots. FUt the fiuctuation of the antidot diametat;. The fluctuation

ther, we choosag/a’=7. We perform calculations for more , /a=0.25 corresponds to the change tyl of channel number

than 1000 samples typically to obtain the average. through a narrowest path between the nearest-neighbor antidots.
B=1,d/a=0.7,L,/\g=18, andL, /\¢=20.

Hexagonal
12

1.0

Conductance (units of e2/xh)

e ]
0.0 0.5 1.0 1.5

Magnetic Flux (units of ¢g)

ll. NUMERICAL RESULTS The AAS oscillation is essentially independent of the de-
tail in the spatial variation of the antidot potential, as shown
in Fig. 4, where the conductance for the steepness parameter
Figure 2 shows some examples of the calculated conduggs=2 is compared with that for3=1 in the cases
tance as a function of the magnetic flux passing through thgf/a:0_25 andA/\:=16. A slight difference in the abso-
unit cell in the case thg=1 andd/a=0.7 corresponding to  |ute value of the conductance comes from the difference in
Uo(R)/EF=4.38. Three different cases have been chosenhe effective channel width between nearest antidots. In fact,
(i) di/a=0 and A/Ng=16 (nearly ballistig, (ii) di/a=0  although the classical channel width for electrons having
and A/Ng=2 (nearly diffusive, and (i) d;/a=0.25 and  Fermi energy is the same, it becomes effectively larger for
M Ag=16 (antidot fluctuations The conductance exhibits electrons having a lower energy f@=2 than those for
an irregular oscillation which is similar to universal conduc- g=1. Quantum mechanically, the energy of 1D subbands
tance fluctuations in the nearly diffusive cagi¢, but seems pelow the Fermi level is lower foB=2 than for =1,

to be more irregular for cases and(iii ). There seem to be |eading to an enhancement of the velocity along the channel
some differences in the amplitude of fluctuations for varyingfor g=2.

magnetic field in these three cases, as will be discussed be-
low.

Figure 3 gives the conductance averaged over more than o e
1000 different samples in the nearly ballistic regime
A/Ng=16. In the absence of disorder in the antidot potential,
the conductance exhibits an irregular oscillation even after
the average. Both the phase and form of this oscillation vary
sensitively depending on parameters liéa, a/Ag, and
B, but are independent of the system sizeandL,. The
oscillation will be shown below to correspond well to an AB
oscillation of a single ideal ring, and therefore will be called
an AB-type oscillation in the following.

With the increase of antidot fluctuatiods, the amplitude
of the irregular AB-type oscillation decreases. The AAS os-
cillation characterized by the periafl,/2 becomes dominant

A. Hexagonal lattice

1.8

1.7

Hexagonal

1.1

ANE=16

Conductance (units of e2/nh)

for fluctuations as large ad;/a=0.25, and its amplitude 35:1:3.725 .
remains almost the same with a further increase in fluctua- ool v
tions. The amplitude of the oscillation is as large as 0.0 05 1.0 1.5
AG~0.3%/h. The AAS oscillation is accompanied by a Magnetic Flux (units of ¢g)

weak negative magnetoresistance, i.e., a slight increase in the
conductance as a function of a magnetic field except for the FIG. 4. The dependence on the steepness of the antidot potential
presence of the AAS oscillation. for the hexagonal lattice witd; /a=0.25 andA =\g=16.
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FIG. 5. Calculated conductance of a hexagonal lattice for
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FIG. 6. Some examples of the magnetic-field dependence of the

d/a=0.6,5=1, andA/A¢=16. conductance of a square antidot lattice. Solid lidgtla=0 and

A/Ng=16 (nearly ballistig. Dotted line:d;/a=0 and A/\g=2

) ) ) (nearly diffusivg. Dashed lined;/a=0.25 andA/\ =16 (antidot
Figure 5 shows the conductance for antidots with afyctuations.

smaller mean diametat/a=0.6. The other parameters are
the same as those for Fig. 3. The irregular AB-type oscilla-
tion is again dominant in the absence of fluctuations in thdattice where the crystal axis is at an incline of 45° against
antidot potential §;/a=0). Note that the form of the oscil- the direction of the currerig. 1(c)] with that of the parallel
lation for df /a=0is Comp|ete|y different from that shown in Square lattice in the presence of Strong disorder in the antidot
Fig. 3. In fact, the conductance takes a local maximum neapotential. The system sizé& {/\g=L,/\g=22) is similar to

#! $o=0 in Fig. 3, while it takes a minimum in Fig. 5. With that of other systems and the other parameters are the same
an increase in the fluctuation of the antidot potential, this2s in Fig. 3. The conductance is slightly smaller than that of
irregular oscillation is again taken over by the more regulathe parallel square lattice. This is presumably due to the fact
AAS oscillation. The AAS oscillation is dominant for thatthe reflection probability in the first and second rows of
d;/a=0.25, but the dip aip/¢o=3 has become invisibly antif:io.ts is larger, and i; qertainly not a bulk effect. The Iqrge
small. Further, the dip position is slightly shifted to the lower Statistical errors make it impossible to see the AAS oscilla-
magnetic-field side. This can be understood as a result of tHéoN. _ )
reduction in the ratio between the effective radius of the There are notable differences between the results in the
typ|ca| e|ectron paSS Circ"ng an antidot and the effectivesquare |att|Ce and those In the hexagonal Iatt|ce. The f0||OW-
channel width.

It should be noted that the contribution of the irregular
AB-type oscillation diminishes with the decrease in the mean
free pathA even in the absence of disorder in the antidot
potential. In fact, a beautiful AAS oscillation manifests itself
in the diffusive regime wherd/\r=2 or A/a=1/21° This
corresponds to the AAS oscillation observed in metallic dif-

fusive ringst>1®

L U
E A/he=16 ]
- dd/a=0.25
[ d/a=0.7

1 3.1

) 129
B. Square lattice

Figure 6 shows some examples of calculated conductance

of a square antidot latticE-ig. 1(b)] as a function of the

magnetic flux passing through the unit cell in the case when : 45 "I‘H_H*
B=1 andd/a=0.7, corresponding t o(R)/Ex=4.85. The 260 .
conductance exhibits an irregular oscillation similar to uni- P B N N B
versal conductance fluctuations. 0.0 0.5 1.0 15

This irregular AB-type oscillation disappears, and is even-
tually taken over by an AAS oscillation with an increase in
the disorder in the antidot potential. The critical amplitude of

Conductance (units of e2/xh)

265 |- .

Magnetic Flux (units of ¢g)

FIG. 7. Conductance of an inclined square lattice. The angles

the fluctuation in the antidot diameter is about the same agetween the direction of the current and crystal axis are denoted in

that in the hexagonal latticé.

the figure. Ly/Ng=L,/Ag=22 for 45°. L,/Ng=L,/\g=20 for
Figure 7 compares the conductance of the square antidor.
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FIG. 8. Calculated correlation function of the conductance in a FIG. 9. Calculated correlation function of the conductance in a
hexagonal lattice withl/a=0.7. The solid, dotted, and dashed lines square lattice witld/a=0.7.
correspond to cases €f nearly ballistic,(ii) nearly diffusive, and

(i) antidot fluctuations. The vertical bar represents typical statistismaller than fluctuations among different samples, in con-
cal errors. trast to the case of the universal conductance fluctuations.

ing are some examples of the features of the square lattice in
comparison with those of the hexagonal lattice.
(1) The absolute value of the conductance is much larger. An irregular AB-type oscillation appears in the near-
(2) The irregular oscillation in the absence of the disordemallistic antidot lattice, particularly in the hexagonal case. A
in the antidot potential has a smaller amplitude. close examination of the dependence on parameters such as
(3) The AAS oscillation in the presence of strong disorderd/a shows that the characteristic feature of the oscillation
in the antidot potential is much weaker. varies systematically as a function @fa. In fact, in certain
narrow regions ofl/a the conductance has a local maximum
at =0, and in other regions it has a local minimum. This is
result of the interference of electron waves in a single
allistic AB ring. In particular, the strong dependence on
d/a is due to the interference of waves associated with the
highest 1D subband occupied by electrons in the channel
_ _ region between two adjacent antidots, because their 1D wave
F(AB)=([9(B+AB)~(g(B+AB))ell9(B) vector is quite sensitive to the change in the parameters.
—(9(B))s])g)s: Let us consider, for example, a ballistic AB ring with
radiusa/2 shown in Fig. 10. The potential in each region
where ( )g is the average of the conductance of a singledivided by the dashed lines are chosen as
sample over the magnetic flux in the range <Od/
$0<1.7, and )5 means the sample average. Figures 8 and 9
show results for the hexagonal and square lattices, respec-

IV. DISCUSSION AND CONCLUSION

C. Fluctuations

In order to see the features of the magnetic fingerprint irf)1
antidot lattices, we shall calculate the correlation function
defined by

(3.9

vo(r) (I y<x<y3, y<—.3x+a)

tively. The correlation field is given by/¢y~0.1 for both u(r)=1{ va(r) (I y<x/\/§, y>— J3x+a) 4.1
hexagonal and square lattices, almost independent of the : '
strength of impurity scattering and the disorder in the antidot vwireIrD (N y>x/43, |r|<a),

potential. This field corresponds roughly to a single flux

4B/3

cog 4.2

Uwire(Y) = Ug

quantum in the total area of the system, in agreement witlyhere the origin is chosen at the center of the ring(r) is
the case of universal conductance fluctuations in diffusivejefined in Eq(2.1), uy=Uq(0)=Uy(a,), and

the magnetic field becomes smaller in the presence of ran- my
domness, due either to impurities or antidot disorder. On the 2a
value AG~0.3e?/ 7#i irrespective of systems, which corre- way. The system is connected =&t */3/2a to infinite
sponds to the universal value of the fluctuations in the twowires or leads whose potential is given by;(y). Further,

systems?31
The amount of conductance fluctuations as a function of
Ty
co{—
a
other hand, fluctuations of the conductance among different
samples in a fixed magnetic field are close to the universalhe potential in the other region is chosen in a symmetric
dimensional system in magnetic fieRfs This means that the system and leads are confined by an abrupt and infinite
fluctuations for varying magnetic fields can be considerablybarrier at the position satisfying(y)=2E.
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FIG. 10. A schematic illustration of a single AB ring. The ring 0.0 L~ N
with radiusa/2 is connected to an ideal leadsat =+ \/3/2a. 0.0 0.5 1.0 1.5
Magnetic Flux (units of ¢q)
The conductanc& is given by the probability for elec- FIG. 11. Two typical types of conductance across a single ring

tron waves incident from the left lead transmitted to the rightin & two-terminal geometrya/Ag=8.
lead according to Landauer’'s form#aThe Onsager rela-
tion requires thats in such a two-terminal geometry is an

even function of the magnetic field, and leads to theknown to be the case even in square lattices with a small

expansior’ period! Presumably such a trajectory plays less important
roles in hexagonal lattices with a small period.
G(p)=Go+G1c0427dl pg) + G,co084mdhl o)+ - - - . The essential features of the AAS oscillation observed

(4.3 experimentally’~*2can be summarized as follows.
(1) The oscillations are observed clearly in hexagonal lat-

Waves rotating around the ring many times, and reflectedices, but are almost invisible in square latti¢&&>
back and forth at the junctions with the leads, make compli- (2) The amplitude of the oscillations extrapolated up to
cated interferences. The coefficie@Y, is expected to be- absolute zero temperature Asr~0.3e?/h in hexagonal lat-
come negative when the interference is constructive at thdces.
junction with the lead on the right hand side in the absence (3) The negative magnetoresistance is observed together
of a flux, i.e.,kL=nm, with n an integer, wheré is the  with the AAS oscillation.
wave vector in the absence of a magnetic field ahd2the (4) The amplitude of the oscillations normalized by the
circumference of the ring. On the other haitl, becomes zero-field resistance is larger than that observed in diffusive
positive when the interference in the absence of a field isnetallic rings!**®
destructive, i.e.kL=(n+1/2)7r. This is analogous to the These features, particularlyl)—(3), can be explained
well-known Fabry-Perot interference. quite well by the present calculation if we assume the pres-

Figure 11 shows the typical conductance of an AB ring inence of sizable amount of disorder in the antidot potential
the case when the current is carried by a single 1D channeitself. The difference between the antidot lattices and metal-
The parameters characterizing the ring are chosen in suchlia rings (4) can be understood by a large difference in the
way that the diameter of the ring and the effective width ofabsolute value of the resistivity itself.
the wire are close to those for the highest 1D channel in the The amount of fluctuations in the antidot diameter,
hexagonal antidot latticea{A\p=4 and d/a=0.7). Apart d;/a=0.25, necessary for the clear AAS oscillation, may
from a sharp dip neap/ po=13,3, . . ., arising from the sym- seem to be larger than fluctuations present in antidot lattices
metry of the wave function in the rin§;*? the results show used in experiments. This is not necessarily true, however. In
the change between two rigid phases corresponding to thactual antidot lattices various kinds of fluctuations are pos-
change in the signature &,. The sharp dip at half-integer sible, such as those in the shape and position of each antidot.
values of¢/ ¢y disappears in multichannel cases. Remote ionized donors giving two-dimensional electrons

The absolute value of the conductance is much smaller ithemselves are known to cause potential fluctuatiéns,
the hexagonal lattice than in the square lattice. This can bwhich may also be regarded as fluctuations in the antidot
understood in the classical trajectory model, which predictgotential. In the present calculation, all kinds of long-range
that electrons perform much more complicated motion angbotential fluctuations have been replaced by a single kind of
stay much longer in the hexagonal lattice than in the squardisorder, i.e., by the fluctuatioth of the antidot diameter.
lattice, as was demonstrated in a simple mdéeThis is It is well known that the lowest-order quantum correction
presumably the main origin of the enhancement of the AASo the Boltzmann conductivity is of the order ef/h in
oscillation in the hexagonal lattice. In the square lattice aliffusive two-dimensional systems. In a conductor with a
runaway trajectory moving along a crystal axis is known tohollow geometry, this quantum correction is modified by the
make a dominant contribution to the conductivifyThis is  magnetic flux passing through the hollow region, leading to
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the AAS oscillatior? In diffusive systems the mean free path lattices than in square lattices, in excellent agreement with
is much less than the typical system dimension, and effectexperiments.

of the reflection by the boundary are negligible. In the anti-
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