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Abstract

The optical conductivity measurements give a powerful tool to investigate the nature of the super-

conducting gap for conventional and unconventional superconductors. First, general analyses of the

optical conductivity are given stemmed from the Mattis-Bardeen formula for conventional BCS su-

perconductors to unconventional anisotropic superconductors. Second, we discuss the reflectance-

transmittance (R-T) method which has been proposed to measure far-infrared spectroscopy. The

R-T method provides us precise measurements of the frequency-dependent conductivity. Third,

the optical conductivity spectra of the electron-doped cuprate superconductor Nd2−xCexCuO4 are

investigated based on the anisotropic pairing model. It is shown that the behavior of optical con-

ductivity is consistent with an anisotropic gap and is well explained by the formula for d-wave

pairing in the far-infrared region. The optical properties of the multiband superconductor MgB2,

in which the existence of superconductivity with relatively high-Tc (39K) was recently announced,

is also examined to determine the symmetry of superconducting gaps.
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I. INTRODUCTION

The measurements of optical properties provide us important insights concerning the

nature of charge carries, pseudogaps and superconducting gaps, as well as the electronic

band structure of a material.[52] The optical spectroscopy gives a view into the electronic

structure, low-lying excitations, phonon structure, etc. The optical conductivity or the di-

electric function indicates a response of a system of electrons to an applied field. For the

ordinary superconductors the evidence for an energy gap has been obtained by infrared

spectroscopy. Far above the superconducting energy gap, a bulk superconductor behaves

like a normal metal in the optical response. The Mattis-Bardeen formula derived in the

BCS theory consistently describes the infrared behaviors in the classical conventional super-

conductors. After the discovery of high-temperature superconductivity, a large amount of

works has been made to find the superconducting gap and any spectral features responsible

to the superconducting pairing, using an infrared spectroscopy technique.

Optical properties are discussed in the linear response theory where the induced currents

are proportional to the external applied field. General formulas have been derived for the

optical response. In this paper in Section II we discuss the linear response theory for the

conductivity; we derive the Mattis-Bardeen formula for conventional superconductors and

the formula for London superconductors. The conductivity sum rule is briefly discussed

here.

In Section III we briefly present a new method to characterize far-infrared optical prop-

erties which we call the reflectance-transmittance method (R-T method). In this method,

both the reflectance spectra R(ω) and the transmittance spectra T (ω) are measured, and

then they are substituted into a set of coupled equations which describe exactly the trans-

mittance and reflectance of thin films. The coupled equations are solved numerically by the

Newton method to obtain the complex refractive indices n and k of thin films as functions

of the frequency ω, which determined the optical conductivity σ(ω). Since this method

does not need a Kramers-Kronig transformation, we are free from difficulties stemmed from

uncertainties in the small ω region in the conventional method.

In the subsequent Sections we discuss two materials: the electron-doped oxide super-

conductor Nd2−xCexCuO4 and the magnesium diboride MgB2 exhibiting Tc = 39K. The

cuprate high-Tc superconductors are regarded as a typical London superconductor satisfy-
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ing λ � ξ for the penetration depth and the coherence length. Our date obtained from the

R-T method for Nd2−xCexCuO4 clearly indicates the d-wave symmetry with nodes for the

superconducting gap.

MgB2 is recently discovered superconductor with a relatively high Tc in spite of its simple

crystal structure. The symmetry of Cooper pairs is an issue which should be clarified to

investigate the mechanism of high Tc. The optical properties provide us information on

superconducting gaps from which we conclude that this material is described by two order

parameters attached to σ- and π-bands. Besides, the two order parameters have different

anisotropy to explain the experimental results consistently.

II. THEORY OF OPTICAL CONDUCTIVITY

A. Linear Response Theory

In this section we discuss the optical properties in the linear response theory in the

normal metal and superconductors. The famous Mattis-Bardeen formula is derived and its

modifications to unconventional superconductors are discussed. In the Kubo theory the

external applied field

H ′(t) = −
∑
µ

aµXµ(t) = −
∑
µ

aµXµe
−iωt, (2.1)

is considered as a perturbation to the non-interacting system described by the Hamiltonian

H0. The total Hamiltonian is given by H = H0 +H ′. From the equation ih̄∂ρ/∂t = [H, ρ],

a linear variation ρ′(t) to the density operator ρ0 = e−βH0/Z0 is written as

ih̄
∂ρ′

∂t
= [H0, ρ

′] + [H ′, ρ0]. (2.2)

Then ρ′ is given as

ρ′(t) = − i

h̄

∫ t

−∞
dt′e−iH0(t−t′)/h̄[H ′(t′), ρ0]e

iH(t−t′)/h̄. (2.3)

For the electrical conductivity, the external fields are given by

aµ = e
∑
i

xiµ, Xµ = Eµ (µ = x, y, z). (2.4)
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The current is given by

Jµ = ȧµ = e
∑
i

(ẋi)µ = e
∑
i

(vi)µ. (2.5)

The expectation value of the current is

〈Jµ(t)〉 = Trρ′Jµ

= − i

h̄

∫ t

−∞
dt′Tre−iH0(t−t′)/h̄[H ′(t′), ρ0]e

iH0(t−t′)/h̄Jµ

=
i

h̄

∫ ∞

0

dτeiωτTre−iH0τ/h̄[aν, ρ0]e
iH0τ/h̄Eνe

−iωtJµ. (2.6)

We assume the time dependence of 〈Jµ(t)〉 as 〈Jµ(t)〉 = Jµ(ω)e
−iωt, then we obtain

Jµ(ω) = σµν(ω)Eν , (2.7)

where the conductivity is written as

σµν(ω) =
i

h̄

∫ ∞

0

dteiωtTre−iH0t/h̄[aν, ρ0]e
iH0t/h̄Jµ

=

∫ ∞

0

dteiωtφµν(t). (2.8)

Here we have defined

φµν(t) =
i

h̄
Tr[aν, ρ0]e

iH0t/h̄Jµe
−iH0t/h̄. (2.9)

Due to the relation

[aν, ρ0] = −ih̄ρ0

∫ β

0

dλȧν(−ih̄λ), (2.10)

we obtain

φµν(t) =

∫ β

0

dλTrρ0ȧν(−ih̄λ)Jµ(t)

=

∫ β

0

dλ〈Jν(−ih̄λ)Jµ(t)〉. (2.11)

Since the time-derivative of φ is written as

φ̇µν = − i

h̄
〈Jµ(t)Jν(0) − Jν(0)Jµ(t)〉, (2.12)
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the conductivity is given by

σµν(ω) =

∫ ∞

0

eiωtφµν(t) = −
∫ ∞

0

dt
ei(ω+iδ)t − 1

i(ω + iδ)
φ̇µν

= −
∫ ∞

−∞
dt
ei(ω+iδ)t − 1

i(ω + iδ)
QRµν(t)

= − 1

i(ω + iδ)
[QRµν(ω)−QRµν(0)], (2.13)

where

QRµν(t) = − i

h̄
θ(t)〈[Jµ(t), Jν(0)]〉, (2.14)

and QRµν(ω) is its Fourier transform. QRµν(ω) is evaluated from the analytic continuation of

the thermal Green’s function:

QRµν(ω) = Qµν(iωn → h̄ω + iδ), (2.15)

Qµν(τ ) = −〈TJµ(τ )Jν(0)〉 = 1

β

∑
ωn

Qµν(iωn)e
−iωnτ . (2.16)

From these equations we can derive the sum rule for σµν . Let us define the Fourier transform

of φµν(t) as

φµν(ω) =

∫ ∞

−∞
dtφµν(t)e

iωt, (2.17)

then σµν(ω) is written as

σµν(ω) =
i

2π

∫ ∞

−∞
dω′φµν(ω′)

1

ω − ω′ + iδ
. (2.18)

Hence the following formulae are followed:∫ ∞

−∞
dωσµν(ω) = πφµν(t = 0), (2.19)

lim
ω→0

ωσµν(ω) = iφµν(t = 0). (2.20)

Since viµ = (1/m)(piµ − (e/c)Aµ) and Jµ = e
∑
i(vi)µ, we obtain

φµν(t = 0) =
i

h̄
Tr[aν, ρ0]Jµ

=
i

h̄
Tr(ρ0[Jµ,

∑
j

exjν])

= δµν
Ne2

m
. (2.21)
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Then the sum rule is written as ∫ ∞

0

dωReσ(ω) =
π

2

Ne2

m
(2.22)

In this derivation the translational invariance of the potential term is important since we

used the relation ẋiµ = viµ = (1/m)(piµ − (e/c)Aµ). In the Drude formula

σ(ω) =
Ne2

m

τ

1− iωτ
, (2.23)

the sum rule is clearly satisfied.

Please note that the above formulas are derived for the uniform external fields. An

extension to the spatially oscillating fields is performed in a straightforward way. Here we

set h̄ = 1. Let us consider the spatially varying applied fields:

H ′(t) = −1

c

∫
drξµ(r)Eµ(r, t), (2.24)

or

H ′(t) = −1

c

∫
drjµ(r)Aµ(r, t), (2.25)

where we assume

Eµ(r, t) = eµe
i(q·r−ωt), (2.26)

and Aµ(r, t) is the vector potential satisfying Eµ(r, t) = (−1/c)Ȧµ(r, t) = (iω/c)Aµ(r, t) and

divA = 0. We set ξµ(r, t) = e
∑
i xiµδ(r − ri) and jµ is the current operator given by

jµ(r) =
1

2m

∑
i

e[piδ(r− ri) + δ(r− ri)pi]µ. (2.27)

The conductivity is defined as the coefficient of the linear response of the current to applied

fields:

Jµ(r, t) = σµν(q, ω)Eν(r, t)

=

∫
dr′
∫ t

−∞
dt′σµν(r − r′; t− t′)Eν(r′, t′). (2.28)

The expectation value of jµ(r) to the first order in H ′ is evaluated as

〈jµ(r, t)〉 = Trρ′jµ(r)

= i

∫ ∞

0

dt′
∫

drTre−iH0t
′
[ξν(r), ρ0]e

iH0t
′
eνe

iq·re−iω(t−t′)jµ(r)

=
i

h̄

∫ ∞

0

dt′eiωt
′
Tre−iH0t

′
[ξν(q), ρ0]e

iH0t
′
eνe

−iωtjµ(r), (2.29)
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where ξµ(q) is the Fourier transform of ξµ(r). We follow the same procedure as for the

uniform external fields and note that ξ̇µ(r) = Jµ(r), then we have

φµν(q, t) =

∫ β

0

dλ〈jν(q,−ih̄λ)jµ(r, t)〉e−iq·r. (2.30)

Here we neglect the A-term in the current Jµ since this is the higher-order term in external

fields and we take a spatial average to write

jµ(q) =

∫
drjµ(r)e

iq·r =
e

2m

∑
i

(pie
iq·ri + eiq·ripi)µ, (2.31)

φµν(q, t) =

∫ β

0

dλ〈jν(q,−ih̄λ)jµ(q, t)〉, (2.32)

σµν(q, ω) =

∫ ∞

0

dteiωtφµν(q, t). (2.33)

Now let us define the retarded response function:

Kµν(q, t− t′) = −iθ(t− t′)〈[j†µ(q, t), jν(q, t′)]〉, (2.34)

and its Fourier transform given by

Kµν(q, ω) =

∫ ∞

−∞
dteiωtKµν(q, t). (2.35)

The formula for the optical conductivity is followed as

σµν(q, ω) =
i

ω + iδ
[Kµν(q, ω)−Kµν(q, 0)]. (2.36)

The current response function is written in the form,

Kµν(q, ω + iδ) = −
∑
nm

e−βEn

Z
[
〈n|jν(q)|m〉〈m|j†µ(q)|n〉
Em − En + ω + iδ

− 〈n|j†µ(q)|m〉〈m|jν(q)|n〉
En − Em + ω + iδ

], (2.37)

where |n〉 denotes a complete set of exact eigenstates of H0 with eigenvalues En and Z is

the partition function Z =
∑
n e

−βEn. The imaginary part of Kµν is given by

ImKµν(q, ω + iδ) = −π(1− e−βω)
∑
nm

e−βEn

Z
δ(Em − En − ω)〈n|j†µ(q)|m〉〈m|jν(q)|n〉.

(2.38)
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The retarded Green’s function Kµν(q, ω) is evaluated from the thermal Green’s function

through the analytic continuation:

Kµν(q, ω) = Kµν(q, iωn = ω + iδ), (2.39)

where

Kµν(q, iωn) =

∫ β

0

dτeiωnτKµν(q, τ ), (2.40)

Kµν(q, τ ) = −〈Tj†µ(q, τ )jν(q, 0)〉. (2.41)

In order to calculate the conductivity for the uniform external fields, we take the limit

q → 0. For the direct-current conductivity, we must take the limit q → 0 first before ω → 0.

The current operator is given by

j(q) =
e

m

∑
pσ

(p +
1

2
q)c†p+qσcpσ =

e

m

∑
pσ

pc†p+q/2,σcp−q/2,σ. (2.42)

In the limit q → 0 Kµν(q, ω = 0) is evaluated as

Kµν(0, 0) =
2e2

m2

1

β

∑
n

∑
k

kµkνG0(k, iεn)
2

=
2e2

m2

1

β

∑
n

∑
k

kµ
m

2

∂

∂kν
G0(k, iεn) =

2e2

m2

m

2

1

β

∑
n

∑
k

(−δµν)G0(k, iεn)

= −Ne2

m
δµν, (2.43)

where G0(k, iεn) is the Green’s function for the non-interacting electrons: G0(k, iεn) =

(iεn − εk)
−1 for εn = (2n+ 1)π/β. Then the uniform conductivity is given by the formula

σµν(ω) =
i

ω + iδ
[Kµν(q = 0, ω + iδ) +

Ne2

m
δµν]. (2.44)

The current response function Kµν for q �= 0 in the non-intracting system is

Kµν(q, iωn) = −2e2

m2

∑
p

pµpν
f(εp−q/2)− f(εp+q/2)

−iωn + εp−q/2 − εp+q/2

. (2.45)

Since Kµν(q, ω) vanishes in the limit q → 0 for finite ω �= 0, we have the sum rule∫ ∞

0

dωReσµν(ω) =
π

2

Ne2

m
δµν, (2.46)
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and the Drude weight

D =
πNe2

m
(2.47)

as the coefficient of the delta function: Reσµν(ω) = Dδ(ω)δµν . The sum rule for q �= 0 is

derived similarly. The commutator [j †µ, ξν ] as in eq.(2.21) leads to∫ ∞

−∞
dωReσµν(q, ω) = πReφµν(q, t = 0) =

πNe2

m
δµν. (2.48)

B. Mattis-Bardeen Formula

The infrared absorption formula in BCS model was first derived by Mattis-Bardeen.[36]

We use the standard notations for the Green’s functions;

G(p, τ ) = −〈cpσ(τ )c†pσ(0)〉, (2.49)

F (p, τ ) = 〈c−p↓(τ )cp↑(0)〉, (2.50)

F †(p, τ ) = 〈c†p↑(τ )c†−p↓(0)〉, (2.51)

and their Fourier transforms given by

G(p, iεn) =
u2

p

iεn −Ep
+

v2
p

iεn + Ep
, (2.52)

F (p, iεn) = F †(p, iεn) = −upvp(
1

iεn − Ep
− 1

iεn + Ep
), (2.53)

where Ep =
√
ξ2
p +∆2

p, u
2
p = (1/2)(1+ξp/Ep) and v

2
p = 1−u2

p for ξp = εp−µ. We evaluate

the current response function written as

Kµν(q, iω�) =
2e2

m2

∑
p

pµpν
1

β

∑
n

[G(p − q/2, iεn)G(p + q/2, iεn − iω�)

+ F (p − q/2, iεn)F
†(p + q/2, iεn + iω�)]. (2.54)

We set iω� → −iω� in the first term, then using the symmetry q ↔ −q we have

Kµν(q, iω�) =
2e2

m2

∑
p

pµpν [(f(Ep+)− f(Ep−))
1

2

(
1 +

ξp+ξp−

Ep+Ep−
+

∆p+∆p−

Ep+Ep−

)
1

iω� + Ep+ −Ep−

+ (f(Ep+) + f(Ep−)− 1)
1

4

(
(1 +

ξp+

Ep+

)(1− ξp−

Ep−
)− ∆p+∆p−

Ep+Ep+

)
1

iω� + Ep+ + Ep−

+ (1− f(Ep+)− f(Ep−))
1

4
{(1− ξp+

Ep+

)(1 +
ξp−

Ep−
)− ∆p+∆p−

Ep+Ep+

} 1

iω� − Ep+ − Ep−
],

(2.55)
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where p+ = p + q/2 and p− = p − q/2. Here we consider (i) dirty superconductors or

(ii) thin films satisfying d � ξ ≈ vF/∆ for the film thickness d and the coherence length

ξ. In these cases we can regard p+ and p− as independent variables. In the case (ii), since

qvF � ∆ ∼ ω we can do Abrikosov’s replacement[1],

∑
p

→ N(0)
1

4qvF

∫
dξp+dξp−. (2.56)

Then in the isotropic case we obtain the Mattis-Bardeen formulae for σ1(ω) = Reσ(ω) =

−(1/ω)ImK(ω + iδ) and σ2(ω) = Imσ(ω) = (1/ω)ReK(ω + iδ):

σ1s

σ1n
(ω) =

1

ω

∫ ω−∆

∆

dEN(E)N(ω − E)(1− 2f(ω + E))

(
1− ∆2

E(ω − E)

)
θ(ω − 2∆)

+ 2
1

ω

∫ ∞

0

dE(f(E)− f(ω + E))

(
1 +

∆2

E(ω + E)

)
, (2.57)

σ2s

σ1n
(ω) =

1

ω

∫ ∆

max(−∆,∆−ω)

dE(1− 2f(ω + E))
E(E + ω) + ∆2

√
∆2 − E2

√
(E + ω)2 −∆2

, (2.58)

where σ1n is the real part of the conductivity for normal state. In the above formula for σ2,

the integral is calculated as follows.

I ≡ 1

4

∫ ∞

−∞
dξpdξp′(1 − ξpξp′ +∆2

EpEp′
)P

1

ω − Ep − Ep′

=

∫ ∞

∆

dEdE′N(E)N(E′)(1− ∆2

EE′ )P
1

ω − Ep − Ep′

=

∫ ∞

−∞
dε

∫ ∞

∆

dEdE′N(E)N(E′)(1− ∆2

EE′ )P
1

ω − ε
δ(ε+ E − E ′)

=

∫ ∞

∆−E
dε

∫ ∞

∆

dEN(E)N(E + ε)(1− ∆2

E(E + ε)
)P

1

ω − ε

= Re

∫ ∞

−∞
dε

∫ ∞

∆

dEN(E)N(E + ε)(1− ∆2

E(E + ε)
)
−1

2
(

1

ε+ ω + iδ
+

1

ε+ ω − iδ
)

= πIm

∫ ∞

∆

dEN(E)N(E − ω)(1 − ∆2

E(E − ω)
)

= −π
∫ ω+∆

max(ω−∆,∆)

dE
E(ω − E)−∆2

√
E2 −∆2

√
∆2 − (ω − E)2

= π

∫ ∆

max(∆−ω,−∆)

dE
E(ω + E) + ∆2

√
∆2 − E2

√
(ω − E)2 −∆2

. (2.59)
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At T = 0, the integral has the form for complete elliptic integrals by changing variables of

integration to x where x = (2E − ω)/(ω − 2∆) for σ1s;

σ1s

σ1n
(ω) =

1

ω

∫ ω−∆

∆

dE
E(ω − E)−∆2

√
E2 −∆2

√
(ω −E)2 −∆2

=
ω − 2∆

ω

∫ 1

0

dx
1 − kx2√

(1 − x2)(1− k2x2)
, (2.60)

where k = (ω − 2∆)/(ω + 2∆) and ω > 2∆. We then obtain the Mattis-Bardeen formula:

σ1s

σ1n

(ω) =

((
1 +

2∆

ω

)
E(k)− 4∆

ω
K(k)

)
θ(ω − 2∆), (2.61)

where

E(k) =

∫ 1

0

√
1 − k2x2

1− x2
dx, K(k) =

∫ 1

0

1√
(1− x2)(1 − k2x2)

dx, (2.62)

are complete elliptic integrals. An expression for σ2s valid for all ω is

σ2s

σ1n

(ω) =

(
∆

ω
+

1

2

)
E(k′) +

(
∆

ω
− 1

2

)
K(k′), (2.63)

where k′ = (1 − k2)1/2.

In evaluations of Kµν , the matrix notations are also employed for Green’s functions in

superconductors,

Ĝ(k, iεn) =
iε̃nτ0 + ξkτ3 + ∆̃kτ1

ε̃n
2 + ξ2

k + ∆̃k
2 , (2.64)

where τi (i = 0, 1, 3) are Pauli matrices. εn and ∆k are generalized to include the self-energy

in the form: ε̃n = εn −Σ0(εn) and ∆̃k = ∆k +Σ1(εn). The response function Kµν is written

as neglecting pair vertex corrections

Kµν(q, iωm) =
e2

m2

∑
p

pµpν
1

β

∑
n

TrĜ(p+, iεn + iωm)Ĝ(p−, iεn). (2.65)

One can reproduce the Mattis-Bardeen formulae from this expression in a straightforward

way.

C. Optical Conductivity in London Superconductor

In this section, we investigate the superconductor in the London limit: ξ � λ for the

coherence length ξ and the penetration depth λ. Since qξ � 1 holds, we must consider the
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limit q → 0 for the response function in eq.(2.65)[11, 12, 18–20, 45]:

Kµν(q, iωm) =
e2k2

F

m2
2
∑
k

k̂µk̂ν
1

β

∑
n

−ε̃n(ε̃n + ωm) + ξk−ξk+ + ∆̃k−∆̃k+

(ε̃2n + ξ2
k− + ∆̃2

k−)((ε̃n + ωm)2 + ξ2
k+

+ ∆̃2
k+

)
. (2.66)

We use the notation z̃ = iε̃n = iεn − iΣ0(iεn) = z − iΣ0(z). Then we have

Kµν(q = 0, iωm) =
e2k2

F

m2
2
∑
k

k̂µk̂ν
1

2πi

∫
C

dzf(z)
z̃(z̃ + iωm) + ξ2

k + ∆̃k∆̃k+

(ξ2
k + ∆̃2

k − z̃2)(ξ2
k + ∆̃2

k+
− (z̃ + iωm)2)

,

(2.67)

where ∆̃2
k+

= ∆ + Σ1(z + iω) and C is the contour surrounding the poles of f(z) in the

clockwise direction. We set z+ = z + iωm, and write the integrand in the form,

z̃z̃+ + ξ2
k + ∆̃2

k∆̃
2
k+

(ξ2
k + ∆̃2

k − z̃2)(ξ2
k + ∆̃2

k+
− (z̃ + iωm)2)

=
1

ξ2
k + ∆̃2

k − z̃2

+
z̃z̃+ + ∆̃2

k∆̃
2
k+

+ z̃2
+ − ∆̃2

k+

(ξ2
k + ∆̃2

k − z̃2)(ξ2
k + ∆̃2

k+
− (z̃ + iωm)2)

.

(2.68)

Then the momentum summations are performed in the following way:

∑
k

1

2πi

∫
C

dzf(z)
1

ξ2
k + ∆̃2

k − z̃2
= N(0)〈

∫ ∞

−∞
dξ

1

2πi

∫
C

dzf(z)
z

(ξ2 + ∆̃2
k − z̃2)2

∂

∂z
(∆̃2

k − z̃2)〉k̂

= N(0)〈 1
2i

∫
C

dz[− ∂

∂z

zf(z)√
∆̃2

k − z̃2

+
f(z)√
∆̃2

k − z̃2

]〉k̂, (2.69)

where 〈· · · 〉k̂ denotes the average over the Fermi surface. In the last equality, the first term

gives only a constant contribution. The second term in eq.(2.68) gives∫ ∞

−∞
dξk

1

(ξ2
k + ∆̃2

k − z̃2)(ξ2
k + ∆̃2

k+
− (z̃ + iωm)2)

= πi
1√

z̃2 − ∆̃2
k

√
z̃2
+ − ∆̃2

k+

× −1√
z̃2 − ∆̃2

k +
√
z̃2
+ − ∆̃2

k+

. (2.70)

Then the current response function is written as

Kµν(q = 0, iωm) =
e2k2

F

m2
N(0)〈kµkν

∫
C

dzf(z)
1√

z̃2 − ∆̃2
k +

√
z̃2
+ − ∆̃2

k+

×


1− z̃z̃+ + ∆̃k∆̃k+√

z̃2 − ∆̃2
k

√
z̃2
+ − ∆̃2

k+


〉k̂. (2.71)
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Let us consider the limit of weak impurity scattering, and write the renormalized fre-

quency z̃ and the superconducting gap ∆̃k in the following forms, respectively:

z̃ = z + iΓ1〈 z̃√
z̃2 − ∆̃2

k

〉k̂, (2.72)

∆̃k = ∆k + iΓ2〈 ∆̃k′√
z̃2 − ∆̃2

k′

〉k̂′ . (2.73)

For the isotropic superconducting gap, we set u = z̃/∆̃ and v = u∆; then we have

v(z) = z + iΓ
u√

u2 − 1
= z + iΓ

v√
v2 −∆2

, (2.74)

where Γ = Γ1 −Γ2. The relation
√
z̃2 − ∆̃2 =

√
v2 −∆2 + iΓ2 is also followed. The density

of states is given by

Ns(z) = N(0)Re
u√

u2 − 1
. (2.75)

In the limit as Γ → 0, this reduces to

Ns(ω) = N(0)
|ω|√

ω2 −∆2
for |ω| > ∆, (2.76)

and Ns(ω) = 0 otherwise. For the anisotropic case satisfying 〈∆k〉k̂ = 0, v(z) satisfies

v(z) = z̃ = z + iΓ〈 v(z)√
v(z)2 −∆2

k

〉k̂, (2.77)

for Γ = Γ1 (Γ2 = 0). Let us examine this case in more detail; Kµν is given by(where we use

the notation v+ = v(z + iωm)),

Kµν(q = 0, iωm) =
e2k2

F

m2
N(0)〈kµkν

∫
C

dzf(z)
1√

v2 −∆2
k +

√
v2

+ −∆2
k

×
(
1− vv+ +∆2

k√
v2 −∆2

k

√
v2

+ −∆2
k

)
〉k̂

= −e2k2
F

m2
N(0)〈kµkν

∫
C

dzf(z)
1

v+ − v

×
(

v+√
v2

+ −∆2
k

− v√
v2 −∆2

k

)
〉k̂. (2.78)
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Now v has a cut along the real axis; as the cut is crossed, the continuation is performed as

follows[45],

v → v∗,
(v2 −∆2)−1/2 → −[(v2 −∆2)−1/2]∗,

v√
v2 −∆2

→ −
(

v√
v2 −∆2

)∗
. (2.79)

The complex integration is reduced to integrations along Imz = 0 and Imz = ωm. We obtain

the expression for the current response function from the analytic continuation:

K(q = 0, ω + iδ) =
e2k2

F

2m2
N(0)

∫ ∞

−∞
dε[(f(ε)− f(ε+ ω))

× { 1

v(ε+ ω)− v(ε)∗
〈 v(ε+ ω)√

v(ε+ ω)2 −∆2
k

+
v(ε)∗√

v(ε)∗2 −∆2
k

〉k̂

− 1

v(ε+ ω)− v(ε)
〈 v(ε+ ω)√

v(ε+ ω)2 −∆2
k

− v(ε)√
v(ε)2 −∆2

k

〉k̂}

− f(ε+ ω)

× { 1

v(ε+ ω)∗ − v(ε)∗
〈 v(ε+ ω)∗√

v(ε+ ω)∗2 −∆2
k

− v(ε)∗√
v(ε)∗2 −∆2

k

〉k̂

+
1

v(ε+ ω)− v(ε)
〈 v(ε+ ω)√

v(ε+ ω)2 −∆2
k

− v(ε)√
v(ε)2 −∆2

k

〉k̂}], (2.80)

where the average Kxx +Kyy is written as 2K (in two dimensions) and we use v(ω − iδ) =

v(ω + iδ)∗. If we use the relation in eq.(2.77), the expression for ImK is simplified as

ImK(q = 0, ω + iδ) =
e2k2

F

2m2
N(0)

ω

2Γ

∫ ∞

−∞
dε

(
tanh

(
βε

2

)
− tanh

(
β(ε+ ω)

2

))

× Re

(
1

v(ε+ ω)− v(ε)
− 1

v(ε+ ω)− v(ε)∗

)
. (2.81)

In the collision less limit Γ → 0, an expansion in terms of Γ gives the conductivity,

σ1s

σ1n
(ω) =

1

2ω

∫ ∞

−∞
dε

(
tanh

(
βε

2

)
− tanh

(
β(ε+ ω)

2

))
〈Re |ε+ ω|√

(ε+ ω)2 −∆2
k

〉k̂

× 〈Re |ε|√
ε2 −∆2

k

〉k̂, (2.82)

where σ1n = (ne2τ )/m/(ωτ )2 ≈ (ne2τ )/m · 1/[(ωτ )2 + 1] with τ = 1/(2Γ), and we use the

density of states in eq.(2.76) in the limit Γ → 0.

For the d-wave symmetric superconducting gap in two dimensions, the average over the

Fermi surface is given by the Elliptic function,

〈 v√
v2 −∆2cos2(2φ)

〉k̂ =
1

2π

∫ 2π

0

dφ
v√

v2 −∆2cos2(2φ)
=

2

π
K(

∆

v
), (2.83)
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for v > 0 and ∆k = ∆cos(2φ). Since the relation K(1/x) = −ix/√1 − x2 · K(1/
√
1− x2)

holds for x > 1, the renormalized frequency u(ω) = v(ω)/∆ is written as

u(ω) =
ω

∆
+ i

Γ

∆
〈 u√

u2 − cos2(2φ)
〉k̂

=
ω

∆
+

Γ

∆

2

π

u√
1− u2

K(
1√

1− u2
). (2.84)

We will do a continuation of the elliptic integral to a general complex argument, the real

part of the optical conductivity for the d-wave superconductor in the London limit is given

by[11]

σ1s(ω) =
e2k2

F

2m2
N(0)

1

ω

∫ ∞

−∞
dε

1

2

(
tanh

(
βε

2

)
− tanh

(
β(ε+ ω)

2

))

× Im(−i) 1
∆
{ 1

u(ε+ ω)− u(ε)∗
2

π
[

u(ε+ ω)√
1− u(ε+ ω)2

K

(
1√

1− u(ε+ ω)2

)

− u(ε)∗√
1− u(ε)∗2

K

(
1√

1 − u(ε)∗2

)
]

− 1

u(ε+ ω)− u(ε)

2

π
[

u(ε+ ω)√
1− u(ε+ ω)2

K

(
1√

1− u(ε+ ω)2

)

− u(ε)√
1− u(ε)2

K

(
1√

1− u(ε)2

)
]}. (2.85)

The imaginary part σ2s is also obtained from eq.(2.80) as

σ2s(ω) = Imσs(ω) =
1

ω
ReK(q = 0, ω + iδ), (2.86)
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where ReK(q = 0, ω + iδ) is written as

ReK(q = 0, ω + iδ) =
e2k2

F

2m2
N(0)

∫ ∞

−∞
dε[(f(ε)− f(ε+ ω))

× Re(
1

v(ε+ ω) − v(ε)∗
2

π
(K(

∆

v(ε+ ω)
)−K(

∆

v(ε)∗
))

− 1

v(ε+ ω)− v(ε)

2

π
(K(

∆

v(ε+ ω)
)−K(

∆

v(ε)
)))

− 2f(ε+ ω)Re
1

v(ε+ ω)− v(ε)

2

π
(K(

∆

v(ε+ ω)
)−K(

∆

v(ε)
))]

= −e2k2
F

2m2
N(0)

∫ ∞

−∞
dε[

1

2
(tanh(

βε

2
) − tanh(

β(ε+ ω)

2
))

× Im(
1

∆

1

u(ε+ ω)− u(ε)∗
2

π
(

u(ε+ ω)√
1 − u(ε+ ω)2

K(
1√

1− u(ε+ ω)2
)

− u(ε)∗√
1 − u(ε)∗2

K(
1√

1 − u(ε)∗2
))

− 1

∆

1

u(ε+ ω)− u(ε)

2

π
(

u(ε+ ω)√
1 − u(ε+ ω)2

K(
1√

1− u(ε+ ω)2
)

− u(ε)√
1 − u(ε)2

K(
1√

1 − u(ε)2
)))

− 2f(ε+ ω)Im
1

∆

1

u(ε+ ω)− u(ε)

2

π
(

u(ε+ ω)√
1 − u(ε+ ω)2

K(
1√

1− u(ε+ ω)2
)

− u(ε)√
1− u(ε)2

K(
1√

1− u(ε)2
))). (2.87)

D. Conductivity Sum Rule

As shown in Section II.A, the sum rule holds for the conductivity:∫ ∞

0

Reσ(ω)dω =
π

2

ne2

m
, (2.88)

where σ(ω) is divided by the volume so that the quantity is of the order of O(1) and n = N/V

is the electron density. In superconductors, there is a dramatic change in the optical con-

ductivity stemmed from opening of an excitation gap. The change of the conductivity is

compensated by the formation of a zero frequency δ function peak to preserve the con-

ductivity sum rule.[53] From the general formula in eq.(2.36), the real part of the optical
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conductivity is written as

Reσ(ω) = −Im
1

ω + iδ
(K(q, ω + iδ)−K(q, ω → 0))

= − 1

ω
Im(K(q, ω + iδ)−K(q, ω → 0)) + πδ(ω)Re(K(q, ω + iδ)−K(q, ω → 0))

= − 1

ω
Im(K(q, ω + iδ)−K(q, ω → 0)) + πδ(ω)ωImσ(ω). (2.89)

In superconductors, the first term indicates σ1s ≡ Reσ in the finite frequency region whose

weight is removed by the opening of the gap, and the second term represents the condensate

peak which recovers the lost weight for finite ω. The Drude weight is then given by D =

π limω→0 ωImσ(ω). The sum rule is expressed as∫ ∞

0

Reσ(ω)dω = −
∫ ∞

0

1

ω
Im(K(q, ω + iδ)−K(q, ω → 0))dω +

π

2
lim
ω→0

ωImσ(ω). (2.90)

If the total weight is conserved in the superconducting transition, we have the relation from

eq.(2.90), ∫ ∞

0

(σ1n(ω)− σ1s(ω))dω =
D

2
=
π

2
lim
ω→0

ωσ2s(ω), (2.91)

where σ2s denotes the imaginary part of σ in the superconducting state. In superconductors,

the weight of the condensate peak can be estimated from the measurements of the London

penetration depth,

lim
ω→0

ωσ2s(ω) =
c2

4πλ2
L

=
nse

2

m
, (2.92)

where the right-hand side is written as 1/(λ2
Lµ0) in MKSA unit using the permeability

of vacuum µ0. As we will show in the next Section, the sum rule in eq.(2.91) actually

holds for the optical conductivity spectra σ(ω) of NbN1−xCx obtained using the Reflectance-

Transmittance method.[47]

Recently, however, in cuprate superconductors, there is an experimental report that the

sum rule is violated for c-axis conductivity.[4] The weight estimated from the reflectance data

is much larger than can be accounted by the spectra integration in eq.(2.91). This issue is

not resolved at present whether the extra weight is coming from outside the frequency range

measured or coming from the lack of quasiparticle poles in the Green’s functions.[41]

At the last of this Section, we briefly discuss the ration between the conductivity sum

rule and the f-sum rule. The dielectric function ε(ω) is related to the conductivity through
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the relation [42]

ε(ω) = 1− 4π

iω
σ(ω). (2.93)

The f-sum rule states that

ε(ω) → 1 − ω2
p

ω2
(ω → ∞), (2.94)

where ωp =
√

4πne2/m is the plasma frequency. This indicates

σ(ω) → i

ω

ne2

m
(ω → ∞), (2.95)

and hence in the high-frequency limit Imσ(ω) = (ne2/m)/ω. Since ε(ω) is analytic in the

upper half-plane, performing an integration of ω(ε(ω)−1)) in the upper-half plane, we obtain∫ ∞

−∞
dωi4πσ(ω) = iπω2

p. (2.96)

This equation implies the sum rule in eq.(2.88).

III. REFLECTANCE-TRANSMITTANCE METHOD

A. Method of Analysis

The conventional FIR spectroscopy based on a Kramers-Kronig (K-K) transformation,

however, is rather unfavorable for studying electronic properties in small energy region.[13,

52] Recently, a new method to examine far-infrared (FIR) spectroscopy has been developed

without devoting to evaluating the Kramers-Kronig transformation.[27] In this method the

optical conductivity is estimated from the data of reflectance spectraR(ω) and transmittance

spectra T (ω) by substituting them into a set of coupled equations. The new method is free

from the conventional difficulties in far-infrared region since we do not need the aid of

Kramers-Kronig transformation.[46] This method is referred to as the R-T method since

both R(ω) and T (ω) are necessary for analyses. The basic concept of the R-T method was

first applied to the study of σ(ω) of superconducting NbN thin films deposited on MgO

and Si substrate for ω below ∼ 150cm−1 at T = 5 − 20K.[26, 27] In this section we briefly

describe the concept of the R-T method and its advantages over the conventional method

based on K-K analysis using bulk samples.
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The reflectance spectrum R1(ω) and transmittance spectrum T1(ω) of a single-layered

system (such as MgO substrate) are given by

R1(ω) = |r1(ω)|2, (3.1)

T1(ω) = |t1(ω)|2, (3.2)

when the incident radiation is introduced in the direction normal to the layer surface. Here

r1(ω) and t1(ω) are complex reflectance and transmittance, respectively. If the multiple

internal reflections within the layer are exactly taken into account, r1(ω) and t1(ω) are given

by

r1(ω) = −(1−N1)(N1 + 1)ei(ω/c)N1d1 + (1 +N1)(N1 − 1)e−i(ω/c)N1d1

(1−N1)(N1 − 1)ei(ω/c)N1d1 + (1 +N1)(N1 + 1)e−i(ω/c)N1d1
, (3.3)

t1(ω) = − 4N1e
−i(ω/c)d1

(1 −N1)(N1 − 1)ei(ω/c)N1d1 + (1 +N1)(N1 + 1)e−i(ω/c)N1d1
, (3.4)

where c is the velocity of light in vacuum; d1 is the thickness of the layer; N1 = n1 + ik1 is

the complex refractive index. For a two-layered system (such as YBCO thin films deposited

on MgO substrate) placed in vacuum, the reflectance R2(ω) and transmittance T2(ω) are

given by

R2(ω) = |r2(ω)|2, (3.5)

T2(ω) = |t2(ω)|2, (3.6)

where we assume the same conditions for incident radiation. r2(ω) and t2(ω) are given by

r2(ω) =
A+B + C +D

E + F +G +H
, (3.7)

t2(ω) =
J

E + F +G +H
, (3.8)

where

A = −(N1 −N2)(N2 + 1)(N1 + 1)ei(ω/c)(N2d2−N1d1), (3.9)
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B = −(N1 +N2)(N2 − 1)(N1 + 1)e−i(ω/c)(N2d2+N1d1), (3.10)

C = (N1 +N2)(N2 + 1)(N1 − 1)ei(ω/c)(N2d2+N1d1), (3.11)

D = (N1 −N2)(N2 − 1)(N1 − 1)e−i(ω/c)(N2d2−N1d1), (3.12)

E = (N1 −N2)(N2 − 1)(N1 + 1)ei(ω/c)(N2d2−N1d1), (3.13)

F = (N1 +N2)(N2 + 1)(N1 + 1)e−i(ω/c)(N2d2+N1d1), (3.14)

G = −(N1 +N2)(N2 − 1)(N1 − 1)ei(ω/c)(N2d2+N1d1), (3.15)

H = −(N1 −N2)(N2 + 1)(N1 − 1)e−i(ω/c)(N2d2−N1d1), (3.16)

J = 8N1N2e
−i(ω/c)(d2+d1). (3.17)

Here d2 and N2 = n2 + ik2 are the thickness and the complex refractive index of thin films,

respectively.[26, 27] The equations (3.1)-(3.17) are basic relations in R-T method.

The coupled equations are numerically solved to determine the values of complex refrac-

tive indices ni and ki (i = 1, 2) as functions of ω. First, the coupled equations for T1(ω)

and R1(ω) measured for the MgO substrate are solved using the Newton method, then we

obtain n1 and k1 as a function of ω. Second, T (ω) and R(ω) of YBCO/MgO are measured.

The measured values are substituted into R2 and T2 for a given value, as well as n1 and

k1 for the MgO substrate obtained in the first procedure. Then n2 and k2 of YBCO are

determined as a function of ω by solving the coupled equations numerically.

Here, we briefly discuss both the advantages and disadvantages of the R-T method in

comparison with the conventional method based on the K-K analysis using bulk samples.

First, we can estimate precisely the optical constants of materials such as the complex

refractive index. Second, the accuracy of σ1 obtained by the R-T method is expected to be

better than that obtained using the conventional method in the low frequency region. We

have three reasons for this expectation. (i) In the conventional method we use only R(ω),

while in the R-T method both R(ω) and T (ω) are employed to obtain the complex refractive
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index. (ii) We must be careful about the K-K analysis in the conventional method. For

metallic materials, R(ω) takes high values in the small ω region and thus the experimental

errors increase through the K-K transformation. The errors in R(ω) propagate to the errors

in σ1. The conventional method is not so reliable in the study of σ1(ω) in the small ω

region for metallic materials. (iii) The K-K analysis usually requires an extrapolation of

R(ω) to the low- and high-frequency regions beyond the measurable ω region. Since there

are no guiding principles for the extrapolation of R(ω), there may be some uncertainty in

the K-K transformation in the conventional method. In particular, the ambiguities in the

extrapolation are not negligible in the low frequency region. The R-T method does not have

this kind of difficulty.

A disadvantage of the R-T method lies in the fact that the range of ω for which the method

is applicable is limited because the substrate must be transparent to the incident radiation

to measure T (ω). For MgO as the substrate, the transparent range is about 0−300 cm−1 in

far-infrared region even at T below 10 K.[22, 23] In addition, the high-frequency limit of the

transparent range decreases steeply as T increases for MgO; this limit is approximately 100

cm−1 at room temperature. Since the conventional method based on the K-K transformation

is expected to work very well for ω > 300cm−1, the region of ω within the scope of the R-T

method is ω < 300cm−1.

B. Experimental Results

In order to examine the feasibility of the R-T method, we report R(ω) and T (ω) of

NbN1−xCx thin films deposited on MgO substrates in the far-infrared region. The substrates

were 0.5 mm thick. The thickness of the NbN1−xCx layers was about 40 nm. The films were

epitaxial and Tc was estimated to be 17.5 K by electrical measurements. The value of x was

estimated to be less than 0.3.

The electrical resistivity measured by the four-probe method was ρ = 5.2× 10−5 Ωcm at

T = 20 K. The carrier density in the normal state n was measured by the van der Pauw

method: n = 1.29×1023 cm−3 which is slightly lower than the value of n = 2.39×1023 cm−3

reported previously for NbN[37]. The carrier scattering rate Γ at T = 20 K was estimated

as Γ = ρe2n/m∗ = 1.9×1015 s−1 = 6.3×104 cm−1, where the effective mass m∗ is assumed to

be equal to the electron rest mass. The superconducting gap has been estimated as 2∆ ≈ 50
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FIG. 1: Reflectance spectra R(ω) of NbN1−xCx thin films deposited on MgO substrates at T = 4.3

K (solid line) and T = 20 K (dotted line).
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FIG. 2: Transmittance spectra T (ω) of NbN1−xCx thin films deposited on MgO substrates at

T = 4.3 K (solid line) and 20 K (dotted line).

22



24x10
3

20

16

12

8

4

0

σ 1
(ω

) (
 Ω

−1
cm

-1
 )

20016012080400

Wave Number ( cm
-1

 )

T = 20 K

T = 4.3 K

FIG. 3: σ1(ω) for NbN1−xCx calculated by the R-T method at T = 4.3 K (solid circles) and

T = 20 K (open circles). The dashed line shows the results of calculations using the Drude formula

at T = 20 K.
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FIG. 4: σ2(ω) for NbN1−xCx calculated by the R-T method at T = 4.3 K (solid circles) and

T = 20 K (open circles). The dashed line shows the results of calculations using the Drude formula

at T = 20 K.
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σ1(ω) at T = 20 K. The solid line shows the results obtaned from the Mattis-Bardeen formula.
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σ2(ω) at T = 20 K. The solid line shows the results obtaned from the Mattis-Bardeen formula.
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cm−1. Thus NbN1−xCx is suggested to be a typical dirty-limit BCS superconductor.

R(ω) and T (ω) obtained at T = 4.3 K and 20 K are shown in Figs. 1 and 2. The

interference fringes due to multiple internal reflections within the MgO substrate are clearly

visible in both figures because the MgO substrate is highly transparent in this ω region at

T = 4.3 K and 30 K, and because the NbN1−xCx film is thin enough to transmit far-infrared

radiation. R(ω) at T = 4.3 K exhibits an obvious reflectance edge at ω ∼ 65 cm−1 and

R(ω) ∼ 1 for ω less than the reflectance edge frequency, which is a special characteristic for

superconductors. T (ω) at T = 4.3 K exhibits a maximum at ω ∼ 60 cm−1, which is related

to the evolution of the reflectance edge in R(ω).

We show σ1(ω) and σ2(ω) spectra Figs. 3 and 4 for NbN1−xCx calculated by the R-

T method using the experimental results shown in Figs. 1 and 2. The value of the dc

conductivity σ1(0) at T = 20 K is estimated to be σ1(0) ∼ 2.0 × 104 Ω−1cm−1 from Fig.

3; this value agrees well with the value of 1/ρ = 1.9 × 104 Ω−1cm−1 estimated from the

electrical measurements.

We evaluated the relative conductivity ratio σ1s(ω)/σ1n(ω) and σ2s(ω)/σ1n(ω) from the

results in Figs. 3 and 4, where σ1n is σ1 at T = 20 K and σ1s and σ2s are at T = 4.3

K, respectively. The real and imaginary parts of the relative conductivity ratios are shown

in Figs. 5 and 6, respectively. Here theoretical curves obtained using the Mattis-Bardeen

theory are also shown by solid lines, where we set 2∆ = 52 cm−1 in accord with the value

reported by the junction method[28]. The ratio of 2∆ to Tc is given by 2∆/kBTc ∼ 4.3,

suggesting the strong-coupling superconductivity in NbN1−xCx.

The experimental results for σ1s/σ1n in Fig. 5 exhibit an excellent agreement with the

Mattis-Bardeen theory, and σ2s/σ1n also shows a good agreement for ω less than ∼ 60 cm−1

as shown in Fig. 6. The agreement is, however, poor for ω larger than ∼ 70 cm−1 in Fig. 6;

this anomalous behavior may be due to impurities[66].

Now we investigate the conductivity sum rule in eq.(2.91). From the integration of spectra

σ1n and σ1s, λL was estimated to be ∼ 193 nm, while the σ2s spectra in the superconducting

state gives λL ∼ 200 nm. These values show an excellent agreement, and also agrees well

with the value reported previously.[28] This indicates that the sum rule holds for NbN1−xCx.
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IV. ELECTRON-DOPED HIGH-TC SUPERCONDUCTOR: LONDON LIMIT

Oxide high-Tc superconductors have been investigated intensively over the last decade.

The d-wave superconductivity is well established for hole-doped superconductors. However,

there is a class of high-Tc superconductors doped with electrons,[50, 54] for which both

s-wave[25] and d-wave pairing[29, 44, 56] have been reported. Nd2−xCexCuO4 is a typical

example of electron-doped materials and the symmetry of Cooper pairs has been contro-

versial. It is important to examine the symmetry of Cooper pairs in the study of high-Tc

superconductors.

Since the superconducting gap ∆ in Nd2−xCexCuO4 is very small, there have been no

reports on the study of the nature of the superconducting gap of Nd2−xCexCuO4 through

such techniques, although there have been a number of reports on the FIR spectroscopy of

Nd2−xCexCuO4.[21, 43]

The purpose of this paper is to investigate FIR optical properties of Nd2−xCexCuO4

obtained by the R-T method from a viewpoint of unconventional superconductors. We

will show that the available data for the optical conductivity and transmittance are well
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FIG. 9: Optical conductivity (circles) by the R-T method and theoretical predictions at T = 0

(solid curves). Form the left 2∆ = 50cm−1, 60cm−1 and 70cm−1
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explained by d-wave pairing model in the clean limit. The value of superconducting gap is

estimated as 2∆ ∼ 60 − 70 cm−1, which is consistent with the available value estimated by

scanning tunneling spectroscopy.[25]

The frequency-dependent conductivity σ(ω) was calculated by Mattis and Bardeen,[36]

Abrikosov et al.[2] and Skalski et al.[45] for isotropic superconductors. The original Mattis-

Bardeen theory was carried through for a conventional type-I s-wave superconductor, where

the coherence length ξ and magnetic penetration depth λ satisfy ξ � λ. The opposite

limit ξ � λ (London limit) was also examined for s-wave pairing by field theoretical

treatments.[45] For the high-Tc compounds of type-II superconductor with small coher-

ence length, the formula in the London limit is appropriate for optical conductivity mea-

surements. Recently the conductivity σ(ω) of an unconventional superconductor has been

examined theoretically in the London limit.[16, 18–20] We use the current response function

shown in Section II:

Kµν(q, iωm) =
e2k2

F

m2

∑
k

k̂µk̂ν
1

β

∑
n

Tr[G(k+, iεn + iωm)G(k−, iεn)], (4.1)

where k± = k± q/2 and εn = (2n + 1)π/β. The single-particle matrix Green’s function is

G(k, iεn) =
i(εn − Σ(εn))τ

0 + ξkτ
3 +∆kτ

1

(εn − Σ(εn))2 + ξ2
k +∆2

k

, (4.2)

where ∆k is the anisotropic order parameter and Σ(εn) is the self-energy due to impurity

scattering. τ i (i = 0, 1, · · · ) denote Pauli matrices. Since we consider the case where ξ � λ

holds, the real part of optical conductivity is well approximated by the formula in the London

limit:

σ1s,µν(ω) = − 1

ω
lim
q→0

ImKµν(q, ω). (4.3)

Our focus is the collision less limit of the normalized conductivity to compare it with the

data for Nd2−xCexCuO4 since ξ � < holds for the mean-free path <. For anisotropic su-

perconducting order parameter ∆k such that the average over the Fermi surface vanishes

〈∆k〉 = 0, the expression for σ1s ≡ σ1s,xx(ω) in the collision less limit on the plane is simply

given by[19]

σ1s(ω)

σ1n(ω)
=

1

2ω

∫ ∞

−∞
dx〈Re |x|√

x2 −∆2
k

〉〈Re |x− ω|√
(x− ω)2 −∆2

k

〉[tanh(βx
2
)− tanh(

β(x− ω)

2
)],

(4.4)
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which is an angle-dependent generalization of the Mattis-Bardeen formula. For the d-wave

symmetry, the average over the Fermi surface denoted by the angular brackets is defined as

〈Re x√
x2 −∆2

k

〉 = Re

∫
dφ

2π

x√
x2 − (∆cos(2φ))2

, (4.5)

where the order parameter is factorized as ∆k = ∆cos(2φ). In Fig.7 we show the behaviors

of σ1s/σ1n as a function of ω for several values of temperature T . The infrared behaviors

reflect the lines of nodes on the Fermi surface.

FIR reflection R(ω) and transmission T (ω) measurements were performed for

Nd2−xCexCuO4 (x = 0.15) thin films deposited by laser ablation onto (001) MgO sub-

strates. The thickness of Nd2−xCexCuO4 thin film was about 40 nm. Tc was estimated to be

∼20K. The electric field of the FIR radiation was predominantly parallel to the a-b plane.

The conductivity spectra were evaluated by the R-T method from the data for R(ω) and

T (ω) at T = 4.3 and 30K.[46]

The R-T method provides us reliable data of spectroscopy in far-infrared region for which

comparison between the experimental data and theoretical analysis is possible. In the R-T

method both the reflectance spectra R(ω) and the transmittance spectra T (ω) are measured
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FIG. 10: Observed Transmittance and the theoretical curves at T = 0 (solid curve) for 2∆ =

60cm−1.
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experimentally from which a set of coupled equations are followed describing the transmit-

tance and reflectance of a thin film on a substrate. The coupled equations are solved nu-

merically by the Newton method to determine the optical conductivity. This method is

free from the difficulties in the infrared region which occur commonly in the conventional

method employing a Kramers-Kronig transformation. In Fig.8, we show the real part of the

optical conductivity obtained from the R-T method at T = 3.4K and T = 30K. In Fig.9

we show the observed data and theoretical curves at T = 0 for 2∆ = 60 and 70 cm−1. The

experimental data σ(3.4K)/σ(30K) normalized by the normal state values at T = 30K are

shown in Fig.9. It is obvious from the experimental results that there is no evidence of a

true gap, which is suggestive of anisotropic superconducting gap, since the spectral weight of

conductivity should vanish for ω ≤ 2∆ at T = 0 in conventional isotropic superconductors.

It is also shown in Fig.9 that they are well fitted by the curve with 2∆ = 60 cm−1, which is

consistent with the value estimated by scanning tunneling spectroscopy measurements.[25]

Transmission curve is also presented in Fig.10, where TS/TN , the ratio of the transmission
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T
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FIG. 11: Transmission TS/TN for anisotropic s-wave models. The solid curve without marks is

the Mattis-Bardeen result. Squares, triangles and circles are for the prolate (a = 0.5), ab-plane

anisotropic (c = 0.5), and oblate (a = −0.5) gaps, respectively. The oblate form shows a small

increase compared to other types. For the oblate gap, ∆0 = ∆max, and for other types, ∆0 = ∆.
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in the superconducting to that in the normal state, is the experimentally measured quan-

tity. The following expression for TS/TN is employed to determine the transmission curve

theoretically,[15]

TS
TN

=
1

[T
1/2
N + (1− T

1/2
N )(σ1/σn)]2 + [(1− T

1/2
N )(σ2/σn)]2

, (4.6)

where σ1 and σ2 are real and imaginary parts of the conductivity −(c/ω)K(q, ω) for q → 0,

respectively. Here we use the formula obtained from the two-fluid model for σ2. TN is

determined as TN � 0.05 from the expression for the ratio of the power transmitted with a

film to that with no film given as

TN = 1/[1 + σnd
Z0

n + 1
]2. (4.7)

Here d is the film thickness, n is the index of refraction of the substrate, and Z0 is the

impedance of free space. We have assigned the following values; d = 4 × 10−6cm, n = 3.13,

Z0 = 377Ω and σn ≈ 104Ω−1cm−1 and the Drude width is approximately equal to ∆ σn is

approximately given by the value at ω = 0. Obviously the ω-dependence of measured trans-

mittance agrees with the theoretical curve for 2∆ = 60cm−1 as shown in Fig.10. An agree-

ment between the observed quantities and theoretical curve is remarkable, which should be

compared to the isotropic BCS prediction calculated from the Mattis-Bardeen equations.[10]

V. TWO-BAND ANISOTROPIC SUPERCONDUCTIVITY IN MAGNESIUM DI-

BORIDE

After the discovery of 39 K superconductivity in MgB2[39], much attention has been

focused on the study of its nature. An s-wave superconductivity (SC) was established by

experiments such as coherence peak in 11B nuclear relaxation rate[31] and its exponential

dependence at low temperatures[35, 65]. An isotope effect has suggested phonon-mediated

s-wave superconductivity[8].In contrast to its standard properties, there have been several

reports indicating unusual properties of the superconductivity of MgB2. Two different su-

perconducting gaps have been reported: a gap much smaller than the expected BCS value

and that comparable to the BCS value given by 2∆ = 3.53kBTc. Their ratio is estimated

to be ∆min/∆max ∼ 0.3 − 0.4 using several experiments[6, 9, 14, 49, 55, 65]. It is also

reported that the specific-heat jump and the critical magnetic field are reduced compared to
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the s-wave BCS theory[6, 65]. A strongly anisotropic upper critical field in c-axis-oriented

MgB2 films and single crystals of MgB2 is also observed[3, 34, 57].

The unusual properties of MgB2 suggest an anisotropic s-wave superconductivity or a two-

band superconductivity. The band structure calculations predicted multibands originating

from σ(2px,y) and π(2pz) bands.[30] In the ARPESmeasurements performed in single crystals

of MgB2 three distinct dispersions approaching the Fermi energy were reported.[58]

There have been several studies on the anisotropy of a superconducting gap[7, 17, 38,

40, 51]. The two-gap model is shown to consistently describe the specific heat[7, 40]and the

upper critical field Hc2[38] with the adoption of the effective mass approach.

Here we show that this material is described by two order parameters attached to σ- and

π-bands. Two order parameters further must have different anisotropy to explain the ex-

perimental results consistently. In this paper, we examine optical properties and thermody-

namics to determine the k-dependence of the gaps. We show that the optical transmittance,

conductivity, specific-heat jump, and thermodynamic critical field H c are well described by

a two-band superconductor model with different anisotropies in k-space. The symmetry in

k-space is determined in order to explain these experiments consistently.

The optical conductivity for anisotropic s-wave SC is investigated and compared with

available data for MgB2. A simple angle-dependent generalization of the Mattis-Bardeen

formula[36] is used to calculate the optical conductivity. The density of states N(ε) =

ε/
√
ε2 −∆2 is generalized to N(ε) = 〈Reε/√ε2 −∆2

k〉k, where the bracket indicates the

average over the Fermi surface. We employed the following formula at T=0:

σ1s

σ1n
(ω) =

1

ω

∫ ω

0

dE[N(E)N(ω − E)− 〈Re ∆k√
E2 −∆2

k

〉k〈Re ∆k′√
(ω − E)2 −∆2

k′
〉k′ ], (5.1)

σ2s

σ1n

(ω) = − 1

ω

∫ ω+∆max

∆min

dE[〈Re E√
E2 −∆2

k

〉k〈Re ω − E√
∆2
k′ − (ω − E)2

〉k′

− 〈Re ∆k√
E2 −∆2

k

〉k〈Re ∆k′√
∆2
k′ − (ω − E)2

〉k′]. (5.2)

We here mention that if the samples are clean and belong to the category of London super-

conductors, we must use the formulas in the London limit. For a clean superconductor, it

seems better to use σ2s for the two-fluid model[48]. The optical data that we will consider

here exhibit behaviors explained by the conventional formulas of Mattis and Bardeen. The
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TABLE I: Anisotropic parameters in the SC gap function used to fit several physical quantities.

The upper four rows are for the single-SC gap model and the last row is for the two-band anisotropic

model for comparison. The cross indicates that we cannot fit experimental data by the correspond-

ing z factor. ∆ in the column Hc2 indicates that experiments are explained qualitatively but not

quantitatively.[17] The big circle show that we can fit the data using the same parameters in the

column σ1. The effect of σ-band anisotropy is small.

z σ1 TS/TN ∆C Hc(0) Hc2

Cigar-type 1 + acos(2θ) a ∼ 0.5 ∼ 0.3 ∼ 0.3 ∼ 0.07 ×
Pancake 1− a′cos(2θ) a′ ∼ 0.6 × ∼ 0.5 × ∆

Pancake 1− bcos2(θ) b ∼ 0.75 × ∼ 0.66 ∼ 0.08 ∆

In-plane 1 + ccos(6φ) c ∼ 0.5 ∼ 0.3 ∼ 0.3 ×
Two-band (σ band) c < 0.3 © © ©

(π band) a ∼ 0.3

anisotropic order parameters considered in this paper are:

∆c1(k) = ∆(1 + acos(2θ)),

∆c2(k) = ∆(1− bcos2(θ)),

∆ab(k) = ∆(1 + ccos(6φ)). (5.3)

Here, θ and φ are the angles in the polar coordinate where θ is the polar angle with respect

to the c-axis. The parameters a, b and c determine the anisotropy. ∆c1 is a prolate form gap

for a > 0 and is oblate for a < 0. ∆c2 (b > 0) shows the same anisotropy as ∆c1 for a < 0.

∆ab(k) indicates an anisotropy in the ab-plane; the SC gap may possibly be anisotropic in

the plane since the 2D-like Fermi surface has a hexagonal symmetry.[30] The integral in

eq.(5.1) is evaluated numerically by writing the average over the Fermi surface with elliptic

functions. For example, for ∆c1(k) = ∆(1 + acos(2θ)), the average over the Fermi surface

for 0 < a < 1 is given by

〈Re ω√
ω2 −∆c1(k)2

〉 =
1

2

√
ω

a∆
F
(π
2
, k
)
, (1 − a)∆ ≤ ω ≤ (1 + a)∆,

=
1

2

√
ω

a∆
F (γ, k) , (1 + a)∆ < ω, (5.4)
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where k2 = (ω − (1 − a)∆)/(2ω), γ = sin−1
√

4a∆ω/[(ω − (1 − a)∆)(ω + (1 + a)∆)] and

F (γ, k) is the elliptic integral of the first kind.

First, we examine a one-band anisotropic model and show that the one-band model is

insufficient to understand consistently optical and thermodynamic behaviors. In Fig. 11 the

transmission TS at T = 0 is shown as a function of the frequency ω.[64] We again employ

the following phenomenological expression for TS/TN [15, 61],

TS
TN

=
1

[T
1/2
N + (1− T

1/2
N )(σ1/σn)]2 + [(1− T

1/2
N )(σ2/σn)]2

, (5.5)

where σ1 and σ2 are real and imaginary parts of the optical conductivity, respectively. TN

is determined from the expression for the ratio of the power transmitted with a film to

that transmitted without a film given as TN = 1/[1 + σndZ0/(n + 1)]2. Here, d is the

film thickness, n is the index of refraction of the substrate, and Z0 is the impedance of

free space. We have assigned the following values: d = 10−6 cm, n ≈ 3, Z0 = 377Ω, and

σn ≈ 8 × 103Ω−1cm−1. Then we obtain TN � 0.014. The theoretical curves for TS/TN

are shown in Fig. 11; they have peaks near ω ∼ 2∆0. For the oblate, its peak shows an

increase only twice the normal state value, while the prolate and ab-plane anisotropies show

more than twofold increases. The experiments show an approximately 2.5-fold increase[24]

which supports the prolate or ab-plane anisotropic symmetry. However, the temperature

dependence of the ratio Hab
c2 /H

c
c2, which increases as the temperature decreases[3], indicates

that ∆(k) has an oblate form instead of a prolate form[17] in contrast to TS/TN . It is also

difficult to describe the thermodynamic quantities such as the specific-heat jump at T = T c

and the thermodynamic critical magnetic field Hc within the single-gap model consistently.

The specific-heat jump at Tc is given by

∆C(Tc)

γCTc
=

12

7ζ(3)

〈z2〉2
〈z4〉 , (5.6)

where γC is the specific-heat coefficient and z is an anisotropic factor of the gap function.

〈zn〉 is the average of zn over the Fermi surface. In Fig. 13 the specific-heat-jump ratio vs

anisotropy (a or c) is shown. The experiments indicate that this value is in the range of

0.76∼ 0.92[6, 60]; the fitting parameters must be a ∼ 0.3, −a ∼ 0.5 and c ∼ 0.3 for the

prolate, oblate and ab-anisotropic types, respectively. We must assign different values to

parameters a and c in order to explain the thermodynamic critical magnetic field Hc. The
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TABLE II: Several physical quantities obtained by the two-band model with c ∼ 0.33 (σ band)

and a ∼ 0.33 (π band).

wσ/wπ ∆min/∆max
∆C(Tc)

∆C(Tc)BCS

Hc(0)
Hc(0)BCS

Two-band 0.45/0.55 ∼ 0.35 ∼ 0.82 ∼ 0.95

Exp. 0.45/0.55 0.3− 0.4 0.76− 0.92 0.96

ratio of Hc(T = 0) to the BCS value is given as

Hc(T = 0)2

γCT 2
c

=
6π

e2γ
〈z2〉 = 5.94〈z2〉. (5.7)

Thus to be consistent with the experimental results[6], 〈z2〉 should be less than 1; a should

be small, a ∼ 0.07, for the prolate form, and the ab-plane anisotropic and oblate forms

(a < 0) are ruled out since 〈z2〉 > 1. In Table I, we summarize the status for the single-gap

anisotropic s-wave model applied to MgB2. As shown here, it is difficult to understand

the physical behaviors measured using several experimental methods consistently within the

single-gap model.

Here, a two-band model with two different anisotropies is investigated. We assume that

the hybridization between σ and π bands is negligible, and that the optical conductivity is

given by

σ = wσσσ + wπσπ, (5.8)

where σσ and σπ denote the contributions from σ- and π-bands, respectively. For the case

of isotropic two gaps, σ1 must have a shoulder-like structure which appear as an addition of

two contributions from the two bands, if the magnitudes of two SC gaps are different. The

experimental data of σ1, however, does not have such a sharp structure (see Fig. 14).[24, 33]

Therefore we must take account of anisotropies for the two-band model. We assume the in-

plane anisotropy for the two-dimensional-like σ-band, while we assign the three-dimensional

anisotropy to π-band where the prolate and oblate forms are examined.

The transmission TS/TN in Fig. 12 shows that the theoretical curve is in good agreement

with the experimental curve. The optical conductivity is also described well by the two-band

model as shown in Fig. 14. We assign the following parameters to the best fit model in Figs.

12 and 14; the σ-band has ab-plane anisotropy with c ≈ or less than 0.33 and the π-band
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has the prolate form gap (cigar type) with a ≈ 0.33. The ratio of the weight of the σ-band to

that of the π-band is 0.45/0.55, which agrees with penetration depth[35] and band structure

calculations[5]. The ratio of the minimum gap to the maximum gap is 0.35, which is in the

range of previously reported experimental values.[14, 55] Let us mention that the effect of

σ-band anisotropy is small for the transmission TS/TN .

In Fig. 15 the thermodynamic critical magnetic field Hc(T ) is shown for the single-band

and two-band models with available data.[6] We have simply assumed that the total free

energy is given by the sum of two contributions from σ- and π-bands: Ω = wσΩσ + wπΩπ.

The experimental behavior is well explained by the two-band anisotropic model using the

same parameters as those for TS/TN and σ1s/σ1n. We show several characteristic values

obtained from the two-band model in Table II.

Let us mention here that the two-gap model shows consistency concerning other physical

quantities. Results of analyses of Hc2 and specific heat using the effective mass approach are

consistent with those obtained using the two-band model.[7, 38, 40] It has been reported that

the increasing nature of Hc2,ab/Hc2,c with decreasing temperature is explained by the two-

Fermi surface model.[38] The specific-heat coefficient γ in magnetic fields seems consistent

with that of the multiband superconductor.[7, 40]

VI. SUMMARY

We have discussed the optical properties in unconventional superconductors. Theoretical

aspects of the conductivity were discussed in detail from the linear response theory to the

formula in the London limit. We have presented a new method (R-T method) to measure

σ(ω) in the far-infrared region from reflectance and transmittance data without the use of

the Kramers-Kronig transformations. This method provides a method to obtain the far-

infrared properties more precisely compared to the conventional method. The conductivity

sum rule is discussed briefly. It has been reported that the sum rule is satisfied for the

optical conductivity spectra of NbN1−xCx that is a typical conventional superconductor.

We have successfully made a comparison between experiments and theory for the opti-

cal conductivity of Nd2−xCexCuO4 in the far-infrared region. We have shown that there

is a reasonable agreement between the optical conductivity σ1(ω) observed by the R-T

method and theoretical analysis without adjustable parameters except the superconduct-
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ing gap. An estimate of 60∼70 cm−1 for the superconducting gap is consistent from both

the experimental and theoretical aspects. The far-infrared optical conductivity suggests

that the superconducting gap of electron-doped Nd2−xCexCuO4 is unconventional one with

nodes on the Fermi surface. The anisotropic nature of electron-doped superconductors is

consistent with the recent research performed for the one-band and three-band Hubbard

models.[32, 59, 60, 62, 63] If the superconducting gap is anisotropic for the electron-doped

superconductors, there is a possibility that both the hole-doped and electron-doped cuprates

superconductors are governed by a same superconductivity mechanism.

We have also examined the transmittance, optical conductivity, specific-heat jump and

thermodynamic critical magnetic fieldHc of MgB2 based on the two-band anisotropic s-wave

model. This material is described by two order parameters attached to σ- and π-bands,

respectively, which, moreover, have further anisotropy. We have shown that the two-gap

model with different anisotropy in k-space can explain the experimental results consistently.
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FIG. 12: Transmission TS/TN for the two-band model. The data points (large solid circles) are

taken from ref.[24] at T = 6K. The solid line without marks shows the Mattis-Bardeen result with

2∆ = 5meV. The dotted line is for the single gap of prolate type with 2∆max = 9meV and a = 0.5.

Triangles are for the single-gap model of oblate form with 2∆max = 9meV and a = −0.33. Others
are for the two-band gap model where the ab-plane anisotropy for the σ-band and the prolate form

for the π-band are assumed. The parameters are the following. Solid circles: 2∆max = 8.5meV and

c = 0.33 (σ-band: weight 0.45); 2∆max = 6meV and a = 0.33 (π-band: weight 0.55). Open circles:

2∆max = 9meV and c = 0.33 (σ-band: weight 0.45); 2∆max = 6meV and a = 0.33 (π-band: weight

0.55). Squares: 2∆max = 10meV and c = 0.5 (σ-band: weight 0.4); 2∆max = 7.5meV and a = 0.5

(π-band: weight 0.6).
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FIG. 13: Specific-heat-jump ratio to the BCS value. From the top the ratios for the oblate,

ab-anisotropy, and prolate gaps are shown, respectively.
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FIG. 14: Real part of the optical conductivity for the two-band anisotropic model. The data points

(large solid circles) are taken from ref.[24] The parameters for solid circles are 2∆max = 8.5meV

and c = 0.33 (σ-band: weight 0.45); 2∆max = 6meV and a = 0.33 (π-band: weight 0.55). The

parameters for open circles are 2∆max = 10meV and c = 0.5 (σ-band: weight 0.4); 2∆max =

7.5meV and a = 0.5 (π-band: weight 0.6). The dashed line indicates the results obtained using

the Mattis-Bardeen formula with 2∆ = 5meV. The dash-dotted line denotes the conductivity for

the d-wave gap.[61]
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FIG. 15: Thermodynamic critical magnetic field Hc(T ) normalized by Hc(T = 0)BCS. The bold

dashed curve indicates data from ref.[6] and the bold solid curve indicates those obtained using the

present two-band anisotropic model. The thin solid curve indicates the BCS results. The results

for the σ-band (ab-plane anisotropic) and the π-band (prolate form) are also shown.
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