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Abstract
This paper describes a fast and robust approach for recovering structure and motion from video frames. It

�rst describes a robust recursive factorization method for a�ne projection. Using the Least Median of Squares
(LMedS) criterion, the method estimates the dominant 3D a�ne motion and discards feature points regarded
as outliers. The computational cost of the overall procedure is reduced by combining this robust-statistics-based
method with a recursive factorization method that can at each frame provide the updated 3D structure of an object
at a �xed computational cost by using the principal component analysis. This paper then describes experiments
with synthetic data and with real image sequences, the results of which demonstrate that the method can be used
to estimate the dominant structure and the motion robustly and in real-time on an o�-the-shelf PC.

1 Introduction
Recovering structure and motion from image streams is one of the most important topics in computer vision and

the techniques are used for various applications such as image-based rendering, augmented reality, man-machine
interface, and so on. In numerous studies on the �eld, the factorization method [13, 8] is stable in calculation and
can treat all images uniformly. This method has been extended to various aims, for example, from point features
to line features [10, 6] , and for the perspective projection model [12, 15]. Recursive factorization methods have
also been proposed [5, 1]. These methods can provide an updated 3D structure at each frame and at the small
and �xed computational cost.

In this paper, we focus on 1) robustness against outliers, which include false matches and other objects, and
2) the computational cost at each frame in order to apply the factorization method using point correspondences
under a�ne projection to the real environment in real-time.

First, a robust recursive factorization method for a�ne projection is described in Section 3. This method can
recover the dominant a�ne motion robustly by using the Least Median of Squares (LMedS) method [11], and it
can discard feature points that are regarded as outliers. Therefore a measurement matrix is stably decomposed
into the motion and shape matrices. Although some previous works [17, 14] have also used robust statistics
for recovering the epipolar geometry and the multiple projective view relation, they haven't described how to
cope with the increasing computational cost as the number of frames increases. In this method, discarding
outliers based on the LMedS criterion is combined with the recursive factorization method in [1] for the real-time
processing.

Section 4 describes experiments that use synthetic data and show that the method can, on an o�-the-shelf PC,
estimate the dominant structure and the motion robustly and in real-time. It also describes experiments using
real images. In theory the LMedS method requires dominant data which account for more than 50% of all the
data. To satisfy this requirement, we assume that features of one object exist locally. First, moving regions are
roughly segmented by applying a global 
ow estimation in [3]. Next, features are detected and tracked in and
around the moving regions, and then the 3D motion is estimated at each frame.

2 A Review of the Factorization Method for A�ne Projection
For simpli�cation, this paper assumes that an optical axis is orthogonal to an image plane, their intersection

is known, the aspect ratio of a pixel is 1:1, and skew is absent.�

Using a�ne projection [7], the p-th 3D point sp in the world coordinates system is related to the projection
xfp(= (xfp; yfp)) on the f -th image in non-homogeneous coordinates by

xfp = Af

(2�3)

Cf

(3�3)

sp + f
f
;

�Methods for self-calibration of an a�ne camera are described in [9] etc.



where Af is the a�ne projection matrix, Cf (= (if ; jf ;kf )
T) is a rotation matrix,y and f

f
is a factor related to

translation.
By a�ne projection, g, which is the centroid of all sp (p = 1; � � � ; P ), is projected into xfc(= (xfc; yfc)),

which is the centroid of all xfp on the f -th image. Therefore, s0p and x
0
fp, which are respectively the relative

coordinates of sp from g and the relative coordinates of xfp from xfc, are related by

x
0
fp = AfCfs

0

p
:

For all points and for the f -th image, these equations can be rewritten as

W
0

f

(2�P )

= (x0f1; � � � ;x
0
fP ) = Mf

(2�3)

S
0

(3�P )

where Mf = AfCf and S
0 = (s01; � � � ; s

0
P ). Furthermore, for all frames (f = 1; � � � ; F ), these equations can be

rewritten as
W

0

(2F�P )
= M

(2F�3)
S
0

(3�P )

where W 0 = (W 0

1
T
; � � � ;W

0

F

T)T and M = (M1
T
; � � � ;MF

T)T. This equation shows that the registered measure-
ment matrix W 0 can be factorized into the product of the motion matrix M and the shape matrix S0.

The factorization method realizes the decomposition by the following two-step procedure. In the �rst step, W 0

is decomposed as follows by singular value decomposition (SVD) and by the constraint that W 0 is rank three.

W
0

(2F�P )
= M̂

(2F�3)
Ŝ
0

(3�P )

where " ^ " indicates that it is computed only up to an a�ne transformation. Therefore arbitrary 3�3 non-singular

matrix D can be inserted such as W 0 = M̂DD
�1
Ŝ
0.

Thus, in the second step, D is determined by using metric constraints.z A constraint that can be used to
recover the Euclidean motion and shape is CfCf

T = I3. Therefore the following constraints are obtained with
regard to each a�ne projection model:

M̂fQM̂f
T = AfAf

T
;

whereQ = DD
T. Af for the scaled orthographic and paraperspective projection models are given by the following:

Scaled Orthographic: Af =
l

zf

�
1 0 0
0 1 0

�

Paraperspective: Af =
1

zf

�
l 0 �xf�
0 l �yf�

�

Here zf is the average depth of points and l is a focal length (More details about the metric constraints are given
in [4]).

3 A Robust Recursive Factorization Method

3.1 Recovering the A�ne Motion Using the LMedS Criterion
The estimate using the LMedS criterion is usually obtained by computing trial estimate repeatedly from

randomly sampled data [11]. Since at least four non-coplanar points are required to determine the a�ne motion

and shape, we randomly sample four points from all points and put them into a 2F �4 measurement matrix W [j]

for the j-th trial (j = 1; � � � ; J). To obtain the trial a�ne motion, we decompose the registered measurement

matrix W 0[j] by SVD and by the constraint that W 0[j] is rank three:

W
0[j]

(2F�4)
=W

[j]
�

0
B@
x
[j]
1c
...

x
[j]
Fc

1
CA (1; � � � ; 1) = U

[j]

(2F�3)
�[j]

(3�3)
V

[j]T

(3�4)
; (1)

yfif ; jfg is regarded as the normal orthogonal basis of the f -th image and kf is regarded as unit vector along the optical axis.
zIt is well known that D has a re
ection.



where x
[j]
fc

is the centroid of those four points on the f -th image. Then we can regard U
[j] as the a�ne motion

for j-th trial and also can regard U [j]T
W

0
p as the 3D a�ne coordinates of the p-th point for the j-th trial. Here

W
0
p = (x1p

T
; � � � ;xFp

T)T � (x
[j]
1c

T
; � � � ;x

[j]
Fc

T)T.
The squared residual of each point is given by

r
[j]
p

2
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2

:

(2)

Computing �[j], which is the median of r
[j]
p

2
for each trial, we �nally obtain the a�ne motion U

[j] for which �[j]

is minimal.
We can determine J , which is the required number of trials, as follows [11]. The probability R that at least

one of J trials is good is given by R = 1�f1� (1� �)4gJ where � is the ratio of outliers. Therefore, for example,
when R � 0:999 and � = 0:4, J must be 50 or more.

It is computationally ine�cient, however, to simply select four points because W 0[j] must be rank three. Thus

we compute �[j] only if W 0[j] has the third singular value more than a threshold.
Since, as mentioned in [11, 17], the e�ciency of the LMedS method is poor against Gaussian noise, the dominant

a�ne motion is re-estimated using all inliers. The robust standard deviation �̂ can be estimated as

�̂ = 1:4826f1:0 + 5:0=(P � 4)g
p
�[j]:

All feature points which satisfy r
[j]
p

2
� (2:5�̂)2 are selected as inliers with the dominant 3D motion and the a�ne

motion and the a�ne shape are obtained by the least squares method; that is, by SVD using all inliers.

3.2 Outline of the Recursive Factorization Method
The recursive factorization method in [1] compresses the motion matrix, the metric constraints, and the

measurement matrix by using the principal component analysis (PCA) to reduce and to �x the computational
cost at each frame. To �x the world coordinates through every image, we compute the orthogonal transformation
between shape matrices of two frames instead of the one between motion matrices of two frames [1]. The outline
of this recursive factorization method for each frame is described as follows.

(i) Recovering the a�ne shape and motion
The f -th recursive registered measurement matrix W 0

[f ] is decomposed by SVD and by the constraint that

W
0

[f ] is rank three as follows:

W
0

[f ]
(5�P )

=

0
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W

0
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W
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1
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Ŝ
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:

W
0
[f�1] is the (f � 1)-th principal registered measurement matrix computed in Step (iv). Letting

M̂[f ]
(5�3)

=

0
BB@
M̂[f�1]
(3�3)

M̂f

(2�3)

1
CCA ;

we can regard M̂[f�1] as the (f � 1)-th principal a�ne motion matrix.

(ii) Obtaining Metric constraints

Obtain the Euclidean motion �M[f ](= M̂[f ]D[f ]) and shape �S0

[f ](= D[f ]
T
Ŝ
0

[f ]) by using the following metric

constraints. Here " � " indicates that the coordinates is not yet �xed to those of the (f � 1)-th frame.

For the principal motion:
M̂[f�1]Q[f ]M̂[f�1]

T = �2
[f�1]



For the new image:
M̂fQ[f ]M̂f

T = AfAf
T

Here Q[f ] = D[f ]D[f ]
T and �[f�1] is the diagonal matrix which has singular values of M[f�1], as described

in Step (iv).

(iii) Fixation of the world coordinates
Obtain the orthogonal matrix Ef which transforms �S0

[f ] into S
0

[f�1], and �x the world coordinates as

Mf = �MfEf
T
; S

0

[f ] = Ef
�S0

[f ]:

Here W 0

[f ] is represented as

W
0

[f ]
(5�P )

=

�
M̂[f�1]D[f ]Ef

T

Mf

�
S
0

[f ] = M[f ]
(5�3)

S
0

[f ]
(3�P )

:

(iv) Compression using PCA
Let M[f ] = F[f ]�[f ]E[f ] be SVD of M[f ].

The f-th principal motion matrix:

M[f ]
(3�3)

= F[f ]
T
M[f ](= �[f ]E[f ])

The f-th principal registered measurement matrix:

W
0

[f ]
(3�P )

=M[f ]S
0

[f ](= F[f ]
T
W

0

[f ])

SinceM[f ]M[f ]
T = �2

[f ], we can use �[f ] for the metric constraints, as described in Step (ii).

3.3 Combining the LMedS Method with the Recursive Factorization Method
To robustly provide updated shape and motion at each frame and at a small computational cost, we combine

the procedure based on the LMedS method in Section 3.1 with Step (i) of the recursive factorization method in
Section 3.2 as follows.

For each trial j, we randomly sample four points from the f -th recursive registered measurement matrix W 0

[f ]

and put them into the 5�4 measurement matrix W
[j]. The registered measurement matrix for the j-th trial is

computed as W 0[j] = W
[j]
� (0; 0; 0;x

[j]
fc

T)T(1; � � � ; 1). In the same way as in Eqs. (1) and (2), the a�ne motion

U
[j] is obtained by SVD of W 0[j] and the squared residual r

[j]
p

2
is given as follows.

r
[j]
p

2
=





( I
(5�5)

� U
[j]

(5�3)
U

[j]T

(3�5)
)W 0

[f ]p






2

;

where W 0
[f ]p is the p-th column vector of W 0

[f ]. Then computing �[j], which is the median of r
[j]
p

2
for each trial,

we �nally obtain the a�ne motion U
[j] for which �[j] is minimal.

Although this strategy is very simple, it is very e�ective in reducing and �xing the computational cost with
respect to the number of frames because the only procedures we have to perform for each trial are SVD of a 5�4

matrix W 0[j] and the computation of the median �
[j].

Some inliers are of course incorrectly regarded as outliers because of noise and so on. But because the 3D coor-
dinates of those points are held in the previous frame, we can compensate those points. Then if the compensated
points are regarded as the inliers at the next frame, the 3D coordinates of those points can be updated again.



4 Experiments

4.1 Initial Estimate
The robust recursive factorization method requires initial estimates of S0

[f ], �[f ], andW
0

[f ]. In our implementa-

tion, the number k of frames needed to obtain them is determined by the following procedure in order to prevent
the method beginning to update the shape and motion before three or more distinct views are observed.

(i) The LMedS method is performed for the tracked features up to the k-th frame and the outliers are discarded
as described in Section 3.1.

(ii) If the 3-rd and 4-th singular values, denoted by �3 and �4, of the registered measurement matrix without the
outliers satisfy �4

�3
< �, go to Step (iii). Otherwise k  k + � and return to Step (i). Here � is the number

of skipped frames.

(iii) If the 3-rd eigenvalue �3 of the metric Q satis�es �3 > �, then S
0

[k], �[k], and W
0

[f ] are computed as the

initial estimates, and they are updated from the k + 1-th frame. Otherwise, k  k + � and return to Step
(i).

In our implementation, we empirically set � = 0:2, � = 0:2, and � = 5. To reduce the computational cost of
the initial estimates, Step (i) of this method is performed using 5 frames which are sampled at even intervals out
of k frames.
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4.2 Synthetic Data
In this experiment, the features correspond to 20 points randomly and uniformly distributed within a 200-mm

cube. For 120 frames they are projected on image planes by a pinhole camera. The intrinsic parameters are
known: pixels are square with 8-�m sides, the image resolution is 640�480, and the focal length is 13 mm. The
camera pitch increases linearly to 80 degrees from the 1st frame to the 60th frame and decreases to 0 degrees
from the 61th frame to the 120th frame. The camera roll increases linearly to 40 degrees for 120 frames. The
average depth zf changes linearly from z1 = 2000mm to z120 = 1600mm and the distance of the projection center
of the object from the center of the image plane, denoted uf , changes from u1 = 115 pixels to u120 = 101 pixels.
The paraperspective projection model is used for recovering shape and motion and J = 100.

We divide 20 points into the following three groups.

Data A [12 points] Correct matches, which have Gaussian noise the standard deviation of which is 1 pixel, for
120 frames.



Data B [4 points] Correct matches, which have Gaussian noise the standard deviation of which is 3 pixels,
from the 1st frame to the 60th frame, and false matches from the 61th frame to the 120th frame

Data C [4 points] False matches for 120 frames

In this experiment, the number k of frames used to obtain the initial estimates is chosen as 23 by the procedure
in Section 4.1. The percentage of outliers is 20% at the 23th frame and 40% at the 108th frame. Fig. 1 shows
that feature points in the black area are regarded as the outliers without fail, ones in the gray area are regarded as
the outliers o� and on, and ones in the white area are regarded as the inliers at almost all frames by our method.
A few features of Data A are wrongly regarded as the outliers several times, but those points are compensated
using the 3D coordinates of them at the previous frame and the 3D motion at the present frame. Those points
can thus be updated again.

We compare the shape error and the motion error of our method with those of the original batch-type factor-
ization method. The original method uses only Data A and our method uses Data A, B, and C. Fig. 2 shows the
shape error, and Figs. 4, 5, and 6 show the motion error. The shape error of the original method with 120 frames
is about 3% and the errors of i, j, and k are each about 1 degrees. As mentioned above, our method can discard
the outliers correctly and the shape and motion errors gradually decrease as the number of frames increases, even
though both errors are relatively large at the beginning of the sequence.

We also compare the processing time, on a Pentium-II-450MHz PC, of our method with that of the original
method. Fig. 3 shows the results for 120 frames and for J = 100. The number of features are varied from 20
to 100. Here \feature point" denotes \inlier (Data A)" because the original method uses only inliers and the
processing time of our method depends on the number of inliers and not the number of outliers. Data A, B,
and C is the same ratio as the above experiment. If we suppose that the number of frames needed to process in
one second is 30 frames like NTSC, it takes only 2.8 seconds to recover the 3D coordinates of 100 features and
the motion for 4.0 seconds (120 frames). Therefore the result shows that we can use our method in real-time
applications.

4.3 Real Images
In this experiment, video of a stu�ed koala held by a person was taken from a consumer-quality camera held

by another person. In theory the LMedS method requires dominant data which account for more than 50% of all
the data. To satisfy this requirement, we assume that features of one object exist locally. We �rst used a fast and
robust method to roughly segment moving regions by using a global 
ow estimation in [3], where moving regions
are regions that have a 
ow that di�ers from the global 
ow of the image.

In this method, the global 
ow is estimated by using a gradient-based method and the M-estimator [2].
Candidates for moving regions are detected by pixel-wise matching from two successive frames, votes for the
pixels of candidates at each frame are accumulated sequentially, and then candidates with a large number of votes
are selected as moving regions.

Features were then detected and tracked in a circumscribed rectangle of the region, and the 3D motion was
estimated at each frame by using our method. In order to detect and track feature points, we use the normalized
correlation method which is one of the functions of an image processing PCI board IP5000 manufactured by
Hitachi.

In this example, a stu�ed koala and a face were segmented. This paper describes the results on the stu�ed
koala because of the space constraint. The number k of frames used to obtain the initial estimates was chosen
as 38. Fig. 7 (Movie 1) shows 100 features detected at the 1-st frame, 76 features tracked through 38 frames,
and 56 features tracked through 108 frames. The percentage of outliers was 36% at the 38th frame and 30% at
the 108th frame. Fig. 8 (Movie 2) shows the position of inliers retained at the 108th frame. To assess the result,
we modeled the dense shape of the stu�ed koala by using the recovered dominant motion. Three images (the
49th, 50th, and 51th frame) were recti�ed by the motion [16][4] as shown in Fig. 9, and the dense shape were
recovered by a simple correlation-based stereo method as shown in Fig. 10 (Movie 3). Another example on the
face is shown in Movies 4, 5, and 6.

Finally three tasks mentioned above, which are the method to roughly segment moving regions, the feature
point detector/tracker, and our proposed method, were implemented on a PC-Cluster system consisting of two
PCs (CPU: Dual Pentium II 450MHz, OS: Linux-2.2) connected by 100Base-TX. In this system, Video For Linux
was used for capturing video frames and PVM library was used for network programming. An example of online
experiments is shown in Movie 7. In this movie, large green rectangles indicate circumscribed rectangles of moving
regions, small white squares indicate detected and tracked feature points, blue ones indicate initial inliers, and
red ones indicate updated inliers. A throughput of the system was around 200 msec and the latency was around
1 sec because the network programming is not optimized currently.

5 Conclusion
The robust recursive factorization method for recovering structure and motion from multiple views under a�ne

projection described here compresses the motion matrix, the metric constraints, and the measurement matrix by
using the PCA and recovers the dominant structure and the motion by using the LMedS method. Experiments

video/m1.mpg
video/m2.mpg
video/m3.mpg
video/m4.mpg
video/m5.mpg
video/m6.mpg
video/m7.mpg


Frame 1 Frame 38 Frame 108
Fig. 7. Tracking results.

Frame 1 Frame 38 Frame 108
Fig. 8. Inliers selected by our method.

Frame 49 Frame 50 Disparity map
Fig. 9. Recti�cation and stereo matching.

Fig. 10. Recovered dense shape.

video/m3.mpg
video/m1.mpg
video/m2.mpg


with synthetic data have shown that the method is reliable and has a computational cost small enough that it
can be executed in real-time on an o�-the-shelf PC, and then the method has been applied to real images.

We have not yet evaluated the breakdown points rigorously nor have we considered adding new feature points.
Future research will have to address these issues. We will also have to improve the performance of feature tracker
by speeding it up and by using cooperative procedures such as feedback of 3D motion updated by our method.
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