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Abstract

We discuss the renormalization group approach to fundamental field theoretic models
in low dimensions. We consider the models that are universal and frequently appear in
physics, both in high-energy physics and condensed matter physics. They are the non-
linear sigma model, the ¢ model and the sine-Gordon model. We use the dimensional
regularization method to regularize the divergence and derive renormalization group
equations called the beta functions. The dimensional method is described in detail.
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1. Introduction

The renormalization group is a fundamental and powerful tool to investigate the property of
quantum systems [1-15]. The physics of a many-body system is sometimes captured by the
analysis of an effective field theory model [16-19]. Typically, effective field theory models are
the ¢4 model, the non-linear sigma model and the sine-Gordon model. Each of these models
represents universality as a representative of a universal class.

The ¢* model is the model of a phase transition, which is often referred to as the Ginzburg-
Landau model. The renormalization of the ¢* model gives a prototype of renormalization
group procedures in field theory [20-24].

The non-linear sigma model appears in various fields of physics [15, 25-27] and is the effective
model of Quantum chromodynamics (QCD) [28] and also that of magnets (ferromagnetic and
anti-ferromagnetic materials) [29-32]. This model exhibits an important property called the
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asymptotic freedom. The non-linear sigma model is generalized to a model with fields that
take values in a compact Lie group G [33—42]. This is called the chiral model.

The sine-Gordon model also has universality [43-49]. The two-dimensional (2D) sine-Gordon
model describes the Kosterlitz-Thouless transition of the 2D classical XY model [50, 51]. The
2D sine-Gordon model is mapped to the Coulomb gas model where particles interact with
each other through a logarithmic interaction. The Kondo problem [52, 53] also belongs to the
same universality class where the scaling equations are just given by those for the 2D sine-
Gordon model, ie. the equations for the Kosterlitz-Thouless transition [53-57]. The one-
dimensional Hubbard model is also mapped onto the 2D sine-Gordon model on the basis of a
bosonization method [58, 59]. The Hubbard model is an important model of strongly corre-
lated electrons [60-65]. The Nambu-Goldstone (NG) modes in a multi-gap superconductor
become massive due to the cosine potential, and thus the dynamical property of the NG mode
can be understood by using the sine-Gordon model [66-71]. The sine-Gordon model will play
an important role in layered high-temperature superconductors because the Josephson plasma
oscillation is analysed on the basis of this model [72-75].

In this paper, we discuss the renormalization group theory for the ¢4 theory, the non-linear
sigma model and the sine-Gordon model. We use the dimensional regularization procedure to
regularize the divergence [76].

2. ¢* model
2.1. Lagrangian
The ¢* model is given by the Lagrangian

=30 3 ~ 5t 1)

where ¢ is a scalar field and g is the coupling constant. In the unit of the momentum p, the
dimension of £ is given by d, where d is the dimension of the space-time: [£] = u?. The
dimension of the field ¢ is (d —2)/2: [¢] = u®?/2. Because g¢* has the dimension d, the
dimension of g is given by 4 — d: [¢] = u* ~ . Let us adopt that ¢» has N components as ¢ = (¢,
@2, ..., Pn)- The interaction term q‘)4 is defined as

o= (30 0) @
The Green’s function is defined as
Gi(x —y) = —i{0|Te,(x);(y)|0), 3)

where T is the time-ordering operator and 0} is the ground state. The Fourier transform of the
Green’s function is
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Gi(p) = [ d xe"*Gi(x). @)

In the non-interacting case with g =0, the Green’s function is given by
1

pZ_mZ’

-2 —
where p? = (p,)* — p_ for p = (p,, p)-

Let us consider the correction to the Green’s function by means of the perturbation theory in
terms of the interaction term g¢*. A diagram that appears in perturbative expansion contains,
in general, L loops, I internal lines and V vertices. They are related by

L=I-V+1. (6)

There are L degrees of freedom for momentum integration. The degree of divergence D is
given by

D=d-L-2I ?)
We have a logarithmic divergence when D = 0. Let E be the number of external lines. We obtain
4V =E+2I. (8)

Then, the degree of divergence is written as
d
D=d-L-2l=d+ (d—-4)V+ 1_5 E. )

In four dimensions d = 4, the degree of divergence D is independent of the numbers of internal
lines and vertices

D=4-E (10)

When the diagram has four external lines, E =4, we obtain D = 0 which indicates that we have a
logarithmic (zero-order) divergence. This divergence can be renormalized.

Let us consider the Lagrangian with bare quantities

1 1 1
L= Qupy)’ = 51505 — 738000, (11)

where ¢, denotes the bare field, g, denotes the bare coupling constant and 11 is the bare mass. We
introduce the renormalized field ¢, the renormalized coupling constant ¢ and the renormalized
mass m. They are defined by
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90 = \/Zs9) (12)
80 = 28 (13)

my =m*Zy/Z, (14)
where Z,, Z, and Z, are renormalization constants. When we write Z, as

Zoge= /L (15)

we have gOZ(ZI) = gZ4. Then, the Lagrangian is written by means of renormalized field and

constants

1 1 1
L= Ezqﬁ(a,,(p)2 - Emzzqu2 = 9Z4*. (16)

2.2. Regularization of divergences
2.2.1. Two-point function

We use the perturbation theory in terms of the interaction g¢*. For a multi-component scalar
field theory, it is convenient to express the interaction ¢* as in Figure 1, where the dashed line
indicates the coupling g. We first examine the massless case with m — 0. Let us consider the
renormalization of the two-point function T®(p) = iG(p)"". The contributions to T'® are
shown in Figure 1. The first term indicates pZZq) and the contribution in the second term is
represented by the integral

B d’q 1

Using the Euclidean co-ordinate g4 = —ig, this integral is evaluated as

I= —i%md‘zér(g)r(l —g), (18)

where (), is the solid angle in d dimensions. For d > 2, the integral I vanishes in the limit m — 0.
Thus, the mass remains zero in the massless case. We do not consider mass renormalization in
the massless case. Let us examine the third term in Figure 2.

There are 4% - 2N + 4% - 22 = 32N + 64 ways to connect lines for an N-component scalar field to
form the third diagram in Figure 2. This is seen by noticing that this diagram is represented as
a sum of two terms in Figure 3.

The number of ways to connect lines is 32N for (a) and 64 for (b). Then we have the factor from
these contributions as



Renormalization Group Theory of Effective Field Theory Models in Low Dimensions
http://dx.doi.org/10.5772/intechopen.68214

@ @ @i @

®; @ @ @

Figure 1. ¢* interaction with the coupling constant g.
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Figure 3. The third term in Figure 2 is a sum of two configurations (a) and (b).
1 \? N+2,
The momentum integral of this term is given as
d% dg 1

1= J @n) @) PPP(p+q+ k7 20)

The integral | exhibits a divergence in four dimensions d = 4. We separate the divergence as 1/¢
by adopting d = 4 — €. The divergent part is regularized as

2
J= — (81?) é + regular terms (21)

To obtain this, we first perform the integral with respect to g by using
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1 1 1
L B .
7*(p+q+k) 0 [Px+(p+g+k)(1-x)]

Forq'=q+ (1-x)(p + k), we have

d? 1 dig 1
J (273" Pp+q+k)? - J (2:)‘* Jodx [q2 +x(1—x)(p + k)
- 2 ) o) [
2 d_
N <;3d%r(g>r<2‘g)r(§‘l) rasg (0+97)

Here, the following parameter formula was used

1 T'(n+m) r X711 — x)™ !

A"B" " T(mT(m) Jo" xA+ (1 —x)B™"

Then, we obtain

d'p 1 _ I'(3-d/2) 1d 1 — x)1-9/2 'y’ 1
J(Zn)d pz((p+k)z)2_d/2 T(2—d/2) L *(1-%) J(

q, TB-d/2) ; ] )
) ﬁr(z——cuz?B(d—zfz—l)%B(zﬁ—d) )"

Here B(p, q) = T'(p)I'(9)/T (p+q). We use the formula
I'(e) = % + finite terms
for ¢ — 0. This results in

I + regular terms

[Loe 1 (1y1
2m)" 2n)! PP(p+q+k)° 8r?) 8¢
Therefore, the two-point function is evaluated as

1 N+2 /g2
() — 2, - NTe /5 2
M) = 2o + g 55 (ge) P

up to the order of O(gZ). In order to cancel the divergence, we choose Z as

1 N+2 /1),
AT (@)g

2m)" [p2 + x(1 - x)kPP

(22)

(23)

(24)

(25)

(26)

(27)

(28)

(29)
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2.2.2. Four-point function

Let us turn to the renormalization of the interaction term g*. The perturbative expansion of the

four-point function is shown in Figure 4. The diagram (b) in Figure 4, denoted as Al"l(f), is given
by for N=1:

1( d'g 1
ATy (p) = gz—J : (30)
2] @) (@ —m)(((p+97 —m2)
As in the calculation of the two-point function, this is regularized as
ATYp) = g 5 8 @)
1 8n2 2¢ ©’

for d =4 — €. Let us evaluate the multiplicity of this contribution for N > 1. For N=1, we have a
factor 4°3°2/414!=1/2 as shown in Eq. (30). Figure 4c and d gives the same contribution as in
Eq. (31), giving the factor 3/2. For N > 1, there is a summation with respect to the components
of ¢. We have the multiplicity factor for the diagram in Figure 4b as

1\’ s N
(E) PPN = o (32)

Since we obtain the same factor for diagrams in Figure 4c and d, we have N/6 in total. We
subtract 1/6 for N =1 from 3/2 to have 8/6. Finally, the multiplicity factor is given by (N + 8)/6.
Then, the four-point function is regularized as

.1 N+81
1 12

(4) — - -
AT (p) = i 82 6 ¢ (33)

Because g has the dimension 4 — d such as [¢] = u*™, we write g as gu*™ so that g is the
dimensionless coupling constant. Now, we have

. .1 N+81
@) () = — ¢ 7
' (p) BZap +ig s —— 2 & (34)

for d =4 — ¢ where we neglect ;i in the second term. The renormalization constant is determined as

XX A

Figure 4. Diagrams for four-point function.
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N+8 1
Zy=14—— o 2% (35)

As a result, the four-point function I'® becomes finite.

2.3. Beta function (g)

The bare coupling constant is written as g, = Z,gu* ™ = (Z4/ Zé) g4, Since g is independent
of the energy scale, 1, we have tdg,/0u = 0. This results in

dg dInZ

d
psh = (d—4)g - £, (36)

iz S ou"og

where Z, = Z4/ Zé. We define the beta function for g as

B(g) = yig, (37)

Ze=14+——— 2
=14 g sg+ 0, (38)
the beta function is given as

B8) = W*—gﬂL 6 g8 +0(8). (39)

1+¢—5

B(g) up to the order of g* is shown as a function of g for d < 4 in Figure 5. For d < 4, there is a
non-trivial fixed point at

4872
For d = 4, we have only a trivial fixed point at g =0.
For d =4 and N =1, the beta function is given by
®) = 1o+ ()
p&) = 1628 '

In this case, the (g) has been calculated up to the fifth order of g [77]:

-3 2 U1 3<ﬁ123)1 4A1 42
B&) = 1628 36t T8 T €6) demps T4 (16n )4g, (42)

where
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0
9, g
Figure 5. The beta function of g for d < 4. There is a finite fixed point g..
3499
A= (P +7803) - 18004) + 120005) ), 3)

and ((n) is the Riemann zeta function. The renormalization constant Z, and the beta function
B(g) are obtained as a power series of g. We express Z, as

. N+8 by b €, € G\ 3
Zg_1+7g+(£_2+?)gz+<€_3+£_2+?)g + (44)

and then f(g) is written as

B(g) = —eg +eg?

N+8 by b (N +8)?
e +2(€2+€>g+ g+

3662 ( 45)
B N+8 , O9N+42 ,
=8t 8 36
Here, the factor 1/87 is included in g. The terms of order 1/¢? are cancelled because of
p— _ (NE87 (46)
T 72

In general, the nth order term in (g) is given by n!g". The function f(g) is expected to have the
form

N+38
B(g) = —eg+T+g2 + e nla"nbeg" + -, (47)

where g, b and ¢ are constants.
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2.4. n-point function and anomalous dimension

Let us consider the n-point function I'™. The bare and renormalized n-point functions are
denoted as l"gq)(pi, 8o Mo, 1) and Fl({')(pi, g, m, 1), respectively, where p; (i = 1,..., n) indicate
momenta. The energy scale u indicates the renormalization point. 1"1(3") has the mass dimension

n+d-nd/2: [F;i”)] = p+d-1/2 These quantities are related by the renormalization constant Z; as

Ty (0, 8 m 1) = Z3*TY (b, 8 3, 1)- (48)

Here, we consider the massless case and omit the mass. Because the bare quantity I“g” is
independent of 11, we have

%rg’) =0. (49)
This leads to
d —n/21(n)
o (zq, ) =o. (50)
Then we obtain the equation for I“g'):
) 0go =n ,
(“@+”i&ﬁm)r&”(mg H) =0, (51)
where y, is defined as
)
Vo= H alnzq‘,. (52)

A general solution of the renormalization equation is written as

(n) n t Vq)(g,)
rn 7 &7 = ex _J d ! (n) 7 &7 ’ 53
R (P8 1) = exp 2] pig) g [ (g ) (53)
where
(n)( ) F I Jg 1 do’ (54)
ir &7 = AN — 7 s
P pi g u py Inu B g

for a function F and a constant g;. We suppose that f(g) has a zero at g = g.. Near the fixed point
8o by approximating y,, (") by 7,(8.). Fgl) is expressed as
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TR (i 8 t) = 1°Sf " (p g, ). (55)
In general, we define y(g) as .
y(g)Ing = jyﬁ“’((gg,)) g, (56)
&1
Then, we obtain
Y (py g 1) = 17SF " (p, g, ). (57)

Under a scaling p; — pp;, 1"1(?") is expected to behave as
I (opy 8o 1) = P" P 0y 80 1), (58)

because r};’) has the mass dimension 1 + d — nd /2. In fact, Figure 4b gives a contribution being
proportional to

1
2(,,4—d\2 d 20, 4—d\2 d—4 d
8 (1 )qu—:g(# )P qu—
?(pp +1)° Pp+q)° (59)
= ptig? (ﬁ) 2(4_‘1)J g 1
’ ¢ p+49)°
after the scaling p; — pp; for n = 4. We employ Eq. (58) for n =2
N7
e ppy 80 1) = PTR (s 80 /p) = 0() f2 (s 80 1/p) (60)

= 2w, g, u/p) = P ITR (b, 8 1/p).

This indicates

I@p) = p " = p*7 = ()72 (61)

Thus, the anomalous dimension 1) is given by 1 =y. From the definition of y(g) in Eq. (56), we
have

0
7,(8) = 1(9)+ o) i . (62)
At the fixed point g = g, this leads to
=y =7v8) = V&) (63)

The exponent 1) shows the fluctuation effect near the critical point.

The Green'’s function G(p) = T'?(p)~" is given by
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1
Glp) = P (64)
The Fourier transform of G(p) in d dimensions is evaluated as

Tt

1 .
G(r) = J —ﬂe””ddp = Qy——— . (65)
prn T4 — - d) sin((4—r]—d)n/2)
When 4 — n — d is small near four dimensions, G(r) is approximated as
1
G(r) = Q el (66)
The definition of y,, in Eq. (52) results in
0g 0 )
Vo(8) = Ky, 5 %0 = BRI InZo- (67)
Up to the lowest order of g, v, is given by
B IN+1 1 5
Vo= ( 8% 9 (8n2)2g>ﬁ(g) + 0(g)
(68)
_N+2 1 , 3
At the critical point g = g., where
1 6¢e
828 T Nts (69)
the anomalous dimension is given as
N+2
n= )/Lp(gc) = mez 4 O(es)_ (70)

For N=1and ¢ =1, we have n=1/54.

2.5. Mass renormalization

Let us consider the massive case m # 0. This corresponds to the case with T > T, in a phase
transition. The bare mass m, m and renormalized mass m are related through the relation
m? = m}Zy/Z,. The condition ydmp/du = 0 leads to
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Olnm 6] Z¢,
=pu—In—. 71
¢ ou Hby nZZ 1)

From Eq. (50), the equation for 1"1(:) is
n 0 Z )
ay ﬂ(g) — 5Vt #aln <Z_Z)> -m? W] ', g u m*)=0. (72)

We define the exponent v by
1 0 Z;
i wn(Z) 7

then
n 1

9 o) d )
{#a—y-f'ﬁ(g)& “ 2V (; N 2)m2 W] rl(a)(Pir g u m*) =0. (74)

At the critical point g = g., we obtain

[Ha — 50— o’ 6312} Iy 8o e m?) =0, (75)
where y =1 and we set
C= % -2 (76)
Atg=g, 1"1(;) has the form
TRy 8o o M) = WE" (p, pm?). (77)

because this satisfies Eq. (75).

In the scaling p; — pp,, we adopt

Ty (ppy 8w m?) = p" 2T (p, g, p/p, mP/p?). (78)

From Eq. (77), we have

TR Ky g o ) = p 2/ Ee) (01, o7 p(p2mi?) ), (79)

where we put pp; = k;. We assume that F™” depends only on p—1k;. We choose p as

1/(C+2
p=( ‘umZ/C)C/(CJrZ u (:’;) . (80)

This satisfies p~ u(p~2m?)"/* = 1 and results in
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o fd+52—d—n)ids 2\ ~th
T (ki, . w, m?) = piH-40 <%) HETE (H’l (m—) ki) D)
We take y1 as a unit by setting u = 1, so that T\ is written as
D, g, 1 ) = {05 L0 ) ®)

because ¢ + 2 = 1/v. We can define the correlation length & by

(m*) ™" = & (83)
The two-point function is written as
T (k,m?) = m®@DFO (ln=2"). (84)

Now let us turn to the evaluation of v. Since y,, = udInZ, /o, from Eq. (73) v is given by
o=

(AN 2
! 2+M$1n<z—¢)—2+l3(g)aglnzz o (8): (85)

The renormalization constant Z, is determined from the corrections to the bare mass 1. The
one-loop correction, shown in Figure 6, is given by

N+2 ( d% 1
L(p?) =i J , 86
v 6 Qn)' K —m? (86)
where the multiplicity factor is (8 + 4N)/4!. This is regularized as
N+2 [ d 1 N+2 1 ,1
L(p?) = J = — —m3=, 87
(P ) 6 (27'[)d k}zg + m% 6 g87’(2 0 ¢ ( )

for d = 4—c. Therefore the renormalized mass is

(a) (b)

Figure 6. Corrections to the mass term. Multiplicity weights are 8 for (a) and 2N for (b).
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N+2 1
2 2 2 2

Z, is determined to cancel the divergence in the form mZZZ/Z(,,. The result is

N+2 1
Then, we have
0 ~ N+21 9
Eq. (85) is written as
1 N+2 1 _ N+2 2
y =26 g 172yt ol) ®1)

where we put ¢ =g and used 1) = y,, (9)=(N+ 2)/(2(N + 8)2) - €. Now the exponent v is

V= %(1 -I—%e) +0(). (92)

In the mean-field approximation, v = 1/2. This formula of v contains the fluctuation effect near
the critical point. For N=1 and ¢ =1, we have v=1/2 + 1/12 =7/12.

3. Non-linear sigma model

3.1. Lagrangian

The Lagrangian of the non-linear sigma model is
1 2
L= (0up)” (93)

where ¢ is a real N-component field ¢ = (¢y,...,¢n) with the constraint ¢* = 1. This model has
an O(N) invariance. The field ¢ is represented as

¢ = (0, m, T2, =+, TIN-1) (94)

with the condition 0? + 7% + -+ + 7i%,_; = 1. The fields 7; (i = 1, ..., N — 1) are regarded as
representing fluctuations. The Lagrangian is given by
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! 2 2
L= 2 {(040)" + (9u7)°}, (95)

where summation is assumed for index i. In this Section we consider the Euclidean Lagrangian
from the beginning. Using the constraint 0> + 7 = 1, the Lagrangian is written in the form

1l o 11,
L= 72g (Qumi)” + 72g71 e (710, 717) (96)
= L@+ o (mdumi) + (97)
- 2g Tt 2g TGOy T

The second term in the right-hand side indicates the interaction between 7, fields. The diagram
for this interaction is shown in Figure 7.

Here, let us check the dimension of the field and coupling constant. Since [£] = u, we obtain
[7] = u° (dimensionless) and [g] = u>~". go and g are used to denote the bare coupling constant
and renormalized coupling constant, respectively. The bare and renormalized fields are indi-
cated by 7tg; and 7g;, respectively. We define the renormalization constants Z, and Z by

80 =812, (98)
Tigi = \[Z TtRi (99)

where g is the dimensionless coupling constant. Then, the Lagrangian is expressed in terms of
renormalized quantities:

yd72Z

L= %z,

{(a,uTIRi)z + %(b#n?{i)z + } (100)

In order to avoid the infrared divergence at d = 2, we add the Zeeman term to the Lagrangian
which is written as

Figure 7. Lowest order interaction for ;.
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Hy H Z z
ﬁZ:g—BU:g—B<17§nl€l*§n?{1+ “‘> (101)
0 0
Z 7> )
= const. — Hp ur3, — Hp pi=2(m2,)>. (102)
297, R 89Z, R

Here, Hp is the bare magnetic field and the renormalized magnetic field H is defined as

Z
H= \/——HB (103)
Zg
Then, the Zeeman term is given by
3
L. = const. — \;—ngyd‘znlzzi - %H;l”‘z(nﬁi)z + - (104)

3.2. Two-point function

The diagrams for the two-point function I'? (p) = G? (p) ! are shown in Figure 8. The contri-
butions in Figure 8c and d come from the magnetic field. Figure 8b presents

d'k  (k+p)? > I k1
I, = = —H)| — —— 105
’ J(Zn)d exn - P e (105)
where we used the formula in the dimensional regularization given as
Jd"k =0. (106)
Near two dimensions, d =2 + ¢, the integral is regularized as
Qy .. [d d Q; 1
I,= (P*-H H‘z’lr<—)r(1——): —(p*—H L 107
b= PR G (R)r(1-5) = 07 - (107)

The H-term I, in Figure 8¢ just cancels with —H in I;,. The contribution I, in Figure 8d has the
multiplicity 2 - 2 - (N — 1) because (77;) has N — 1 components. I, is evaluated as

ek 1 Qs N-11
er¥+H  (n 2 €

1
le= g 4N~ 1)j (108)

As a result, up to the one-loop-order the two-point function is
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(a) (b (0) (d)

Figure 8. Diagrams for the two-point function. The diagrams (c) and (d) come from the Zeeman term.

Z VZ 1 N-1
r(p) = Z—gp2+ ?H— z<pz+T ) (109)
8

where the factor Q;/(27)" is included in g for simplicity. To remove the divergence, we choose

zzg 14 %, (110)
VZ-1+N-1, (111)
2¢
This set of equations indicates
Z, = 1+¥g+0(g2), (112)
Z=1+ N_1g+0(g2). (113)

€

The case N = 2 is s special case, where we have Z, = 1. This will hold even when including
higher order corrections. For N =2, we have one 7 field satisfying

oy +mp=1 (114)
When we represent o and 7 as 0 = cos 0 and 7 = sin 0, the Lagrangian is
1

£= 5o (0,0 + @) = %(5“9)2. (115)

If we disregard the region of 0, 0<0<27, the field 0 is a free field suggesting that Z, = 1.

3.3. Renormalization group equations

The beta function B(g) of the coupling constant g is defined by
9
BE) = 13, (116)

where the bare quantities are fixed in calculating the derivative. Since 0g,/0u = 0, the beta
function is derived as
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B(g) = ﬁ = g — (N-2)g*+0(g%), (117)

for d =2 + ¢. The beta function is shown in Figure 9 as a function of g. We mention here that the
coefficient N — 2 of ¢* term is related with the Casimir invariant of the symmetry group O(N)
[34, 49].

In the case of N =2 and d =2, f(g) vanishes. This case corresponds to the classical XY model as
mentioned above and there may be a Kosterlitz-Thouless transition. The Kosterlitz-Thouless
transition point cannot be obtained by a perturbation expansion in g.

In two dimensions d = 2, f(g) shows asymptotic freedom for N > 2. The coupling constant g
approaches zero in high-energy limit y — <o in a similar way to QCD. For N =1, g increases as
t — o0 as in the case of QED. When d > 2, there is a fixed point g.:

(118)

for N > 2. There is a phase transition for N>2 and 4 > 2.

Let us consider the n-point function T (k;, g, u, H). The bare and renormalized n-point
functions are introduced similarly and they are related by the renormalization constant Z

Wk, g u H) = 2Ty (k, g, u H). (119)

From the condition that the bare function FE;") is independent of y, ydl"g’) /du =0, the
renormalization group equation is followed

9,,%80 n 1 Lo (d— ARG _
Han s = 500) + (506 + 180 — =2 JH |1k g H) =0, (120)

where we defined

N=1
B(a) B(a) N=1,2
N=2
g 9, g
N>2
N>2

(@ (b)

Figure 9. The beta function (g) as a function of g for d =2 (a) and d > 2 (b). There is a fixed point for N>2 and d > 2. f(g) is
negative for d =2 and N > 2, which indicates that the model exhibits an asymptotic freedom.
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0 0
ag) = yalnz = B(Q) a—gln Z. (121)
From Eq. (113), {(g) is given by
Ug) = (N-1)g+0(8?). (122)

Let us define the correlation length & = &£(g, ). Because the correlation length near the transi-
tion point will not depend on the energy scale, it should satisfy

d d d
#@E(g/u) = (H@W(g)%)é(g/ p) =0. (123)

We adopt the form & = p~1f(g) for a function f(g), so that we have

b LS = f(9) (124)
This indicates
f(8)=Cexp ’ Ldg’ , (125)
J . B(&)

where C and g- are constants. In two dimensions (e = 0), the beta function in Eq. (117) gives

&= Cu'exp (ﬁ (; - gl>) . (126)

When N > 2, £ diverges as ¢ — 0, namely, the mass proportional to &1 vanishes in this limit.
When d > 2 (¢ > 0), there is a finite-fixed point g.. We approximate (g) near g = g. as

B(8) =a(g —g.) (127)

witha <0, & is

E= ulexp <%ln \%J) (128)

Near the critical point g= g, £ is approximated as
£l xulg—g V. (129)

This means that £ — o as ¢ — g.. We define the exponent v by
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&= lg—g.J" (130)
then we have
1
S 131
' B (8.) 0

Since §'(g,) = ¢ — 2(N — 2)g, = —¢, this gives

%:e-+og%::d—z+ogﬁ. (132)

Including the higher-order terms, v is given as

(@-27 (@-2

N2 Z(N_2)+O(e4). (133)

LI
v

3.4. 2D quantum gravity

A similar renormalization group equation is derived for the two-dimensional quantum grav-
ity. The space structure is written by the metric tensor g, and the curvature R. The quantum

gravity Lagrangian is
1
L= ~16nC VSR (134)

where g is the determinant of the matrix (g,,) and G is the coupling constant. The beta function
for G was calculated as [78-81]

B(G) = €G —bG?, (135)

for d = 2 + ¢ with a constant b. This has the same structure as that for the non-linear sigma
model.

4. Sine-Gordon model

4.1. Lagrangian

The two-dimensional sine-Gordon model has attracted a lot of attention [43-49, 82-91]. The
Lagrangian of the sine-Gordon model is given by

1
L= — 0,0+ 2 coso, (136)
2ty to

where ¢ is a real scalar field, and t, and @, are bare coupling constants. We also use the
Euclidean notation in this section. The second term is the potential energy of the scalar field.
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We adopt that f and a are positive. The renormalized coupling constants are denoted as t and
a, respectively. The dimensions of t and « are [t] = > and [a] = p?. The scalar field ¢ is
dimensionless in this representation. The renormalization constants Z; and Z, are defined as
follows

t) = tyz_dZ,, ay = a‘uzza. (137)

Here, the energy scale u is introduced so that t and a are dimensionless. The Lagrangian is
written as

cos ¢. (138)

We can introduce the renormalized field ¢, = \/Zs¢; where Z is the renormalization con-
stant. Then the Lagrangian is

-2
M Z 2
L= 247, (0u)” +

‘az
H tCZ[t % cos . (139)

where ¢ denotes the renormalized field ¢r.

4.2. Renormalization of «

We investigate the renormalization group procedure for the sine-Gordon model on the basis of
the dimensional regularization method. First consider the renormalization of the potential
term. The lowest-order contributions are given by diagrams with tadpole contributions. We

use the expansion cos¢ =1—1¢* +L¢* — -+ . Then the corrections to the cosine term are
evaluated as follows. The constant term is renormalized as

2
1= 3@+ @) =~ =1- 3+ 3 (509) - == en(-507). a0
Similarly, the ¢ is renormalized as
1 1 1 2 - _1 g
3 R - 1530+ e —e (3@ (<300) a9
Hence the aZ, cos (\/Zy¢) is renormalized to
aZyexp (~%Z¢<¢2>) cos ( Zq;,cp) =aZ, <1 - %Z(p(qﬁ) + ) cos ( Z¢¢>. (142)

The expectation value (¢?) is regularized as
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k1
2n)* I + m2 e 2n)’

Zo(9*) =t Z,J (143)

where d = 2 + ¢ and we included a mass 1, to avoid the infrared divergence and Z=1 to this
order. The constant Z, is determined to cancel the divergence:

t1 Qy
From the equations 11 0fy/0u = 0 and pdarg/Ou = 0, we obtain
ot 0InZ;
ya—y = (d-2)t—tu o (145)
O dInZ,
Ha_ﬂ = 2a— au 3 (146)
The beta function for a reads
9 1 Qy
Q)= p—= 20+ taz—", 147
Bl@) = py 2 2n)? (147)

where we set u0t/0u = (d — 2)t with Z; = 1 up to the lowest order of a. The function («) has
azeroatt=t. = 8m.

4.3. Renormalization of the two-point function

Let us turn to the renormalization of the coupling constant ¢. The renormalization of ¢ comes
from the correction to p term. The lowest-order two-point function is

FE;Z)(O)(P) = —p= t‘uz*dth . (148)

The diagrams that contribute to the two-point function are shown in Figure 10 [88]. These
diagrams are obtained by expanding the cosine function as cos¢ = 1 — (1/2)¢ % + ---. First, we
consider the Green'’s function,

eip-x

Q
= t‘uz’dZt d

e 2 Ko(molx|),  (149)
0

d
Golx) = Zy<9(x)(0)> = 112, (ZS””

where K is the zeroth modified Bessel function and my is introduced to avoid the infrared
singularity. Because sinh I — I = I°/3! + -.., the diagrams in Figure 10 are summed up to give
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@ + @ + .
Figure 10. Diagrams that contribute to the two-point function.

X(p) = Jddx[eip‘x(sinh I—1)—(cosh I—1)], (150)

Where I = Go(x). Since sinh I — I=¢!/2 and cosh [=e! /2, the diagrams in Figure 10 lead to

dy N2 ,
Iy (p) = _% <a¢Zfza) J d'x(eP — 1)e, (151)

We use the expansion e?* =1 +ip - x — (1/2)(p - x)? 4 -+, and keep the p, term. We denote the
derivation of  from the fixed point {. = 8w as v:

t
L 14, 152
g Ltv (152)

for d = 2. Using the asymptotic formula Ko(x)™ — y — In(x/2) for small x, we obtain

1 fap\* e [ 1
2 (p) = 5 (t_gt) p*(com?)~? ZVQdJ dax™H1 5y

0 (x2 +a2)

Y (TS Z(C )20, L+ o) (153)
gl \iz, ) (M) S

L 1 21 5 221
= _tyzdetp HIH 2 (comg) E—i—O(v)

where ¢y is a constant and @ = 1/ is a small cut-off. The divergence of @ was absorbed by Z,.
Now the two-point function up to this order is

1 2 ld+2(

1 51
1"532) (p) = = pz _3—2a L com?) 22 (154)

The renormalized two-point function is FE? = Z¢F§32>. This indicates that
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Zy _ 1 5 40 221
7= 1+ pyH (comy) . (155)
Then, we can choose Zg =1 and
Zi=1- loﬁy‘”z(comz)*21 (156)
! 32 ¢

Z/Zy can be regarded as the renormalization constant of t up to the order of a2, and thus we
do not need the renormalization constant Z,, of the field ¢. This means that we can adopt the

bare coupling constant as ty = tu?>~?Z, with Z, = Z,/ Zp.

The renormalization function of ¢ is obtained from the equation p1dt/du = 0 for tg = tu>~4Z;:

— ﬁ_ _ l 2—21 d+2 6_0( 2 d+2
BO) = wgs = (=Dt g o)™ 7 (2048 2+ (0 + D22
(157)
= (d-2)t+ 31—2;1‘”2(601113)721‘042

Because the finite part of Go(x — 0) is given by Go(x — 0) = —(1/2m)In(e’mg/2u), we perform
the finite renormalization of a as @ — acom3a® = acom3u~2. This results in

B(t) = (d—2)t+ ;—ztaz‘ (158)

As a result, we obtain a set of renormalization group equations for the sine-Gordon model

Bla) = yg%= fa(2f$t), (159)
B = g = (-2t (160)

Since the equation for @ is homogeneous in a, we can change the scale of a arbitrarily. Thus, the
numerical coefficient of ta” in f(t) is not important.

4.4. Renormalization group flow

Let us investigate the renormalization group flow in two dimensions. This set of equations
reduces to that of the Kosterlitz-Thouless (K-T) transition. We write t = 87(1 + v), and set
x = 2v and y = a/4. Then, the equations are
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ox
[Ja =y, (161)
o _

These are the equations of K-T transition. We have
x* — y* = const. (163)

The renormalization flow is shown in Figure 11. The Kosterlitz-Thouless transition is a beau-
tiful transition that occurs in two dimensions. It was proposed that the transition was associ-
ated with the unbinding of vortices, that is, the K-T transition is a transition of the binding-
unbinding transition of vortices.

The Kondo problem is also described by the same equations. In the s-d model, we put
x=mpJ. =2, y=2|.[r. (164)

where ], and ], (= ], = J,) are exchange coupling constants between the conduction electrons
and the localized spin, and f is the inverse temperature. 7 is a small cut-off with t1/u. The
scaling equations for the s-d model are [53, 57]

o 1,
oy 1
T3, = TR (166)

The Kondo effect occurs as a crossover from weakly correlated region to strongly correlated
region. A crossover from weakly to strongly coupled systems is a universal and ubiquitous

Figure 11. The renormalization group flow for the sine-Gordon model as y — .
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phenomenon in the world. There appears a universal logarithmic anomaly as a result of the
Crossover.

5. Scalar quantum electrodynamics

We have examined the ¢* theory and showed that there is a phase transition. This is a second-
order transition. What will happen when a scalar field couples with the electromagnetic field?
This issue concerns the theory of a complex scalar field ¢ interacting with the electromagnetic

field A,, called the scalar quantum electrodynamics (QED). The Lagrangian is

1 1 1
L= 31D~ 3806P7 — F, (167)
where g is the coupling constant and F,, = 0,A, — 0,A. D, is the covariant derivative given as
D, = 0, —ieA, (168)

with the charge e. The scalar field ¢ is an N component complex scalar field such as
¢ = (¢, -+, ¢y)- This model is actually a model of a superconductor. The renormalization
group analysis shows that this model exhibits a first-order transition near four dimensions
d =4 — ¢ when 2N < 365 [92-96]. Coleman and Weinberg first considered the scalar QED
model in the case N = 1. They called this transition the dimensional transmutation. The result
based on the e-expansion predicts that a superconducting transition in a magnetic field is a
first-order transition. This transition may be related to a first-order transition in a high mag-
netic field [97].

The bare and renormalized fields and coupling constants are defined as

90 = \/Zs9, (169)

Z _
80=S28u*" (170)
¢
Ze
ey = e, 171
v v (171)
AyO =V ZAA/,U (172)

where ¢, g, e and A, are renormalized quantities. We have four renormalization constants.
Thanks to the Ward identity

Ze= Za (173)

three renormalization constants should be determined. We show the results:
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3

Zy=1+ ﬂez, (174)
2N

Za=1- 48712(‘32’ (175)

2N+8 31,

Zo=1+——5—9+-——¢" 17
s =1 gz g+87‘(25ge (176)
The renormalization group equations are given by
2
%  » N 4
yay = —ce +24n28' (177)
og N+4, 3 , 3,
== — — —e ——eg. 17
”ay CF g2 & Tg® ~ 3% (178)
The fixed point is given by
24
e, = ﬁnze, (179)
2m2 18 (n* — 360n — 2160)"/?
8= ‘N1z 1 ﬁi ” , (180)

where 1 = 2N. The square root 6 = (n? — 360n — 2160)1/ % is real when 2N > 365. This indicates
that the zero of a set of beta functions exists when N is sufficiently large as long as 2N > 365.
Hence there is no continuous transition when N is small, 2N <365, and the phase transition is
first-order.

There are also calculations up to two-loop-order for scalar QED [98, 99]. This model is also
closely related with the phase transition from a smectic-A to a nematic liquid crystal for which
a second-order transition was reported [100]. When N is large as far as 2N > 365, the transition
becomes second-order. Does the renormalization group result for the scalar QED contradict
with second-order transition in superconductors? This subject has not been solved yet. A
possibility of second-order transition was investigated in three dimensions by using the
renormalization group theory [101]. An extra parameter ¢ was introduced in [101] to impose a
relation between the external momentum p and the momentum g of the gauge field as g = p/c.
It was shown that when ¢ > 5.7, we have a second-order transition. We do not think that it is
clear whether the introduction of c¢ is justified or not.

6. Summary

We presented the renormalization group procedure for several important models in field
theory on the basis of the dimensional regularization method. The dimensional method is very
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useful and the divergence is separated from an integral without ambiguity. We invested three
fundamental models in field theory: ¢4 theory, non-linear sigma model and sine-Gordon
model. These models are often regarded as an effective model in understanding physical
phenomena. The renormalization group equations were derived in a standard way by regular-
izing the ultraviolet divergence. The renormalization group theory is useful in the study of
various quantum systems.

The renormalization means that the divergences, appearing in the evaluation of physical
quantities, are removed by introducing the finite number of renormalization constants. If we
need infinite number of constants to cancel the divergences for some model, that model is
called unrenormalizable. There are many renormalizeable field theoretic models. We consid-
ered three typical models among them. The idea of renormalization group theory arises
naturally from renormalization. The dependence of physical quantities on the renormalization
energy scale easily leads us to the idea of renormalization group.
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