TECHNICAL MEETING / Robotics Information Day

ROS-Industrial™
A Disruptive Community Approach to Industrial Robotics Software
Paul Evans
Southwest Research Institute® (SwRI®)

11 December 2012
Biography

• Paul Evans
• Director of Research and Development for the Manufacturing Systems Department at SwRI
• Focused on solving real-world challenges through applied research and development
• Specialized in advanced industrial robotics and automation programs
• Graduated with a MSME from Iowa State University and a Professional Engineer

• paul.evans@swri.org
Agenda

• Overview of ROS
• Overview of ROS-Industrial
• Applications for ROS-Industrial
• ROS-Industrial Community Approach
ROS Overview
Research Robotics Challenges

• Reinvention of the Wheel
• Little Commonality
• Short Lifespan
• Difficult to Compare Results

ROS Solves These
ROS: Robot Operating System

- Open source (BSD)
- Created by Willow Garage
- Maintained by Open Source Robotics Foundation (OSRF)

http://ros.org/wiki/Industrial
Statistics

- ROS Core statistics by: https://www.ohloh.net/p/ROSorg
- 11,146 commits
- 43 contributors
- 148,163 lines of code
- Long source history maintained by a large development team with stable year-over-year commits
- 38 years of effort (COCOMO model)
- Estimated cost $2,063,327
What Can ROS Do?

ROS 5 Year Video: http://youtu.be/zV48Pq0muEk
ROS-Industrial
ROS-Industrial Motivation

• Motivated by desire to solve industries toughest challenges using industrial robotics and automation

• Driven by application needs (i.e. real-world and challenging industrial needs)
 – Fixtureless automation
 – Dynamic pick and place
 – Flexible automation (many small & diverse part runs)
 – Sensor driven automation

• Reduction in integration cost by standardizing interfaces and enabling reuse
What is ROS-Industrial

- Open-Source (BSD) software distribution – extension of ROS
- Advanced development tools
- New and additional capabilities
- Software portability and flexibility for COTS hardware
- Technology compatibility and ease of integration
- Transition of basic research to applications
- A community of developers
Hardware Drivers Examples

• Robots
 – Motoman
 – Adept
 – Universal
 – ABB
 – Fanuc, Kuka (Coming soon)

• Peripherals
 – Robotiq
 – EtherCAT (Beckhoff Modules)
 – Serial
 – Ethernet
App: Automated Painting

- Automated spray paint processes
 - Reduce emissions (regulation)
 - Reduce exposure (personnel)
 - Reduce cost (materials)
 - Increase quality (consistency)

- Challenges
 - Unconstrained location
 - “Random” part order
 - Real time processing
 - Moving parts
Solution: Automated Painting

- 3D Sensing (ROS/OpenNI)
- 3D Processing (ROS/PCL)
- Process based path planning (SwRI)
- Robot IK solvers (ROS/MoveIt!)
- Robot workcell visualization (ROS/Rviz)
- Distributed system (ROS/Core)
- Data acquisition/playback (ROS/bag)
• Random product sorting application
 – Value in waste streams
 – Labor intensive, worker fatigue
 – Increased sorting rate/quality

• Challenges
 – Waste stream variety
 – High speed
 – Close quarters

Solution: Robotic Sorting

- 3D sensing (ROS/OpenCV, PCL)
- 3D processing (ROS/PCL)
- Pick selection (SwRI)
- Robot IK solvers (ROS/MoveIt!)
- Collision checkers (ROS/MoveIt!)
- Robot workcell visualization (ROS/Rviz)
More Capabilities
Leveraging ROS

Pick & Place Demonstration: http://youtu.be/_WG-45cZSUQ
Visualization and Path Planning: http://youtu.be/qd76wAywZos
Platform Independence

Future of ROS-Industrial

- Installed systems
- Process based path planners
- More hardware support
- Physics based simulation
- Incorporate external libraries
- Code analysis and statistics
- More tutorials and documentation
- Certified releases
ROS-Industrial Community Approach
Community

- Openness encourages participation and collaboration
- Many small, yet organized efforts result in more capable software
- Non-traditional approach for the industrial space
Partial View of the Community
Ways to Participate

• Independently Contribute/Participate:
 – Define interface standards
 – Develop software
 – Documentation

• OEMs – develop interfaces to your equipment

• Integrators - Use it for projects and customers

• Join the ROS-Industrial Consortium

• There are a number of other ways as well...
• Accelerate Code Development
 – Advanced Capabilities
 – Code Quality Standards/Enforcement
 – Testing, Reliability, Robustness
 – Training
 – Maintenance
• Build Community
 – Attract User-Generated Content
 – Maintain Open-Source Repository, Wiki, Roadmap
 – Ensure Code Reusability
How Will it Work?

• Membership fees first cover operational expenses
• Funds, over and above the operating expenses, will be appropriated toward research objectives.
• Focused technical projects will be formed and funded by full members
• Open source software:
 — All software developed under general funds
 — Project software at the discretion of the funding group
Conclusions

• ROS has proven to be disruptive to robotics research
• ROS architecture, capabilities, tools, and open source approach rival commercial options
• ROS-Industrial brings the power of ROS to the industrial robotics and automation market
• Support for ROS-Industrial is growing
• The ROS-Industrial Consortium will foster the continued development and maintain focus on industry needs
Questions?

Main site: rosindustrial.org
Software site: code.google.com/p/swri-ros-pkg/
Docs site: ros.org/wiki/Industrial
Consortium site: ric.swri.org