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We present a theory of supersymmetric superconductivity and discuss its physical proper-
ties. We define the supercharges Q and Q† satisfying QψBCS = Q†ψBCS = 0 for the Bardeen-
Cooper-Schrieffer state ψBCS. They possess the property expressed by Q2 = (Q†)2 = 0, and
ψBCS is the ground state of the supersymmetric Hamiltonian H = E(QQ†+Q†Q) for E > 0.
The superpartners ψg and ψBCS are shown to be degenerate. Here ψg denotes a fermionic
state within the superconducting gap that exhibits a zero-energy peak in the density of
states.

A supersymmetric model of superconductivity with two bands is presented. On the basis
of this model we argue that the system of interest goes into a superconducting state from an
insulator if an attractive interaction acts between states in the two bands. There are many
unusual properties of this model due to an unconventional gap equation stemming from the
two-band effect. The model exhibits an unconventional insulator-superconductor first-order
phase transition. In the ground state, a first-order transition occurs at the supersymmetric
point. We show that certain universal relations in the BCS theory, such as that involving
the ratio ∆(0)/kBTc, do not hold in the present model.

§1. Introduction

Supersymmetry plays an important role in quantum field theory, quantum me-
chanics, and condensed-matter physics.1)–6) Superconductivity is an important phe-
nomenon that has been studied intensively in condensed matter physics.7),8) We
believe that supersymmetry also plays a role in superconductivity. Symmetry can
sometimes be a key to understanding new phenomena in physics. In recent years,
many unconventional superconductors have been reported9)–13) and some of them
have indicated the coexistence of magnetism and superconductivity.14)–17) These re-
sults suggest a close relation between superconductivity and magnetism. Novel types
of superconductors, such as high-temperature superconductors, are found near the
insulating phase. This suggests the possibility of a superconducting instability from
an insulator. Thus, it is important to investigate superconductivity near insulators.

Supersymmetry is a symmetry between bosons and fermions. As shown below,
the conventional model of superconductivity possesses supersymmetry if we add some
terms to the Bardeen-Cooper-Schrieffer (BCS) Hamiltonian. In this supersymmetry,
the superpartner of the Cooper pair (boson) is a fermionic state in the supercon-
ducting gap. This fermionic state describes a bound state in the gap, which, in
some cases, has magnetism coexisting with superconductivity. The SO(5) theory18)
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is an attempt to unify superconductivity and magnetism as a representation of the
symmetry group SO(5). We propose the idea that the paired state and fermionic
excitation can be regarded as superpartners.

In this paper, we construct a supersymmetric Hamiltonian which describes su-
perconductivity, and discuss its physical properties. We define Q and Q† so that the
BCS state is an eigenstate of the supersymmetric Hamiltonian H = E(QQ† +Q†Q).
Further, the BCS state is shown to be supersymmetric invariant, i.e., that it satisfies
the relation

QψBCS = Q†ψBCS = 0. (1.1)

The fermionic state in the gap exhibits a peak in the density of states within the
gap.

In a supersymmetric theory of superconductivity, there are many unusual prop-
erties stemming from an unconventional gap equation. We present a supersymmetric
two-band model with an energy gap between two bands. This system goes into a su-
perconducting phase from an insulator if an attractive interaction acts between states
in the two bands. We show that this is an unconventional insulator-superconductor
first-order phase transition.

This paper is organized as follows. In §2 the algebra for superconductivity is
examined. In §3 a supersymmetric Hamiltonian for superconductivity is presented.
In §4 the density of states is calculated, and we give an investigation of the electron
tunneling through a normal metal-superconductor junction. In §5 supersymmetry
in a two-band system is investigated. We show that there is a first-order transition
from a superconductor to an insulator if we vary the hybridization matrix between
the two bands. We give a summary in the last section.

§2. Supersymmetric quantum mechanics
and algebra for superconductivity

Our theory is based on a supersymmetry algebra for fermions and bosons. Su-
persymmetric quantum mechanics is described by the Hamiltonian

H = E(QQ† +Q†Q) (2.1)

for supercharges Q and Q† and E > 0. The supercharges Q and Q† transform the
bosonic state to the corresponding fermionic state, and vice versa. The simplest
form of supersymmetric quantum mechanics is given by generators, Q = ψ†b and
Q† = b†ψ, for fermions ψ and bosons b. If we assume [b, ψ] = [b, ψ†] = 0, the
Hamiltonian is given by H = E(QQ†+Q†Q) = E(b†b+ψ†ψ) (E > 0). If we choose b
to be the operator of the harmonic oscillator, b = (ip+x)/

√
2 and b† = (−ip+x)/√2,

the Hamiltonian is the supersymmetric harmonic oscillator, given by

H = E(p2/2 + x2/2 + [ψ†, ψ]/2). (2.2)

The ground state is the lowest energy state of the harmonic oscillator with no
fermions. An extension of the harmonic oscillator can be straightforwardly ob-
tained by introducing a superpotential W = W (x)19) as b = (ip + dW/dx)/

√
2
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and b† = (−ip+ dW/dx)/
√

2. If we assume dW/dx = λx, the Hamiltonian is

H = E(b†b+ λψ†ψ). (2.3)

The square root of the superconducting Hamiltonian is first necessary to con-
struct a supersymmetric model of superconductivity. For this purpose, we extend
simple supersymmetric quantum mechanics to a system with two fermions, repre-
sented by ψ1 and ψ2, and a boson, represented by b. If ψi and b obey the fermionic and
bosonic commutation relations, {ψi, ψ

†
j} = δij , [b, b†] = 1, and [ψi, b] = [ψi, b

†] = 0,
an extension is trivial. In order to examine a non-trivial quantum system with
two fermions, we consider the algebra characterized by the following commutation
relations for the fermions ψ1 and ψ2 and the boson b:

{ψi, ψ
†
i } = 1, (i = 1, 2) (2.4)

{ψ1, ψ2} = {ψ1, ψ
†
2} = 0, (2.5)

[ψ†
1, b] = ψ2, (2.6)

[ψ†
2, b] = −ψ1, (2.7)

[ψ1, b] = 0, (2.8)
[ψ2, b] = 0, (2.9)

[b, b†] = 1 − ψ†
1ψ1 − ψ†

2ψ2. (2.10)

This algebra contains the commutation relations for Cooper pairs and fermions with
spin up and spin down. We impose the condition of b2 = 0, since b is the operator
for the Cooper pair. The relation b2 = 0 implies [b2, ψi] = 0 (i = 1, 2), which leads
to

ψ1b = bψ1 = ψ2b = bψ2 = 0. (2.11)

We refer to this set of commutation relations as the BCS algebra in this paper.
Supercharges are defined as

Q = v∗bψ†
1 + ub†ψ2, (2.12)

Q† = vψ1b
† + uψ†

2b, (2.13)

where u (which is real) and v are constants satisfying u2 + |v|2 = 1. It is easy
to show the nilpotency of Q and Q† employing the above algebraic relations. The
Hamiltonian is then defined by

H = 2E(QQ† +Q†Q) (2.14)

for a constant E > 0. The factor 2 is included for later convenience. The bosonic
states are given by linear combinations of |0〉 and b†|0〉. The matrix elements of H
for these basis states are ( |v|2 −uv∗

−uv u2

)
. (2.15)

Then, the eigenstates are given by the BCS state ψBCS = (u + vb†)|0〉 and ψ⊥
BCS =

(v∗ − ub†)|0〉, which is orthogonal to ψBCS. Here, |0〉 denotes the vacuum: b|0〉 =
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Fig. 1. Energy levels of the supersymmetric superconductivity models.

ψi|0〉 = 0. The fermionic states are ψg = ψ†
1|0〉 and ψe = ψ†

2|0〉. We can show that
Q and Q† annihilate both ψBCS and ψg:

QψBCS = Q†ψBCS = 0, (2.16)
Qψg = Q†ψg = 0. (2.17)

Thus, ψBCS and ψg are supersymmetric ground states. ψ⊥
BCS and ψe have the eigen-

value 2E and are superpartners; i.e., they are transformed to each other by Q and
Q†:

Qψe = −ψ⊥
BCS, Q†ψ⊥

BCS = −ψe. (2.18)

In this model, fermionic and bosonic states are always degenerate. We present the
energy scheme in Fig. 1, and the energy levels for the BCS model are also displayed
for comparison. In the BCS model, the fermionic excited states have the energy E.

§3. Supersymmetric Hamiltonian

There are several ways to express fermions ψ1 and ψ2 in terms of the conduction
electrons with wave number k. If we write ψ1(k) = ck↑, ψ2(k) = −c−k↓, and bk =
c−k↓ck↑ for each wave number k, the supersymmetric charges Qk and Q†

k are given
by

Qk = v∗kbkc
†
k↑ − ukb

†
kck↓ = v∗kc−k↓(1 − nk↑) − ukc

†
k↑n−k↓, (3.1)

Q†
k = vkck↑b

†
k − ukc

†
−k↓bk = vk(1 − nk↑)c

†
−k↓ − ukn−k↓ck↑. (3.2)

Then, the Hamiltonian is given by

H =
∑

k

2Ek(QkQ
†
k +Q†

kQk)

=
∑

k

2Ek|vk|2 +
∑

k

{ξk(c†k↑ck↑ + c†−k↓c−k↓)
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−Ek(c
†
k↑ck↑ − c†−k↓c−k↓) − (∆kc

†
k↑c

†
−k↓ +∆∗

kc−k↓ck↑)}, (3.3)

where ξk/Ek = u2
k − |vk|2 and ∆k/Ek = 2ukvk. We set ξk = εk − µ, where εk is the

electron dispersion relation and µ is the chemical potential. The superconducting
gap ∆k should be determined self-consistently. The BCS state,

ψBCS =
∏
k

(uk + vkc
†
k↑c

†
−k↓)|0〉, (3.4)

is the ground state of H as we have

QkψBCS = Q†
kψBCS = 0. (3.5)

The fermionic state ψg = c†k↑|0〉 constructed from ψ1 is also the supersymmetric
ground state. The third term on the right-hand side of Eq.(3.3) is missing in the
original BCS Hamiltonian, and thus the degeneracy is lifted in the BCS theory. In
the BCS model, the fermionic excited state has energy Ek, while in the present
model, one fermion state is degenerate with the BCS state and the other fermion
state has energy 2Ek. The operators Qk and Q†

k resemble the Bogoliubov operators
αkσ, which annihilate the BCS state as αkσψBCS = 0. Note that α†

kσ creates the
fermionic excited state α†

kσψBCS with eigenvalue Ek.
In general, we can rotate (ψ1(k), ψ2(k)) in the space spanned by (ck↑,−c−k↓):(

ψ1(k)
ψ2(k)

)
=

(
cosθ −sinθ
sinθ cosθ

)(
ck↑

−c−k↓

)
, (3.6)

and bk = c−k↓ck↑ = ψ1(k)ψ2(k). The same commutators are derived for ψ1, ψ2 and
bk. Then, the Hamiltonian reads

H =
∑

k

2Ek|vk|2 +
∑

k

{ξk(c†k↑ck↑ + c†−k↓c−k↓)

− Ek

[
cos(2θ)(nk↑ − n−k↓) + sin(2θ)(c†k↑c−k↓ + c†−k↓ck↑)

]

− ∆kc
†
k↑c

†
−k↓ −∆∗

kc−k↓ck↑}. (3.7)

The second term corresponds to rotation by an angle 2θ multiplied by the matrix
diag(1,−1): (

cos(2θ) −sin(2θ)
sin(2θ) cos(2θ)

)(
1 0
0 −1

)
. (3.8)

§4. Density of states and electron tunneling

Now let us examine the physical properties of our model. We investigate the
following Hamiltonian for this purpose:

Ha =
∑

k

2Ek|vk|2 +
∑

k

{ξk(c†k↑ck↑ + c†−k↓c−k↓)

− hk(c
†
k↑ck↑ − c†−k↓c−k↓) − (∆kc

†
k↑c

†
−k↓ +∆∗

kc−k↓ck↑)}. (4.1)
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Fig. 2. Energy levels of superconductivity models for each k.

This Hamiltonian reduces to that of the BCS model for hk = 0 and to the super-
symmetric one for hk = Ek. The level structure of the Hamiltonian Ha is displayed
in Fig. 2, and it is seen that it connects the BCS model to the supersymmetric
superconductivity model. We define the Green functions as

Gσσ′(τ,k) = −〈Tckσ(τ)c†kσ′(0)〉, (4.2)

F−σσ′(τ,k) = 〈Tc−k−σ(τ)ckσ′(0)〉, (4.3)

F+
−σσ′(τ,k) = 〈Tc†−k−σ(τ)c†kσ′(0)〉. (4.4)

The Fourier transforms are

Gσσ′(τ,k) =
1
β

∑
n

e−iωnτGσσ′(iωn,k), (4.5)

F+
−σσ′(τ,k) =

1
β

∑
n

e−iωnτF+
−σσ′(iωn,k), (4.6)

where ωn = (2n+1)π/β (β = 1/(kBT )). From the equations of motion for the Green
functions, we obtain

Gσσ′(iωn,k) = δσσ′
iωn + ξk + σhk

(iωn − ξk + σhk)(iωn + ξk + σhk) − |∆k|2 , (4.7)

F+
−σσ′(iωn,k) = δσσ′

σ∆∗
k

(iωn − ξk + σhk)(iωn + ξk + σhk) − |∆k|2 , (4.8)

where we assume that ξ−k = ξk and h−k = hk. We assume the isotropic gap function
∆k = ∆. Then, the density of states for hk = Ek is given by

ρ(ω) = − 1
π

1
V

∑
kσ

ImGσσ(ω + iδ,k), (4.9)
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Fig. 3. Density of states for the supersymmetric (susy) superconductivity model. The dotted lines

denote those for the BCS model.

where V is the volume of the system. This function has peaks at ω = 0 and ω = 2∆,
as shown in Fig. 3:

ρ(ω) = δ(ω) +N(0)
1
2

|ω|√
ω2 − (2∆)2

. (4.10)

If we set hk = αEk (0 ≤ α ≤ 1), we have peaks at ω = (1 − α)∆ and (1 + α)∆.
The lower peak becomes the zero-energy peak at the supersymmetric point α = 1.
In other words, the zero-energy peak splits into two peaks as the supersymmetry is
broken.

Because the supersymmetric model has a zero-energy peak, we expect anomalous
behavior for transport properties. To elucidate this point, we investigate electron
tunneling through the normal metal-superconductor junction in this section for the
supersymmetric case. The current I is given by20)

I = 2e
∑
kp

|Tkp|2
∫ ∞

−∞

dε

2π
AR(k.ε)AL(p, ε+ eVb)(f(ε) − f(ε+ eVb)), (4.11)

for bias voltage Vb, where Tkp is the transition coefficient of the junction, and f(ε)
is the Fermi distribution function, f(ε) = 1/(eβε + 1). The quantities AL and AR

are spectral functions for a normal metal and superconductor, respectively, defined
as A(p, ω) = −∑

σ ImGσσ(ω + iδ,p) with the retarded Green function. Because
AL(p, ε) = 2πδ(ε− ξp) and

AR(k, ε) = π(δ(ε) + u2
kδ(ε− 2Ek) + v2

kδ(ε+ 2Ek)), (4.12)
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for the supersymmetric Hamiltonian, the current I is

I = 2eπ
∑
kp

|Tkp|2
∫ ∞

−∞
dε[δ(ε) + u2

kδ(ε− 2Ek)

+v2
kδ(ε+ 2Ek)]δ(ε+ eVb − ξp)(f(ε) − f(ε+ eVb))

= 2eπ
∑
kp

|Tkp|2 [u2
kδ(eVb + 2Ek − ξp)(f(2Ek) − f(ξp))

+v2
kδ(eVb − 2Ek − ξp)(f(−2Ek) − f(ξp))

+δ(eVb − ξp)(f(0) − f(ξp))]. (4.13)

At the zero temperature, we have

I = 2eπNR(0)NL(0) |T |2
∫ ∞

−∞
dξp

∫ ∞

−∞
dξk

×[−u2
kf(ξp)δ(eVb + 2Ek − ξp)

+v2
k(1 − f(ξp))δ(eVb − 2Ek − ξp)

+δ(eVb − ξp)(f(0) − f(ξp))]

= 2eπNR(0)NL(0) |T |2
∫ ∞

−∞
dξk[−u2

kf(eVb + 2Ek)

+v2
k(1 − f(eVb − 2Ek)) + f(0) − f(eVb)], (4.14)

where |Tkp|2 is approximated as |T |2. Then for eVb ≥ 0, we obtain

I = 2eπNR(0)NL(0) |T |2
√

(eVb/2)2 −∆2θ

(
eVb

2
−∆

)

+πNL(0) |T |2 (f(0) − f(eVb)). (4.15)

The differential conductance is evaluated as

dI

d(eVb)
= 2eπNR(0)NL(0) |T |2 eVb√

(eVb)2 − (2∆)2
θ

(
eVb

2
−∆

)

+πNL(0) |T |2
(
−∂f(eVb)
∂(eVb)

)
. (4.16)

The second term, which results from the supersymmetric effect, leads to a peak at
eVb = 0. Supersymmetric superconductivity may provide a model for the zero-bias
peak at the junction of unconventional superconductors.21)

§5. Insulator-superconductor transition – a two-band model

Let us start with a two-band system in order to study the model with super-
symmetry. We consider the Hamiltonian

H2-band =
∑

k

[ξa
ka

†
kak + ξb

kb
†
kbk + v(a†kbk + b†kak)], (5.1)
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Fig. 4. Dispersion relation of the two-band model as a function of the wave number.

where ak and bk are fermion operators. This Hamiltonian can be written as

H2-band =
∑

k

(E−
k α

†
kαk + E+

k β
†
kβk), (5.2)

where αk and βk are linear combinations of ak and bk, and

E±
k = (ξa

k + ξb
k)/2 ±

√
(ξa

k − ξb
k)

2/4 + v2. (5.3)

For the localized band ξb = 0 (at the level of the chemical potential), we have the
dispersion relation

E±
k = ξk ±

√
ξ2k + v2, (5.4)

where ξk = ξa
k/2. Here we assume that ξ−k = ξk. The band structure is shown in

Fig. 4. The Fermi level is in the gap, and thus the system is insulating in the normal
state. Let us consider the Hamiltonian with the pairing term:

H =
∑

k

[ξk(α
†
kαk + β†

kβk) −
√
ξ2k + v2(α†

kαk − β†
kβk)]

−
∑

k

(∆α†
kβ

†
−k +∆∗β−kαk). (5.5)

If v = ∆, this Hamiltonian has exact supersymmetry. In the following we investi-
gate the properties of this model near the supersymmetric point, regarding v as a
parameter.

Let us consider the Hamiltonian

Hg =
∑

k

[
ξk(α

†
kαk + β†

kβk) −
√
ξ2k + v2(α†

kαk − β†
kβk)

]

+
g

V

∑
kk′q

α†k+qβ
†
k′−qβk′αk, (5.6)
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where we assume g < 0 and ignore the k-dependence of g for simplicity. The third
term represents the attractive interaction. A similar two-band model was investi-
gated in Ref. 22). Using the mean-field theory we obtain the Hamiltonian in Eq.
(5.5) for ∆ defined as

∆ =
g

V

∑
k′

〈αk′β−k′〉. (5.7)

In the supersymmetric case, v = ∆, the paired state (uk + vkα
†
kβ

†
−k)|0〉 and the

unpaired fermionic state are degenerate. If v is large, i.e. if v > ∆, the supercon-
ducting state is unstable, and the ground state is a band insulator with an occupied
lower band. Thus, there is a first-order transition at v = ∆ from a superconductor
to an insulator.

We define the following Green functions:

Gα(τ,k) = −〈Tαk(τ)α
†
k(0)〉, (5.8)

F+
βα(τ,k) = 〈Tβ†

−k(τ)α
†
k(0)〉. (5.9)

Their Fourier transforms are defined similarly to those in Eq. (4.5). The equations
of motion read

(iωn − E−
k )Gα(iωn,k) −∆F+

βα(iωn,k) = 1, (5.10)

(iωn +E+
k )F+

βα(iωn,k) −∆∗Gα(iωn,k) = 0, (5.11)

Thus we have

F+
βα(iωn, k) =

∆∗

(iωn − E−
k )(iωn + E+

k ) − |∆|2 . (5.12)

The gap equation is

1 = g
1
V

∑
k

1
β

∑
n

1

(iωn)2 + 2
√
ξ2k + v2iωn − (|∆|2 − v2)

= |g| 1
V

∑
k

1

2
√
ξ2k + |∆|2

(
1 − f

(√
ξ2k + |∆|2 +

√
ξ2k + v2

)

−f
(√

ξ2k + |∆|2 −
√
ξ2k + v2

))
, (5.13)

where V is the volume of the system. At the zero temperature, T = 0, we have a
solution if we assume that ∆(T = 0) > v:

∆0 = 2ω0exp(−1/(|g|N(0))), (5.14)

where N(0) is the density of states at the Fermi level and ω0 is the cutoff energy.
Here, ∆(T = 0) is a step function as a function of v:

∆(T = 0) = ∆0 if v < ∆0,

= 0 if v > ∆0. (5.15)
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Fig. 5. Superconducting gap as a function of the temperature t = kBT/ω0 for v/ω0 = 0, 0.05 and

0.1 (from the top). Here we set λ = 1/2.

A finite strength of the coupling constant |g|N(0), with the condition v < ∆0, is
needed to produce superconductivity. This is because the transition is from the
insulating state without the Fermi surface. In the ground state, there occurs a first-
order transition at the supersymmetric point v = ∆0 from a superconductor to an
insulator if we vary the parameter v. We define the dimensionless coupling constant
λ as λ = |g|N(0). The function, ∆(T ), obtained numerically, is shown in Fig. 5 as
a function of the temperature for v = 0, 0.05 and 0.1 and λ = 1/2. A first-order
transition occurs for v = 0.05 and 0.1 as seen in Fig. 5. The transition is first order
at finite T , except in the region of small v, where the transition is second order. The
critical temperature tc = kBTc/ω0 is a decreasing function of v, as is shown in Fig.
6, and it vanishes for v > ∆0.

A superconductor-insulator transition occurs at T = Tc. The gap equation in
Eq. (5.13) is written

1
λ

=
∫ ω0

0
dξ

1√
ξ2 +∆2

(1 − f(
√
ξ2 +∆2 +

√
ξ2 + v2)

−f(
√
ξ2 +∆2 −

√
ξ2 + v2)), (5.16)

where we set |∆| = ∆. The right-hand side of this equation has a maximum for
T > 0 at low temperatures, while it is a decreasing function at high temperatures
(see Fig. 7). There is no solution if the maximum is less than 1/λ, and there are
two solutions if 1/λ is less than the maximum. The first-order transition is realized
if 1/λ is equal to the maximum. The larger gap is shown in Fig. 5 because it is
connected to the gap at T = 0. It is important to note that the ratio 2∆/(kBTc) is
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Fig. 6. Critical temperature tc = kBTc/ω0 as a function of v/ω0 for 1/λ = 1, 3/2 and 2 (from the

top). Here ω0 is taken as the unit of energy. The transition is first order on the left-hand side

of the dashed line, and second order on the other side. The insulating phase exists above tc.

larger than the BCS value, 3.53. In the limit v → 0, the gap equation for Tc becomes

1 = |g| 1
V

∑
k

1/2 − f(2|ξk|)
2|ξk| , (5.17)

from which we obtain

kBTc(v = 0) =
2eγ

π
2ω0exp(−2/(|g|N(0))). (5.18)

Then the ratio at T = 0,
2∆0

kBTc(v = 0)
=

π

eγ
e1/λ (5.19)

is much larger than 2π/eγ = 3.53 where γ = 0.5772 the Euler constant. Figure 8
plots this ratio as a function of v. We see that it diverges at the supersymmetric
point v = ∆0. Thus ∆(0)/kBTc does not follow the universal relation of the BCS
theory.

§6. Discussion

We have shown that the BCS state is invariant under the supersymmetric trans-
formation generated by Q and Q†. The BCS state is the ground state of the super-
symmetric Hamiltonian. The superpartner is also the supersymmetric ground state,
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Fig. 7. The integral on the right-hand side of Eq. (5.16) as a function of ∆/ω0 for v/ω0 = 0.1.

Here we set t/ω0 = 0, 0.02 and 0.3 (from the top) and ω0 = 1.

and thus they are degenerate. In the original BCS model, the degeneracy is lifted.
In this sense, supersymmetry is broken in the BCS Hamiltonian.

The BCS Hamiltonian possesses particle-hole symmetry. Let us examine this
symmetry for the supersymmetric model. According to the particle-hole transfor-
mation, ψBCS and ψg are transformed into ψ⊥

BCS and ψe, respectively, and vice versa.
Then ψ⊥

BCS and ψe become the ground states. Because ψ⊥
BCS and ψe are not super-

symmetric invariant, i.e. Q†ψ⊥
BCS �= 0 and Qψe �= 0, the supersymmetry is broken in

this case. Thus, we obtain a model for superconductivity with spontaneously broken
supersymmetry after an electron-hole transformation.

The supersymmetric superconductivity displayed in this model is characterized
by a peak in the density of states within the superconducting gap. We have presented
a two-band model with supersymmetry. This system exhibits a transition from a
superconducting state to an insulator, and vice versa, as the hybridization parameter
v is varied. In the low temperature region, a first-order transition occurs, and in the
ground state, this transition is at the supersymmetric point, v = ∆0. In the high
temperature region, the transition becomes second order. It may be possible to
adjust the parameter with some external forces, such as the pressure, in a two-band
system in such a manner that a transition occurs across the supersymmetric point.

The two-band model possesses the dispersion relation of heavy-fermion systems
described by the periodic Anderson model.23),24) In applying the present theory
to real systems, the important problem is to determine the origin of the attractive
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Fig. 8. The ratio 2∆(T = 0)/kBTc as a function of v/ω0 for λ = 1 and 1/2.

interaction between the two bands. One type of phenomenon that could create such
an attractive interaction is charge fluctuations, such as excitons or spin fluctuations,
due to the interband interaction. If the origin of the attractive interaction is elec-
tronic, we could have a finite strength attractive interaction that is strong enough
for the relation v < ∆0 to hold.

In summary, we have proposed a new supersymmetric model which exhibits an
unusual superconductor-insulator first-order phase transition. The universal rela-
tions of the BCS theory, such as ∆(T )/∆(0) and ∆(0)/Tc, do not hold in the present
model.
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