PHYSICAL REVIEW B VOLUME 46, NﬁMBER 21 1 DECEMBER 1992-1

Renormalization of the quantum antiferromagnet in two dimensions

Takashi Yanagisawa
Fundamental Physics Section, Electrotechnical Laboratory, I-1-4 Umezono, Tsukuba, Ibaraki 305, Japan
(Received 22 June 1992)

We discuss the renormalization of the quantum antiferromagnet in two dimensions. With an analysis
of the spin-wave Hamiltonian of the quantum Heisenberg model or the quantum nonlinear o model
(NLoM), we consider O(n) invariant observable (S,-S j) and evaluate 3 functions in the dimensional
regularization method up to two-loop order. We show that quantum and classical NL o M are connect-
ed by a simple crossover function. It follows from this crossover phenomenon that the critical tempera-
ture T, for d >2 is reduced due to the quantum effects and that the thermal fluctuations reduce the criti-
cal coupling constant g.. The disappearance of g, indicates thermal restoration of the asymptotic free-
dom. Finally we present an exact expression of the correlation length.

I. INTRODUCTION

The two-dimensional quantum antiferromagnet has re-
ceived much attention since the discovery of the high-
temperature superconductivity. The oxide compound
shows a rich magnetic structure and it appears that quan-
tum fluctuations play an essential role.! > The undoped
compound can be modeled rather well by a nearest-
neighbor S = antiferromagnetic Heisenberg model

H=J 3 S8 . (1.1)

if)

In the low-dimensional antiferromagnet, the difficulty in
the straightforward application of the conventional spin
wave theory lies in the divergencies encountered in the
perturbation theory. These divergencies can be properly
handled by the renormalization group method, which
well succeeded in describing the properties of the classi-
cal spin systems near two dimensions.

The spin-wave theory of the antiferromagnetic Heisen-
berg model is closely related to the quantum nonlinear o
model (NLoM). To see this, we perform the standard
two boson Dyson-Maleev transformation to convert the
spin operators to the boson operators:®’

ST =a),8T=(28 —ala;)a;,S7=S —a]q,

for the sublattice 4 , (1.2a)
Sy =—b,,Sh=—b1(25—blb,),5z=—5+b]b,
for the sublattice B . (1.2b)

The Hamiltonian is written as follows:

H=—L1J2S’N+J S [S(aja;+b1b,, —abl —a;b, )

(im)

+Lal(b) —a;)%,,] . (1.3)

Then let us expand the expectation value of O(n) invari-
ant spin operators in terms of g, =2/S,

L(S,-‘S-)=1+g0,((a,-Ta-)—(a,-Tai))—i-%gé((a,-Ta-)—(a,-fai))2
SZ J J Jr.

1

= 1+g% 3 Tl T D+ D tedy | =
k

k

for i,j &€ A4 where R=R; —R;. The spin-wave excitation
energy has been approximated by w, =2JSk and n, is the
Bose distribution function n,=1/(e" *—1). The in-
tegral is performed over half of the first Brillouin zone.
This expansion is identical with that obtained for NLoM.
NLoM is the effective action defined by®~1°

__1 rs8 d
S—Efo dx, [ dix(3,9) (1.5)

where @ is an n-component field with the constraint
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2

(1.4)

@*=1. n is the multiplicity of spin components and n =3
for the spin-1 antiferromagnet. The inverse temperature
B is defined by B=g,/t, where ¢, is the scaled tempera-
ture 1o=KkpT/(JS?). The two-point function of ¢ field
{(@(0)p(R)) is given by

G(R)= 1+(n —1)go[GAR)—G%0)]
+L(n —1gd[GUAR)—GY%0)PP+0(gd), (1.6

where
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1 —ip-R
(27)¢ 2+a)2

G°(R)—B s [-22

f—ﬁd—l (n,+1)e PR,
(27r)

Thus G (R) in Eq. (1.6) clearly comc1des with (S;-8;)/S?

in Eq. (1.4), at least up to the order of g3.

On the other hand, in the limit ¢y >>g,, which we call
the classical region, the action (1.5) is reduced to the clas-
sical one, suggesting a crossover between classical and
quantum systems:

1 44 2
2y fd x(3,p)

The coupling constant g is replaced by the temperature
t; in this region and thus we should expand {@(0)p(R))
in terms of #,. This crossover is one of the subjects in
this paper.

The renormalization-group approach to the spin-wave
theory has been presented by several authors. Ridgway'!
first considered the one-dimensional quantum antifer-
romagnet and obtained the one-loop renormalization-
group equations for S =21 at 7'=0 by the momentum-
sheil method following Wilson and Kogut.!? Although
the classical NLoM has been investigated considerably,
the quantum NLoM has not yet examined so much.
Chakravarty, Halperin, and Nelson!® considered the
NLoM also employing the momentum-shell method.
They discussed the low-temperature behaviors of the
correlation  length based on the  one-loop
renormalization-group equations. Unfortunately, one
fails to obtain two-loop contributions to the differential
recursion relation in the momentum-shell method.

The purpose of this paper is to investigate a systematic
expansion of the two-dimensional (2D) quantum antifer-
romagnet or O{n) NLoM within the dimensional regu-
larization scheme. We investigate 8 functions up to two-
loop order in g and obtain the exact expression of the
correlation length. . We subsequently discuss a crossover

(1.7)

(1.8)

between classical (g, <<ty) and quantum (g, >>¢,) re-

gions. Since the short-distance behaviors of the correla-
tion functions are closely related to the g? term of the 8
functions, one can determine the crossover function. At
one-loop order, the result coincides with that of Chakra-
varty, Halperin, and Nelson.!®

The dimensional regularization method has been al-
ready applied to the one-dimensional antiferromagnet in
Ref. 13, which predicted that the exponent % is different
from that of the two-dimensional classical nonlinear o
model on the ground that the wave-function renormaliza-
tion constant Z has no term of the order of
g: Z=1—(1/47%)g%/e+0(g®). However, this result
seems strange to us, and really is not correct as shown
later. The reason lies in the fact that in the renormaliza-
tion of the low-dimensional quantum antiferromagnet we
should consider O(n) invariant quantities such as
(S;-S 7 ), since the rotational symmetry is not broken. In
Ref. 13 the author investigated N-point functions of «
and 8, which are not O(n) invariant and not necessarily

renormalizable. We show that at zero temperature the
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exponent 7 in the 1D antiferromagnet agrees with that of
the 2D classical NLoM.

The format of the paper is as follows: In Sec. II we dis-
cuss the renormalization of the quantum antiferromagnet
up to two-loop order. The crossover function is deter-
mined with a knowledge of the 1/n expansion. We dis-
cuss the crossover phenomenon by evaluating the critical
temperature 7T,. At the end of Sec. II we derive an exact
expression of the correlation length £. In Sec. IIT we give
a discussion of our results.

II. RENORMALIZATION
OF THE QUANTUM ANTIFERROMAGNET

A. One-loop renormalization

We put Gp(R,;)=(8;-S;)/S* where R;=R;—R,. At
Zero temperature t =0, GB(R ) is given by

GB(RIJ)= 1+(n_1)go[Go(R,j)_GO(0)] - )
+4n —Dg3[GUAR,;)—G%0)2+0(g}) ,
’ 2.1

where n is the multiplicity of the spin components. In
our formulation G%R) is defined as the massless limit
©—0 in the d-dimensional space

0 —t - 1, ikR

G (R)=

N 2 \/ k +y.2 >
=— ———~—e““‘"R . (2.2)
f (277')'1 Vi +u?

In the one-space dimension G%R) has a divergence,
which we regularize as a pole of e=d —1 as follows in
the limit £ —0:

9 1
2027)¢ €R€

It is understood that GO R =0) =< u€—0 as the standard
dimensional regularization method requires.!*!> Now it
is easy to write the two-point function

GR)=

2.3

Gp(R)=1+L(n —1)g,

€eR¢
1 1
+in —gh 5 +08d) (2.4)
where we have included a factor Q,/(27)¢ in our

definition of g,. We define the renormalized correlation
function through the relation GR(R,g)=Z "'Gy(R,g,
=Z,gu'"9) where g is the renormalized coupling con-
stant. The renormalization constants Z and Z, are deter-
mined as

Z_‘=1—%(n—1)-é~g +%(n—l)§g2 (2.5a)

Z,=1+L(n —2)~l—g . (2.5b)

Then, recalhng that B is related to Z ;. by the followmg
relation:
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a8 ef

B, ()= _—
ap 1+g—1nz1

’ ’ (2.6)

we obtain the B function for the quantum region g >>1,

B,=u —(d—l)g—l(n —2)g%. (2.72)

At the cr1t1ca1 point g =g.=2¢/(n —2) the exponent 7
is given by

=B 7

1nZ| g —E=——=+0(e). (2.8)
n—2

This value agrees with the exponent of the classical non-
linear o model in two-space dimensions if we shift the di-
mension 1D to 2D. (Two-loop contributions will be
shown later.) This is contrary to the claim given by
Igarashi in Ref. 13. The difference between the two lies
in the renormalization procedures; we have considered
the O(n) invariant quantity {S; -S; ), while in Ref. 13 the
N-point functions TV are 1nvest1gated Since '™ has
no rotational invariance, its renormalizability is not clear.
This point will be discussed in the last section.

Now we turn to the classical region g <<t. In this limit

the two-point function Gz(R) is

Gp(R)=1+(n —1)t,[GAR)—GX0)]

+4n —1e[GAR)—GA0)]? (2.9)
where the Green’s function GX(R) is defined by
% 1
GYR)= —¢ TR 2.10
J o (2.10)

Thus it is apparent that we should regularize the diver-
gence near two-space dimensions: d =2-+¢. Owing to
the relation Gxr(R,t1)=Z 'Gy(R,to=2Z,tu*"?), renor-

G(R)=1~Ln —1)gInpR +L(n —1)(g?+2eg)(InuR )?
=1—(n —1)t InpR +Ln —1)(t*+et)IngR)* for
In order to obtain a unified expression for G (R), we here

consider it in a 1/n expansion. The leading order of 1/a
theory leads us to an expression in two-space dimensions,

d% 1
Q) VEk2+m?

SV |e kR
2t . ’

G(R)“/")—nglf

X coth

(2.14)

where m =(2t /g)sinh™ ! {exp(— 1/nt)sinh(g /ntg,)} with
the critical coupling constant g, =2/n. [The volume ele-
ment Q;/(27)? is included in g and ¢ and a high-energy
cutoff is set to be 1: A=1.] Then the short-distance
correlation for R << 1/m is given approximately by
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malization constants are determined as follows:
Z_1=1—(n—l)lt+%(n—1)~1;tz, 2.11a)
€ €
Z,=1+(n —2)%1?, (2.11b)

where we have also included a factor Q,/(27)% in the
definition of £. Then we obtain

dt _ o
B, ”d =(d —2)t —(n

2)%, (2.12a)
which is just the result of the classical nonlinear o model.
We have shown in the above that the renormalization of
the correlation function (2.1) leads to classical and quan-
tum results, respectively, for regions t >g and t <<g. In
our opinion the two regions should be smoothly connect-
ed by a crossover function, which we will discuss in the
following section. Before going to the next section we
evaluate the # function of ¢ for the quantum region and
that of g for the classical region. Since the relation
8o/to=(g/t)u™" holds, we have B,=(t/g)B, —t. Hence
in the quantum region we obtain

B,=(d—2)t—1(n—2)gt, (2.7b)
and next in the classical region
B,=(d —1)g —(n—2)gt . (2.12b)

B. Crossover function

In the following, we discuss the quantum to classical
crossover. One may be able to pass from a quantum re-
gion to a classical one and back to a quantum one as g
and t are varied. After the renormalization, the correla-
tion function reads .

for g >>t (2.13a)
1>>g . (2.13b)
(1/m o, 1ty | sinh(g /2tR) 2.15

GRITT~ 270 | Ginh(gm /22) 2.15)

This formula reproduces well Egs. (2.13a) and (2.13b) for
both limits up to the first order of InR. Expanding Eq.

(2.15) in terms of InR, G(R)'/"~1—6lnR + -+, one
can easily derive the exponent 6, ¢
o= — (n —1)t dInsinh(g /2tR)
29 d InR R=1
= g
=1(n —1)g coth > (2.16)

(The multiplicity » has been replaced by an exact value
n—1.) Evidently we can interpret 20/(n—1)
=g coth(g /2t) as the effective coupling constant which



depends on g and 7. As a result we are allowed to write
the correlation function as

G(R)=1—1(n —1)g coth % InuR
2
+L(n —1) | g%oth —%
+2eg coth —2% (InpR? .  (2.17)

One can note that this formula includes both limits of
Eqgs. (2.13a) and (2.13b).
We next turn to the 3 functions; they are written as

B, =(d —1)g — L(n —2)g*coth —% , (2.18a)
B,=(d —2)t —1(n —2)gt coth -;Lt . (2.18b)

We simply discuss the crossover phenomenon by evaluat-
ing the critical temperature T,. T, is determined as the
zero of B,:

g
2,

t. {{d =2)—3(n —2)g coth =0. (2.19)

In the limit g—0, #, is given by z,=(d —2)/(n —=2)=t0

for d >2. In order to extract quantum corrections we ex-
pand Eq. (2.19) in powers of g. We will have

t=d-—2_ n—2
¢ n—2 12d—2)

g2+o(g", (2.20)
so that the critical temperature t, is reduced due to the
quantum effects. One may note that the quantum effects
vanish in the limit of large d. In Fig. 1 we show ¢, for
0<g=<gy. &u means the threshold of ¢, at
g =gn=2t2=2(d —2)/(n —2), t, vanishes. This points
out a breakdown of long-range order by the large quan-
tum fluctuations. The similar story also holds for g,.
The equation of g, is B, =0:

1.0

tc/tg

9/.0
/tc

FIG. 1. The critical temperature ¢, as a function of g.
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FIG. 2. The critical coupling constant g, as a function of ¢.

&

E =0. (2.21)

g, |d —1—1(n —1)g coth

At low temperatures ¢ <<g., g. is given by the well-
known solution g, =2(d —1)/(n —2)=g%d > 1). In Fig.
2 we present g, vs t for 0=¢t=t,=(d—1)/(n—2)
=g2/2. At the threshold ¢ =t g, disappears because
of the thermal fluctuations. We may call this
phenomenon the thermal reduction of g,. In Figs. 3(a)
and 3(b) we show the behaviors of f,. For
1 <d <2(¢,=0), we have two phases for g <g, and for
g>g.. For g <g,, the infrared structure of the theory is
determined by the origin; the mass gap vanishes as ¢t —0.
We call this phase the renormalized classical phase. The
thermal reduction of g, leads to the crossover around a
critical value of ¢ for which g, =g. With further increase
of t, g, disappears leaving only an ultraviolet fixed point,
and we have only the disordered phase. This observation
shows up the restoration of asymptotic freedom. For
g >g, we are in the disordered phase and have a finite
gap. For d >2 there are three phases since we have finite
t) and g,,. For g <gyu(<g.) and t <t,, the theory exists
in the Néel ordered phase. The renormalized classical
phase corresponds to the case where g<g, and
t,<t<ty. Lastly, for g>g,. and ¢>¢,, we have the
disordered phase.

By 3

0 \ 9 g

FIG. 3. The behaviors of B, for (a) t <ty and (b) 21y
(g.=0). '
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C. Two-loop renormalization

This section is devoted to evaluations of two-loop con-
tributions. For this purpose it is convenient to work with
the quantum nonlinear ¢ model defined as usual by the
fields m;(i=1,...,n —1) and o =(1—72)/2

= f xofd2

(8,m)*+[3,(1—7H)21} .
(2.22)

At the third order of g, the diagrams in Fig. 4 contribute
to the correlation function, where the number of dia-
grams is greatly reduced due to the usual rule that
f d% /k*=0.1"18 We present two-loop terms in Appen-
dix A at t =0. The integrals are regularized in terms of
e=d —1, so it is straightforward to write down the two-
point function

1

G3(R)=1+L(n —1)g,

€R€ € R?

+i(n—1)g3 13
JE

Then the renormalization constants Z and Z; are deter-
mined easily and the B functions are obtained as

B,=eg—1(n —2)g*—Ln—2)g?,
B,=(e—1)t —Ln —2)gt

(2.24a)
—Hn—2)g% .  (2.24b)

Following the discussions in the preceding section, the 3
functions for the whole range of g are given by

B,=(d—1)g —in ~2)g%oth | =
2
—4(n —2)g3 |coth —‘2% , (2.25a)
B,= (d —2)t —L(n —2)gt coth | =
2
2
~L(n —2)g% |coth % ” . (2.25b)
Up to O(gz,gt), these relations coincide with those of

Chakravarty, Halperin, and Nelson and reproduce the
well-known results in the classical region g <<z.19 It is
also easily shown that the exponent 7 in the quantum re-
gion for d == 1€ agrees with that of the classical NLoM
for d =2+4€ up to two-loop order. The zero of B, gives
us the critical temperature z,. For g—0, we have
t,=td=[—1+V1+4(d — 2)/(n —2)]/2. One can easily

1
—l)g(z)T L

—4(n=3) 5 =40~ +in =D)L+ —2)[3E3)- 3]

- TAKASHI YANAGISAWA 46

(@ ®)
© ' (@

FIG. 4. Feynman diagrams for two-loop order perturbation.
The dashed lines denote the interactions in the nonlinear o

model.

(2.23)

observe that £ =0atg=gy = 2t0. This is the very same
relation predicted by the one-loop theory in the preceding
section. Hence certainly we can present the exact rela-
tion

gn=2t2 and t,=g%/2. (2.26)

Evidently the two-loop theory does not alter the story of
the one-loop approximation.

D. Correlation length

Now let us turn to the correlation length £ in this sec-
tion on two-space dimensions d =2(e=1) at low temper-
atures. The correlation length £ is evaluated by integrat-
ing the B functions until the renormalized correlation
length (p/A)§ is equal to the lattice constant. Forg<g,,
t(p) grows faster than g(u) so that we choose u* such
that £(u*)=1. Then we obtain the correlation length by
aformula £§=1/p*. It is well known that in the one-loop
order £ diverges exponentially by'°

11
n—2t

g

1
gV

=._g_.
3 27 SXP

, (2.27)

as T—0 for t <<g <g{). Since in the classical region &is
given by E=exp[1/(n —2)t], the factors g/2t and
1—g/glV in Eq. (2.27) are addressed to quantum correc-
tions. The critical coupling constant g!!’ is given by
2/(n —2) since we have put e=1. Up to two-loop order,
Egs. (2.25a) and (2.25b) can be integrated to obtain
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1 1—1/(n—2) 1/(n—2) 1 |
5=5 It ] _g——f(g) exp | —— tf(g) exp —;In +f(g) ,
1—1/4n-2) 1/(n-2) -
_1(2vs 1 2wJ o, 1 kT 1 )
2 | kgT fig P | kT L &) sy e VAU (2.28)

as shown in Appendix B. The function f(g) in (2.28)
means f(g)=(1—g/g/*"(1—gV g, @)™, where g¥
(>0) and g (<0) are solutions of the quadratic equa-
tion g2+2g.—4/(n —2)=0. gP=—14+V1+4/(n —2)
is the two-loop order critical coupling constant and v is
given by v=(1—g/?y/ Ecm)_l. A remarkable feature of
the two-loop theory lies in the modifications of the
coefficient of 1/t in the exponential function. In fact, for-
mula (2.28) agrees well with the numerical integration of
B, as shown in Fig. 5 where In§ is plotted vs
x=1—g/g!?¥ for t =1073 In Fig. 6 we present Inf as a
function of temperature for n ==3; clearly we can plot £ in
a form, Inf=c, /t+c,. Equation (2.28) results in the ex-
pression of & for § =1 as )

kyT
1—-2_F-!

2]
—F
27wJ

kyT (2.29)

§=Cgexp

C; is a constant determined following the argument of
Parisi?® C,=e“?v/32¢™?C,. Following the instanton
calculus?! C; =e1""2/32V/2, we obtain an analytic ex-
pression C,=[g/2f(g)le/8. The constant F controls
the temperature dependence of £ at low temperatures.
For the classical model constants are given by
F=S8(S+1) and C,=e/8=0.3398; on the other hand,
for the quantum model the one-loop theory gives
F/S(S+1)=1—g/g.,=0.548 and C;=0.279, and next-
order calculation predicts F/S(S+1)=f(g)=0.44 and
C=0.376. In the estimation above we have used
g =v/d /wS. Thus we have determined C ¢ and F

1000 =
800 - -
L s &
=
~ 6001 -

4001 ¢
E:

200 y i

o T T T T T T
0.0

FIG. 5. Iné (closed circles) as a function of x=1—g/g{* for
n=3 and ¢ =10"3 The dashed line represents the two-loop

function t ~'f(g)=t " 1—g/g®M(1—gVg, @)

without any additional parameters and the values of F
and C; are consistent with the recent Monte Carlo calcu-
lations. 22 :

'~ With a large stock of the renormalization-group theory
for the 2D classical nonlinear o mode1,26’27 we can easily
expect the next-order term for B,; it is given by
—(n —2)n +2)/4g* coth(g /2¢t)/2]°. This term pro-
duces only minor contributions to &:

1 1—1/(n—2) 1/(n—2) 1 1
=23 flg xp |5/ E
1 _n+2 .
X 1= = 1= |t () ] (2.30)

The exponent f(g) is controlled by the solutions
of equation

go+[8/(n+2)]g2+[16/(n +2)]g,
—32/(n —2)n +2)=0.

Let three solutions be gcm, z®) and z % refers to the

complex conjugate). Then f(g) is given by the simple ex-
pression

f(g)=(1_g/gc(3))vlll_g/z(3)’1’2|l_g/z(3)*|v3 ,
where '
vi=1/(1—g> /21— /2™,

v =1/(1—z%/gP)1—23/2'9%) ,

(3)% (

500
400
300 .
200 *

100 | o’

800 1000 1200
i1

T 4 { T
0 200 400 600

FIG. 6. Inf as
g =vd /7S =0.9003.

a function of temperature t for
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TABLE I. Comparison of the values of F.

Method (Model) F
Classical Heisenberg S(S+1)=0.75
Quantum Heisenberg S(S+1)i—g/ge)
1 loop =0.41
2 loop 0.33
3 loop 0.26
Monte Carlo (Ref. 22) 0.22(40.02)

and
v=vi=1—v;—v, .

For n=3, we obtain F/S(S+1)=f(g)=0.35, since
g!¥=1.06193 and z'¥=—1.33096-+2.06284,. We list
the values of F in Table I for comparison. Qur results
well agree with the Monte Carlo calculations.??

III. DISCUSSIONS

In this paper we have discussed the renormalization of
the quantum antiferromagnet in low-dimensional space.
We have obtained the renormalization constants and the
recursion relations up to two-loop order within the di-
mensional regularization method rather than using the
momentum-shell one. In the momentum-shell method,
one fails to derive the differential recursion relation to the
two-loop order. We have two distinct regions called the
quantum region for ¢ <<g and the classical region for
t >>g. In the classical region the [ functions agree with
those of the classical nonlinear ¢ model at two-space di-
mensions. We have shown that the interplay between
two regions is described by the simple crossover function
coth(g /2t).

The fundamental problem in the low-dimensional anti-
ferromagnets lies in the observation that the ordinary
perturbation theory is a perturbation about a vacuum
with a broken continuous symmetry. This difficulty
emerges as the infrared divergencies in the perturbation
expansions. In field theory the infrared divergence has
some connection with color confinement or symmetry
restoration. Recently the spin-wave theory with a slight
modification has been applied successfully to antifer-
romagnets as well as ferromagnets in two dimensions at
low temperatures.”® This demonstrates the possibility
that one can study the perturbation expansion around the
wrong vacuum, with symmetry restored dynamically.
Since the rotational symmetry is not broken, we are able
to consider rotational invariant quantities. In this paper,
regularizing the divergences of S; S ; ) by the dimension-
al scheme, we have obtained the S functions up to two-
loop order. A rich knowledge of the 2D classical NLoM
teaches us the third-order term. We have derived the for-
mula for the critical temperature ¢, to show that ¢, is re-
duced by quantum fluctuations. . has a solution for
0<g <gy=2t0 and vanishes at g =g,,. The relation
gm=2t2 holds in each order of perturbation theory and
consequently can be an exact relation. We have also dis-
cussed the thermal reduction of g,. The threshold value

-—asymptotic freedom at t =ty for d>1.
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of t is given by ty, =g, /2,gc =0 at t =g0/2. What is re-
markable is that our model shows the restoration of the
The quantum
model includes a rather richer structure than the classical
one. .

We have derived the expression of correlation length at

- low temperatures up to two- and three-loop order

without free parameters. & is written in a form

.E=Cexp(27JF /kyT), where the constant F is factorized
& B

as a classical contribution F, times quantum corrections:
F=F_f(g). Fand C; are consistent with the results of
Monte Carlo simulations. _

Finally, let us discuss the renormalization of the two-
point function I'?. In order to diagonalize the quadratic
part of the Dyson-Maleev Hamiltonian, we introduce the
Bogoliubov transformation

ak“ukak_vkﬁ k> (3.1a)
b =B ey . (3.1b)
Multiplying the renormalization constant Z o
ol =Z;%a} 5.8l n=2;""BL 5 . (3.2)
we define the renormalized N-point function,
i F(RN)(k:w,g.U)=Z';N/2F%N)(k,w,go) . (3.3)

Here we consider the two-loop function I''?)(k,w) of a.
It was shown in Ref. 11 that the self-energy corrections
for T2 vanish to one-loop order. Hence a nontrivial
contribution to 1“;2’ is of the order of g%

2 (k,o)=o |1+ Ag% for w>> k|, (3.4)

where A is a constant. This result implies that Z,
given by Z,=1— Ag?/e, which is different from our Z
This is clearl incorrect. Thus we should consider
(afa,+B_ 1B, ) to obtam correct results.

APPENDIX A

In this appendix, we show terms contributing to the
two-loop renormalization. They are listed in Fig. 3 in the
momentum space. If we use a notation p =(pg,p), where
Do=2mn/B (n is an integer), the Feynman diagram in
Fig. 1(a) at =0 for d =1+ ¢ is calculated as

(p +q)*
/3 2 f (27)4 .3 E f (27T)d g*k*p +q +k)?
Q4 1 1 1+e
= — |1 -r
202m)¢ | & + T 2
3
— — ___1_— 2\i+e
XTI 1+2 (1 e)r(2+3€/2)(p e (A1

After a summation of p,, we can easily transform this ex-

pression to the real-space representation. The results are
listed below:
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1 o0 11 1.1+ ’ 1 1
Sn—12%° |— = | 5= |1+ S |27 |5 1 |1+ £ | ri1—2e)r(1+ —

(@) (n—1rg™ |20 0 | B3 2|7 | 2 7 | T2 3 T r3e/2)

(A2)
o 1 11 [1+e ] ? L 1
b) (n—1)g | —= =<0 =S| T |1+ | D(1—26)1(1+3
©) (n ="\ 2amd | @R 6 [ 2 2 | T2 T TaT3e2) (43
o P 1 oa1 [1+e] ! ’ 1 1
() —Hn—17g3 | —2— Top S i rfi+E | v 1I—£ | ra—200(1+3€) ,
* & 20m7 | eR*3 2 2 2 € T1=¢)l T(1+e)
(A4)
Q 1 21 [1+e ] e 1 1
(d) —Hn—1)g? |2 =r =& r[1+€ | rj1—£ | ra—2e)T(1+36) .
28 2an | éR* 3 | 2 2 2 | T2 “T(1—e? T(1+e?
(A5)
|
APPENDIX B condition at u=1, Cis given by
In'troducmg 1y such Elat p=~2/B, let us write the re- C=1In B + 1 a,ln _2__a1
cursion equations for d =2 as follows: 2 a;—a, go
AUy V32— Ly — )33
‘ud,u +(n =2)Bt°u—(n —2)B*t°p* for u>p,, —ayin i—az} (B3)
£o
(Bla)

and If we set t =¢; << 1 at u=p,, we obtain

A= —(n 22— (0 =2 for p<p,,  (BIb) e (1 1 V(1
) o t 2 g g_gm ,» (B4
where [ is the initial value of g(u)/t(pu) at uy=A=1: € €

B=gu=A)/t(u=A)=gy/t,=2V'dJS /kyT. Equation
(Bla) easily results in a formula,

a,ln —-2——-—a
) 1 fB.U» 1

—a,ln

In(3f)=——=

-, | |+C, (B2

2
tBu
with an integral constant C. «a; and a, are solutions of

the quadratic equation x?—(n —2)(x +1)=0:
ay=[n —2+V(n—27+4(n —2)]

and

a,=[n—2—V{(n—22+4(n—2)] .

The inverse of a; gives the critical coupling constant
gP=2/a; and we put §2’=2/a,. Due to the initial

where v=a, /(a;—a,). Next let us turn to a solution of
Eq. (B1b). In order to obtain the correlation length &, we
choose p* such that #(u*)=1. We demand that the solu-
tions of Egs. (Bla) and (B1b) coincide at p=p,; we have

_ 1 _ B 1 1
§—F———£exp P [Z+lntl_ln(1+tl) }
1—1/n—2) 1/(n—2)
=118 8o
2 1 fgo)
Xex ——-—Lf( )
p 21, 8o
X 14— (Bsﬁ
exp | ———— .
p —2 flgo)
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