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A numerical study is performed on quantum interference effects in antidot lattices in a weak magnetic field
with the use of a recursive Green’s function technique. An irregular Aharonov-Bohm~AB!-type oscillation
varying sensitively with antidot diameters and periods is dominant in ideal antidot lattices. The AB-type
oscillation disappears and an Al’tshuler, Aranov, and Spivak~AAS! oscillation manifests itself in the presence
of fluctuations in the size or position of antidots. The AAS oscillation is much stronger in hexagonal lattices
than in square lattices, in good agreement with experiments.@S0163-1829~96!08335-X#

I. INTRODUCTION

Recent developments in crystal growth and microfabrica-
tion technology have made it possible to obtain ballistic elec-
trons controlled by using artificial structures. A two-
dimensional~2D! electron system with a lattice of a depleted
circular region called an antidot has been realized in a high-
mobility GaAs/AlxGa12xAs heterostructure. Such systems
are usually called antidot lattices. The purpose of the present
paper is to study quantum-interference effects on the trans-
port in such antidot lattices.

During the past several years, magnetoresistance in anti-
dot lattices has attracted considerable attention. In antidot
lattices, the elastic and inelastic scattering lengths (;10
mm, typically! are usually much longer than the lattice pe-
riod (*200 nm, typically!. The diagonal resistivity exhibits
distinct peaks when the classical cyclotron orbit fits around a
certain number of antidots.1–3 This commensurate oscillation
can be understood in classical mechanics.4

On the other hand, measurements at very low tempera-
tures revealed quantum oscillations. A fine structure5,6 is su-
perimposed upon the commensurate peak, which is ex-
plained by the semiclassical quantization of periodic orbits
existing in the chaotic electron motion.5,7,8 Recently, an
Al’tshuler, Aronov, and Spivak~AAS! oscillation9 was ob-
served in antidot lattices with small lattice periods (;200
nm!.10–12

The Aharonov-Bohm~AB! and AAS oscillations of the
conductance have been known as typical quantum-
interference effects caused by the AB effect.13 The AAS os-
cillation was observed in a conductor having the form of a
hollow cylinder, and characterized by the oscillation as a
function of the magnetic flux passing through its cross sec-
tion with period given by a half of the flux quantum
f05ch/e.14 It was also observed experimentally15 and ana-
lyzed theoretically16 in networks of thin metallic wires. Usu-
ally, the AAS oscillation is characteristic of diffusive sys-
tems, where the mean free path is much smaller than the size
of typical geometric structures.

The AAS oscillation appears in the conductance averaged
over many different samples, and therefore does not require
the whole system to be coherent. On the contrary, the AB
oscillation characterized by thef0 period requires coherence
in the whole system, because it has a phase varying from

system to system and cancels out completely after the aver-
age over many different systems. The AB oscillation was
also observed in a ballistic ring made of a high-mobility 2D
system,17 and was theoretically analyzed.18

In this paper, we calculate the conductance of antidot lat-
tices with a finite size and discuss under which conditions
AAS oscillations become observable. In Sec. II, the model
and the procedure of the calculation are described. In Sec.
III, the conductance is calculated as a function of a magnetic
field, and the dependence on the strength of impurity scatter-
ing, fluctuations in the antidot, and the lattice structure are
discussed. Discussions and conclusions are given in Sec. IV.
A preliminary account of a part of this work was presented.19

There have been various theoretical investigations of
magnetotransport in antidot lattices in which quantum-
interference effects are taken into account.20–27 Some such
works studied dot or antidot arrays in high magnetic fields
where edge states play an important role.20–24Some consid-
ered only a system having a lattice period much smaller than
that in realistic antidots.25,27 In the present calculation, both
the lattice period and antidot potential are chosen in such a
way that the model simulates actual systems quite well.10–12

II. MODEL AND METHOD

In order to study interference effects in antidot lattices, we
shall consider systems having a finite size and containing a
finite number of antidots. The potential of an antidot in a
Wigner-Seitz cell is given by

vR~r !5U0~R!F~r2R!, ~2.1!

whereU0(R) is the maximum potential height for the cell
specified by lattice pointR. The lattice point is written as
R5n1a11n2a2 with integersn1 andn2, wherea1 anda2 are
the primitive translation vectors.

For a hexagonal antidot lattice with lattice constanta, we
havea15(A3/2,12)a and a25(0,1)a. The potential of each
antidot is chosen as

F~r !5UcosS pa1•r

a2 D cosS pa2•r

a2 D cosS p~a12a2!•r

a2 D U4b/3

,

~2.2!
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whereb is a parameter describing the steepness of the po-
tential. For a square lattice with lattice constanta, on the
other hand, we use4

F~r !5UcosS px

a D cosS py

a D U2b

, ~2.3!

and a15(1,0)a and a25(0,1)a. An antidot diameterdR is
defined asdR5ur2Ru, with vR(r )5EF , whereEF is the
Fermi energy andr is chosen on a line connectingR and one

of its nearest-neighbor points~e.g.,R1a1). In the above the
exponents, 4b/3 and 2b in Eqs.~2.2! and~2.3!, respectively,
have been chosen in such a way that the total exponent of the
cosine function becomes 4b, for which the potential maxi-
mumU0 and the gradient at the Fermi energy are about the
same in the hexagonal and triangular lattices for antidot di-
ametersd/a50.6;0.7 and steepnessb51;2.

We shall calculate the conductance of a system with a
rectangular form with lengthLx and widthLy , connected to
an ideal wire in thex direction and confined by an abrupt and
infinite barrier in they direction. We shall replace the 2D
system by a rectangular lattice with lattice constantsax and
ay and nearest-neighbor transfer integralstx and ty . We set
ax5(A3/2)a8, ay5a8, tx52 3

4t, andty52t for the hexago-
nal antidot lattice. This choice ensures that the lattice is com-
mensurate with an antidot period. For the model of the
square antidot lattice we symmetrically setax5ay5a8 and
tx5ty52t. A magnetic fieldH is included in terms of a
Peierls phase factor of the transfer integral. This rectangular
lattice simulates the 2D system when we choose
t/EF5lF/2pa8, with lF /a8@1, where lF is the Fermi
wavelength.

Effects of scattering from impurities are introduced
through the randomness of the site energy distributed uni-
formly with width W. In terms of the mean free pathL in
two dimensions, we haveW/EF5(6lF

3/p3a82L)1/2. Real
antidot lattices have an inherent randomness arising from
fabrication processes. In the following this disorder is intro-
duced through fluctuations in antidot diameters distributed
uniformly with width df around the mean valued.

The conductance of a finite antidot lattice is calculated in
the framework of Landauer’s formula28

G5
2e2

h (
m,n

utmnu2, ~2.4!

FIG. 1. A schematic view of the cross section of the antidot
potential at the Fermi energy for finite-size antidot lattice. The sys-
tem is connected to an ideal wire or lead in thex direction and
confined by an abrupt and infinite barrier in they direction. The
dotted lines denote contour lines of the antidot potential at
vR(r )/EF50.25 and 2, and the thin solid lines are boundaries of
Wigner-Seitz cells.~a! Hexagonal lattice.~b! Square lattice with a
primitive translation vector parallel or perpendicular to the direction
of the current.~c! Square lattice with a primitive translation vector
inclined 45° from the direction of the current.

FIG. 2. Some examples of the magnetic-field dependence of the
conductance of a hexagonal antidot lattice. Solid line:df /a50 and
L/lF516 ~nearly ballistic!. Dotted line: df /a50 andL/lF52
~nearly diffusive!. Dashed line:df /a50.25 andL/lF516 ~antidot
fluctuations!.
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where a factor 2 due to the spin degeneracy is included, and
tmn is the transmission amplitude at the Fermi energy from
incombing statem to transmitted staten of the leads. The
scattering matrix is calculated by use of the recursive
Green’s-function technique as described in a previous
paper.29 For systems withLx;Ly@L@a, the average con-
ductance is expected to provide information about an infi-
nitely large antidot lattice in which the phase coherence
length is of the order ofLx or Ly .

Figure 1 schematically illustrates the system for which
actual numerical calculations are performed. The system has
size Lx /lF518 andLy /lF520 in the hexagonal case~a!,
Lx /lF5Ly /lF520 in the square case~b!, and
Lx /lF5Ly /lF522 in the square case~c! in which the
primitive translation vector is 45° tilted from thex direction.
The antidot period is chosen asa54lF , roughly following
the parameters in actual antidot lattices used in experiments
(a;200 nm forlF;500 Å!.10–12 In the following calcula-
tion we useb51 or 2, andd/a50.7 or 0.6, for which the
number of 1D subbands below the Fermi level is two in the
channel region between the nearest-neighbor antidots. Fur-
ther, we chooselF/a857. We perform calculations for more
than 1000 samples typically to obtain the average.

III. NUMERICAL RESULTS

A. Hexagonal lattice

Figure 2 shows some examples of the calculated conduc-
tance as a function of the magnetic flux passing through the
unit cell in the case thatb51 andd/a50.7 corresponding to
U0(R)/EF54.38. Three different cases have been chosen:
~i! df /a50 andL/lF516 ~nearly ballistic!, ~ii ! df /a50
and L/lF52 ~nearly diffusive!, and ~iii ! df /a50.25 and
l/LF516 ~antidot fluctuations!. The conductance exhibits
an irregular oscillation which is similar to universal conduc-
tance fluctuations in the nearly diffusive case~ii !, but seems
to be more irregular for cases~i! and~iii !. There seem to be
some differences in the amplitude of fluctuations for varying
magnetic field in these three cases, as will be discussed be-
low.

Figure 3 gives the conductance averaged over more than
1000 different samples in the nearly ballistic regime
L/lF516. In the absence of disorder in the antidot potential,
the conductance exhibits an irregular oscillation even after
the average. Both the phase and form of this oscillation vary
sensitively depending on parameters liked/a, a/lF , and
b, but are independent of the system sizeLx and Ly . The
oscillation will be shown below to correspond well to an AB
oscillation of a single ideal ring, and therefore will be called
an AB-type oscillation in the following.

With the increase of antidot fluctuationsdf , the amplitude
of the irregular AB-type oscillation decreases. The AAS os-
cillation characterized by the periodf0/2 becomes dominant
for fluctuations as large asdf /a50.25, and its amplitude
remains almost the same with a further increase in fluctua-
tions. The amplitude of the oscillation is as large as
DG;0.3e2/h. The AAS oscillation is accompanied by a
weak negative magnetoresistance, i.e., a slight increase in the
conductance as a function of a magnetic field except for the
presence of the AAS oscillation.

The AAS oscillation is essentially independent of the de-
tail in the spatial variation of the antidot potential, as shown
in Fig. 4, where the conductance for the steepness parameter
b52 is compared with that forb51 in the cases
df /a50.25 andL/lF516. A slight difference in the abso-
lute value of the conductance comes from the difference in
the effective channel width between nearest antidots. In fact,
although the classical channel width for electrons having
Fermi energy is the same, it becomes effectively larger for
electrons having a lower energy forb52 than those for
b51. Quantum mechanically, the energy of 1D subbands
below the Fermi level is lower forb52 than for b51,
leading to an enhancement of the velocity along the channel
for b52.

FIG. 3. Conductance of a hexagonal antidot lattice as a function
of magnetic fluxf passing through a unit cell for different values
of the fluctuation of the antidot diameterdf . The fluctuation
df /a50.25 corresponds to the change by61 of channel number
through a narrowest path between the nearest-neighbor antidots.
b51, d/a50.7,Lx /lF518, andLy /lF520.

FIG. 4. The dependence on the steepness of the antidot potential
for the hexagonal lattice withdf /a50.25 andL5lF516.

54 8023QUANTUM INTERFERENCE EFFECTS IN ANTIDOT . . .



Figure 5 shows the conductance for antidots with a
smaller mean diameterd/a50.6. The other parameters are
the same as those for Fig. 3. The irregular AB-type oscilla-
tion is again dominant in the absence of fluctuations in the
antidot potential (df /a50). Note that the form of the oscil-
lation fordf /a50 is completely different from that shown in
Fig. 3. In fact, the conductance takes a local maximum near
f/f050 in Fig. 3, while it takes a minimum in Fig. 5. With
an increase in the fluctuation of the antidot potential, this
irregular oscillation is again taken over by the more regular
AAS oscillation. The AAS oscillation is dominant for
df /a50.25, but the dip atf/f05

3
2 has become invisibly

small. Further, the dip position is slightly shifted to the lower
magnetic-field side. This can be understood as a result of the
reduction in the ratio between the effective radius of the
typical electron pass circling an antidot and the effective
channel width.

It should be noted that the contribution of the irregular
AB-type oscillation diminishes with the decrease in the mean
free pathL even in the absence of disorder in the antidot
potential. In fact, a beautiful AAS oscillation manifests itself
in the diffusive regime whereL/lF52 orL/a51/2.19 This
corresponds to the AAS oscillation observed in metallic dif-
fusive rings.15,16

B. Square lattice

Figure 6 shows some examples of calculated conductance
of a square antidot lattice@Fig. 1~b!# as a function of the
magnetic flux passing through the unit cell in the case when
b51 andd/a50.7, corresponding toU0(R)/EF54.85. The
conductance exhibits an irregular oscillation similar to uni-
versal conductance fluctuations.

This irregular AB-type oscillation disappears, and is even-
tually taken over by an AAS oscillation with an increase in
the disorder in the antidot potential. The critical amplitude of
the fluctuation in the antidot diameter is about the same as
that in the hexagonal lattice.19

Figure 7 compares the conductance of the square antidot

lattice where the crystal axis is at an incline of 45° against
the direction of the current@Fig. 1~c!# with that of the parallel
square lattice in the presence of strong disorder in the antidot
potential. The system size (Lx /lF5Ly /lF522) is similar to
that of other systems and the other parameters are the same
as in Fig. 3. The conductance is slightly smaller than that of
the parallel square lattice. This is presumably due to the fact
that the reflection probability in the first and second rows of
antidots is larger, and is certainly not a bulk effect. The large
statistical errors make it impossible to see the AAS oscilla-
tion.

There are notable differences between the results in the
square lattice and those in the hexagonal lattice. The follow-

FIG. 5. Calculated conductance of a hexagonal lattice for
d/a50.6,b51, andL/lF516.

FIG. 6. Some examples of the magnetic-field dependence of the
conductance of a square antidot lattice. Solid line:df /a50 and
L/lF516 ~nearly ballistic!. Dotted line: df /a50 andL/lF52
~nearly diffusive!. Dashed line:df /a50.25 andL/lF516 ~antidot
fluctuations!.

FIG. 7. Conductance of an inclined square lattice. The angles
between the direction of the current and crystal axis are denoted in
the figure. Lx /lF5Ly /lF522 for 45°. Lx /lF5Ly /lF520 for
0°.
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ing are some examples of the features of the square lattice in
comparison with those of the hexagonal lattice.

~1! The absolute value of the conductance is much larger.
~2! The irregular oscillation in the absence of the disorder

in the antidot potential has a smaller amplitude.
~3! The AAS oscillation in the presence of strong disorder

in the antidot potential is much weaker.

C. Fluctuations

In order to see the features of the magnetic fingerprint in
antidot lattices, we shall calculate the correlation function
defined by

F~DB!5Š^@g~B1DB!2^g~B1DB!&B#@g~B!

2^g~B!&B#&B‹S , ~3.1!

where ^ &B is the average of the conductance of a single
sample over the magnetic flux in the range 0.1,f/
f0,1.7, and̂ &Smeans the sample average. Figures 8 and 9
show results for the hexagonal and square lattices, respec-
tively. The correlation field is given byf/f0;0.1 for both
hexagonal and square lattices, almost independent of the
strength of impurity scattering and the disorder in the antidot
potential. This field corresponds roughly to a single flux
quantum in the total area of the system, in agreement with
the case of universal conductance fluctuations in diffusive
systems.30,31

The amount of conductance fluctuations as a function of
the magnetic field becomes smaller in the presence of ran-
domness, due either to impurities or antidot disorder. On the
other hand, fluctuations of the conductance among different
samples in a fixed magnetic field are close to the universal
valueDG;0.3e2/p\ irrespective of systems, which corre-
sponds to the universal value of the fluctuations in the two-
dimensional system in magnetic fields.30,31 This means that
fluctuations for varying magnetic fields can be considerably

smaller than fluctuations among different samples, in con-
trast to the case of the universal conductance fluctuations.

IV. DISCUSSION AND CONCLUSION

An irregular AB-type oscillation appears in the near-
ballistic antidot lattice, particularly in the hexagonal case. A
close examination of the dependence on parameters such as
d/a shows that the characteristic feature of the oscillation
varies systematically as a function ofd/a. In fact, in certain
narrow regions ofd/a the conductance has a local maximum
atf50, and in other regions it has a local minimum. This is
a result of the interference of electron waves in a single
ballistic AB ring. In particular, the strong dependence on
d/a is due to the interference of waves associated with the
highest 1D subband occupied by electrons in the channel
region between two adjacent antidots, because their 1D wave
vector is quite sensitive to the change in the parameters.

Let us consider, for example, a ballistic AB ring with
radiusa/2 shown in Fig. 10. The potential in each region
divided by the dashed lines are chosen as

v~r !5H v0~r ! ~ I: y,x,A3, y,2A3x1a!

va1~r ! ~ II: y,x/A3, y.2A3x1a!

vwire~ ur u! ~ III: y.x/A3, ur u,a!,

~4.1!

where the origin is chosen at the center of the ring,vR(r ) is
defined in Eq.~2.1!, u05U0(0)5U0(a1), and

vwire~y!5u0UcosS py

a D cos2S py

2a D U4b/3

. ~4.2!

The potential in the other region is chosen in a symmetric
way. The system is connected atx56A3/2a to infinite
wires or leads whose potential is given byvwire(y). Further,
the system and leads are confined by an abrupt and infinite
barrier at the position satisfyingv(y)52EF .

FIG. 8. Calculated correlation function of the conductance in a
hexagonal lattice withd/a50.7. The solid, dotted, and dashed lines
correspond to cases of~i! nearly ballistic,~ii ! nearly diffusive, and
~iii ! antidot fluctuations. The vertical bar represents typical statisti-
cal errors.

FIG. 9. Calculated correlation function of the conductance in a
square lattice withd/a50.7.

54 8025QUANTUM INTERFERENCE EFFECTS IN ANTIDOT . . .



The conductanceG is given by the probability for elec-
tron waves incident from the left lead transmitted to the right
lead according to Landauer’s formula.28 The Onsager rela-
tion requires thatG in such a two-terminal geometry is an
even function of the magnetic field, and leads to the
expansion18

G~f!5G01G1cos~2pf/f0!1G2cos~4pf/f0!1•••.
~4.3!

Waves rotating around the ring many times, and reflected
back and forth at the junctions with the leads, make compli-
cated interferences. The coefficientG1 is expected to be-
come negative when the interference is constructive at the
junction with the lead on the right hand side in the absence
of a flux, i.e., kL5np, with n an integer, wherek is the
wave vector in the absence of a magnetic field and 2L is the
circumference of the ring. On the other hand,G1 becomes
positive when the interference in the absence of a field is
destructive, i.e.,kL5(n11/2)p. This is analogous to the
well-known Fabry-Perot interference.

Figure 11 shows the typical conductance of an AB ring in
the case when the current is carried by a single 1D channel.
The parameters characterizing the ring are chosen in such a
way that the diameter of the ring and the effective width of
the wire are close to those for the highest 1D channel in the
hexagonal antidot lattice (a/lF54 and d/a50.7). Apart
from a sharp dip nearf/f05

1
2,

3
2, . . . , arising from the sym-

metry of the wave function in the ring,18,32 the results show
the change between two rigid phases corresponding to the
change in the signature ofG1. The sharp dip at half-integer
values off/f0 disappears in multichannel cases.

The absolute value of the conductance is much smaller in
the hexagonal lattice than in the square lattice. This can be
understood in the classical trajectory model, which predicts
that electrons perform much more complicated motion and
stay much longer in the hexagonal lattice than in the square
lattice, as was demonstrated in a simple model.12 This is
presumably the main origin of the enhancement of the AAS
oscillation in the hexagonal lattice. In the square lattice a
runaway trajectory moving along a crystal axis is known to
make a dominant contribution to the conductivity.33 This is

known to be the case even in square lattices with a small
period.7 Presumably such a trajectory plays less important
roles in hexagonal lattices with a small period.

The essential features of the AAS oscillation observed
experimentally10–12 can be summarized as follows.

~1! The oscillations are observed clearly in hexagonal lat-
tices, but are almost invisible in square lattices.11,12

~2! The amplitude of the oscillations extrapolated up to
absolute zero temperature isDs;0.3e2/h in hexagonal lat-
tices.

~3! The negative magnetoresistance is observed together
with the AAS oscillation.

~4! The amplitude of the oscillations normalized by the
zero-field resistance is larger than that observed in diffusive
metallic rings.14,15

These features, particularly~1!–~3!, can be explained
quite well by the present calculation if we assume the pres-
ence of sizable amount of disorder in the antidot potential
itself. The difference between the antidot lattices and metal-
lic rings ~4! can be understood by a large difference in the
absolute value of the resistivity itself.

The amount of fluctuations in the antidot diameter,
df /a*0.25, necessary for the clear AAS oscillation, may
seem to be larger than fluctuations present in antidot lattices
used in experiments. This is not necessarily true, however. In
actual antidot lattices various kinds of fluctuations are pos-
sible, such as those in the shape and position of each antidot.
Remote ionized donors giving two-dimensional electrons
themselves are known to cause potential fluctuations,34

which may also be regarded as fluctuations in the antidot
potential. In the present calculation, all kinds of long-range
potential fluctuations have been replaced by a single kind of
disorder, i.e., by the fluctuationdf of the antidot diameter.

It is well known that the lowest-order quantum correction
to the Boltzmann conductivity is of the order ofe2/h in
diffusive two-dimensional systems. In a conductor with a
hollow geometry, this quantum correction is modified by the
magnetic flux passing through the hollow region, leading to

FIG. 10. A schematic illustration of a single AB ring. The ring
with radiusa/2 is connected to an ideal lead atx56A3/2a.

FIG. 11. Two typical types of conductance across a single ring
in a two-terminal geometry.a/lF58.
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the AAS oscillation.9 In diffusive systems the mean free path
is much less than the typical system dimension, and effects
of the reflection by the boundary are negligible. In the anti-
dot lattice, reflection or scattering by the antidot potential is
essential, and both AAS oscillation and weak-localization
effects are the consequence of the randomness in the antidot
potential.

In conclusion, we have calculated the conductance of an-
tidot lattices in weak magnetic fields, using a recursive
Green’s-function technique. An AAS oscillation becomes
visible either when an appreciable amount of fluctuations
df /a*0.25 is introduced in the antidot potential, or when
the mean free path becomes less than the antidot period. The
amplitude of the AAS oscillation is much larger in hexagonal

lattices than in square lattices, in excellent agreement with
experiments.
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