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It is important to understand the phase diagram of electronic states in the CuO2 plane

to clarify the mechanism of high-temperature superconductivity of high-temperature

superconductivity. We investigate the ground state of electronic models with strong

correlation by employing the optimization variational Monte Carlo method. We consider

the two-dimensional Hubbard model as well as the three-band d-p model. We use the

improved wave function that takes account of inter-site electron correlation to go beyond

the Gutzwiller wave function. The ground state energy is lowered considerably, which

now gives the best estimate of the ground state energy for the two-dimensional Hubbard

model.

The many-body effect plays an important role as an origin of spin correlation and

superconductivity in correlated electron systems. We investigate the competition be-

tween the antiferromagnetic state and superconducting state by varying the Coulomb

repulsion U , the band parameter t′ and the electron density ne for the Hubbard model.

We show phase diagrams that include superconducting and antiferromagnetic phases.

We expect that high-temperature superconductivity occurs near the boundary between

antiferromagnetic phase and superconducting one. Since the three-band d-p model con-

tains many band parameters, high-temperature superconductivity may be more likely

to occur in the d-p model than in single-band models.

Keywords: strongly correlated electrons; optimized wave function: variational Monte

Carlo method; antiferromagnetism; superconductivity.
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1. Introduction

High-temperature superconductivity has been studied intensively since the discov-

ery of high-temperature cuprates.1 It is of primary importance to understand the

phase diagram of cuprates to clarify the mechanism of high-temperature super-

conductivity. It has been argued that the electron correlation between electrons

plays a significant role in cuprate superconductors because the parent materials

without carriers are a Mott insulator. It may be that an interaction with large

energy scale is responsible for realization of high temperature superconductivity.2

We can expect high critical temperature Tc originating from the strong electron

correlation. It is clear that an important key is in the CuO2 plane since the CuO2

plane is commonly contained in cuprate superconductors. Hence we should clarify

the properties of electronic states in the CuO2 plane.3–12 The model for the CuO2

plane is the three-band d-p model. We also often consider the simplified model,

by neglecting oxygen sites in the CuO2 plane, which is called the (single-band)

Hubbard model.13–16

The Hubbard model is the well-known fundamental model in the solid state

physics. This model was first introduced by Hubbard13 to understand the metal-

insulator transition in solids. The Hubbard model has been used to understand

the magnetism such as ferromagnetism and antiferromagnetism of various com-

pounds17,18 since the Heisenberg model is derived from the Hubbard model in

some limit.

It has also been examined to understand the inhomogeneous states such as

the striped states19–26 and the checkerboard-like density-wave modulation27–29 on

the basis of the Hubbard model.30–32 It has been an important subject to clarify

whether the 2D Hubbard model has a superconducting (SC) phase or not.33–38 It

was proposed that the two-dimensional (2D) Hubbard model can account for high-

temperature superconductivity.39 Recent numerical results indicate the existence

of the d-wave superconducting phase in the 2D Hubbard model.40,41 For the ladder

Hubbard model, which is a variation of the mode, previous studies have indicated

positive results on the existence of superconductivity.42–46

A variational Monte Carlo method is a useful method to study physical proper-

ties of strongly correlated systems.15,47–52 A simple wave function is given by the

Gutzwiller wave function. We have proposed wave functions that are optimized by

introducing new variational parameters beyond the Gutzwiller function.40 We have

shown that the ground-state energy is lowered considerably compared to those ob-

tained by previous works.40 The evaluations obtained by using the optimized wave

functions indicates that the superconducting phase exists in the 2D Hubbard model.

2. Model Hamiltonians

The Hamiltonian of the single Hubbard model is given as

H =
∑

ijσ

tijc
†
iσcjσ + U

∑

i

ni↑ni↓, (1)
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where {tij} are transfer integrals and U is the on-site Coulomb energy. The transfer

integral tij for nearest-neighbor pairs 〈ij〉 is denoted as tij = −t and that for next-

nearest neighbor pair 〈〈ij〉〉 is tij = −t′. Otherwise, tij vanishes. We denote the

number of sites as N and the number of electrons as Ne. The energy unit is given

by t. niσ is the number operator: niσ = c†iσciσ. The second term in the Hamiltonian

represents the on-site repulsive interaction between electrons with opposite spins.

The three-band d-p model, called the d-p model in this paper, is the model that

contains oxygen p orbitals and copper d orbitals. The d-p model is more realistic for

high-temperature cuprates than the single-band Hubbard model. The Hamiltonian

of the d-p model is written as

Hdp = ǫd
∑

iσ

d†iσdiσ + ǫp
∑

iσ

(p†i+x̂/2σpi+x̂/2σ + p†i+ŷ/2σpi+ŷ/2σ)

+ tdp
∑

iσ

[d†iσ(pi+x̂/2σ + pi+ŷ/2σ − pi−x̂/2σ − pi−ŷ/2σ) + h.c.]

+ tpp
∑

iσ

[p†i+ŷ/2σpi+x̂/2σ − p†i+ŷ/2σpi−x̂/2σ

− p†i−ŷ/2σpi+x̂/2σ + p†i−ŷ/2σpi−x̂/2σ + h.c.]

+ t′d
∑

〈〈ij〉〉σ

ǫij(d
†
iσdjσ + h.c.) + Ud

∑

i

d†i↑di↑d
†
i↓di↓.

(2)

diσ and d†iσ represent the operators for the d hole. diσ and d†iσ represent the op-

erators for the d hole. pi±x̂/2σ and p†i±x̂/2σ denote the operators for the p holes at

the site Ri±x̂/2, and in a similar way pi±ŷ/2σ and p†i±ŷ/2σ are defined. tdp is the

transfer integral between adjacent Cu and O orbitals and tpp is that between near-

est p orbitals. 〈〈ij〉〉 denotes a next nearest-neighbor pair of copper sites. ǫij = ±1

indicates the sign of transfer integral that depends on the sign of d orbitals. Ud

is the strength of the on-site Coulomb repulsion between d holes. In general Up is

small compared to Ud.
53–57

The lattice structure of the CuO2 plane is shown in Fig. 1. We introduced t′d,

which is the transfer integral between next-nearest neighbor d electrons as shown in

Fig.2. The one reason to introduce t′d is to reproduce the deformed Fermi surface in

cuprate superconductors such as Bi2Sr2CaCu2O8+δ
58 and Tl2Ba2CuO6+δ.

59 When

t′d is finite, the Fermi surface is deformed with large curvature. The other reason is to

suppress the antiferromagnetic (AF) correlation because t′d would play an important

role in the competition between superconductivity and antiferromagnetism.
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Fig. 1. Lattice structure of the two-

dimensional CuO2 plane.
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Fig. 2. Transfer integrals in the CuO2 plane.

t′
d

is the transfer integral between next-

nearest neighbor d electrons. tdp and tpp are

conventional transfer parameters.

3. Optimization variational Monte Carlo method

A starting wave function in the variational Monte Carlo method is given by the

Gutzwiller function:

ψG = PGψ0, (3)

where PG is the Gutzwiller operator PG =
∏

j(1−(1−g)nj↑nj↓) with the parameter

g in the range of 0 ≤ g ≤ 1. ψ0 is an initial wave function of one-particle state.

We introduce the order parameter in the initial state ψ0 when we investigate an

ordered state with some long-range order. The antiferromagnetic (AF) one-particle

state ψAF is given by the eigenstate of the AF Hamiltonian which is given by

HAF =
∑

ijσ

tijc
†
iσcjσ −∆AF

∑

iσ

σ(−1)xi+yiniσ, (4)

for the Hubbard model where ri = (xi, yi) are the coordinates of the site i. ∆AF

indicates the AF order parameter. This is easily generalized to the d-p model. A

strongly correlated superconducting state is given by the projected-BCS state by

taking ψ0 = ψBCS(∆) with the order parameter ∆. The expectation values for

these wave functions are evaluated numerically by using the Monte Carlo method.

We must improve the Gutzwiller function because we cannot fully take into

account electron correlation with it. We multiply the Gutzwiller function by a

correlation operator e−λK .40,60–66 The optimized wave function is

ψλ = exp (−λK)ψG, (5)

where K indicates the kinetic term of the Hamiltonian and λ is a variational pa-

rameter (real constant) chosen to lower the ground state energy.52,61,62 For the

Hubbard model, K is given by K =
∑

ijσ tijc
†
iσcjσ.
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The Jastrow-type wave function has also been proposed to improve the

Gutzwiller function.67 The doublon-holon correlation is included by multiplying

by the operator

Pdh =
∏

j

(

1− (1− η)
∏

τ

[

dj(1− ej+τ ) + ej(1− dj+τ )
]

)

, (6)

where dj is the operator for the doubly-occupied site given as dj = nj↑nj↓ and ej
is that for the empty site given by ej = (1 − nj↑)(1 − nj↓). η is the variational

parameter in the range 0 ≤ η ≤ 1. The doublon-holon wave function is written as

ψη = PdhψG. This type of wave functions was generalized to a many-parameter

wave function.68 It is not, however, clear whether the Jastrow-type wave function

is also relevant for the d-p model.

In this paper, we use the wave function ψλ = exp(−λK)ψG which we call the

off-diagonal type wave function. The ground-state energy obtained by using ψλ is

lower than that by the Jastrow-type wave functions.40 An advantage of using the

off-diagonal wave function is that it is easy to generalize to the three-band d-p

model.69 The wave function is

ψλ,dp = exp(−λKdp)ψG, (7)

where ψG is the Gutzwiller function for the d-p model and Kdp indicates the kinetic

part of the Hamiltonian Hdp. The expectation values for ψλ are calculated by

adopting the procedure that is used in quantum Monte Carlo simulations.61

4. Antiferromagnetism and t
′

d
in the d-p model

The superconducting phase exists adjacent to the antiferromagnetic phase in high-

temperature superconductors; which holds for cuprate superconductors and also

iron-based superconductors. It is important to investigate the stability of the an-

tiferromagnetic state in strongly correlated electron systems. We examine this for

three-band d-p model. The strength of spin correlation is crucially dependent upon

three parameters in the model; they are the strength of the repulsive interaction

Ud, the hole density x and transfer integrals tpp and t′d.

In the d-p model, the antiferromagnetic correlation is strong and is even stronger

than that for the 2D Hubbard model. We have introduced the transfer integral t′d,

which is the long-range transfer being analogous to t′ in the 2D Hubbard model,

to control the antiferromagnetic correlation. We found that the antiferromagnetic

correlation is reduced when increasing |t′d|. The inclusion of long-range transfers

such as t′d would increase the possibility of superconductivity in the d-p model.

In Fig. 3, we show the AF condensation energy as a function of the hole density

x where t′d = −0.2tdp and the level difference ∆dp = ǫp − ǫd is ∆dp = tdp. The AF

region vanishes when x is near 0.1 (10 percent doping). The SC region may exist

adjacent to the AF region. The AF order parameter ∆AF is shown as a function of

−t′d in Fig. 4. The decrease of ∆AF with the increase of −t′d indicates a possibility

of pure d-wave SC state. The SC order parameter ∆SC is also shown in Fig. 4.
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Fig. 3. The condensation energy of the anti-

ferromagnetic state as a function of the hole

density x for the two-dimensional d-p model

on a 8 × 8 lattice with 192 atoms. We set

Ud = 10tdp, tpp = 0.4tdp and t′
d
= −0.2tdp

and ∆dp = ǫp − ǫd = tdp. The energy unit is

given by tdp. We use the periodic boundary

condition for the one direction and antiferro-

magnetic one for the other direction.
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Fig. 4. AF order parameter ∆AF as a func-

tion of −t′
d

for the two-dimensional d-p

model for Ud = 10tdp, tpp = 0.4tdp and

∆dp = 2tdp. The hole number is 76 on

8×8 lattice. The boundary conditions are the

same as in Fig. 3. The SC order parameter

∆SC is also shown which is obtained by us-

ing the BCS-Gutzwiller wave function. ∆AF

decreases as |t′
d
| increases.

5. Antiferromagnetism and Superconductivity

In the study of superconducting state in strongly correlated electron systems, we

use the BCS wave function ψBCS as an initial one-particle state ψ0 where

ψBCS =
∏

k

(uk + vkc
†
k↑c

†
−k↓)|0〉, (8)

with coefficients uk and vk appearing in the ratio uk/vk = ∆k/(ξk +
√

ξ2k +∆2
k),

where ∆k is the k-dependent gap function and ξk is the dispersion relation of

conduction electrons.

Inorder to employ the variational Monte Carlo method for the wave function

ψλ = exp(−λK)PGψBCS , (9)

we perform the electron-hole transformation for down-spin electrons:

dk = c†−k↓, d†k = c−k↓. (10)

In this notation, the electron pair operator c†k↑c
†
−k↓ is represented as the hybridiza-

tion c†kdk where ck = c†k. The chemical potential is used to adjust the expectation

value of the total electron number. Thus, the chemical potential introduced in ψBCS

is not a variational parameter in this formulation.

In this section we examine the AF and SC states as a function of the level

difference ∆dp. When Ud is fixed, ∆AF increases as ∆dp increases from zero and

has a peak when ∆dp ∼ Ud/2. This is shown in Fig. 5 where we consider the case
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∆dp ≥ 0. This means that the AF correlation becomes maximum in the symmetric

case where ∆dp = Ud/2. The pure d-wave SC state may exist for negative t′d. In

Fig. 6 we show the SC order parameter as well as the AF one for t′d = −0.2tdp.

∆SC obtained by the Gutzwiller wave function is also shown in Fig. 6. It is not

clear whether the coexistent state of AF and SC orders in the AF region when ∆dp

becomes large. The SC phase exists when the level difference ∆dp is small.
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Fig. 5. Antiferromagnetic order parameter

∆AF as a function of the level difference

∆dp = ǫp − ǫd for the three-band d-p model

with 76 holes on 8 × 8 lattice where x =

0.1875. We used Ud = 10, Up = 0 and

tpp = 0.4 in units of tdp. ∆AF has a peak

when ∆dp ∼ Ud/2 for fixed Ud for t′
d

= 0

and r′
d
= −0.2.
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Fig. 6. Antiferromagnetic and superconduct-

ing order parameters as a function of the level

difference ∆dp. The system is a 8 × 8 lat-

tice with 76 holes where we use the periodic

boundary condition in one direction and an-

tiperiodic one in the other direction. We set

Ud = 10, Up = 0, tpp = 0.4 and t′
d
= −0.2

for AF state. The superconducting region ex-

ists when the level difference is small. The SC

order parameter for the Gutzwiller function

shows the result for t′
d
= 0.

6. Summary

We examined the ground-state properties of the 2D d-p model by using the op-

timization variational Monte Carlo method. The optimized wave function is for-

mulated by multiplying by exp(−S) operators. The ground-state energy ls lowered

greatly compared to those of the Gutzwiller wave function and also several proposed

wave functions with many variational parameters. We have the lower ground-state

energy because of the kinetic-energy gain due to the variational parameter λ. The

wave function is straightforwardly generalized to multi-band models such as the

three-band d-p model.

The antiferromagnetic state is very stable near the half-filled case in the d-

p model. In general, according to variational Monte Carlo calculations, the AF

correlation in the d-p model is extremely stronger than that in the Hubbard model.
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The antiferromagnetic correlation is reduced as the hole density increases. The AF

order parameter ∆AF takes the maximum value at near the symmetric case where

∆dp = ǫp− ǫd = Ud/2 for fixed Ud. The d-wave superconducting phase exists in the

region where ǫp − ǫd is small.

There may be a crossover as ∆dp decreases from strongly correlated region to

the weakly correlated one. In the weakly correlated region where ∆dp/tdp is small,

the AF correlation is reduced, which indicates that spin and charge fluctuations

are large and will cause superconductivity. High-temperature superconductivity

would occur in the crossover region. The crossover behavior may be a universal

phenomenon. The Kondo effect shows a crossover from weakly coupling to strongly

coupling regions as the temperature decreases.70,71 An anomaly that occurs in

the crossover plays an essential role.72–77 This anomaly is closely related to the

asymptotic freedom.
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