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Abstract

We discuss the renormalization group approach to fundamental field theoretic models
in low dimensions. We consider the models that are universal and frequently appear in
physics, both in high-energy physics and condensed matter physics. They are the non-
linear sigma model, the φ4 model and the sine-Gordon model. We use the dimensional
regularization method to regularize the divergence and derive renormalization group
equations called the beta functions. The dimensional method is described in detail.
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1. Introduction

The renormalization group is a fundamental and powerful tool to investigate the property of
quantum systems [1–15]. The physics of a many-body system is sometimes captured by the
analysis of an effective field theory model [16–19]. Typically, effective field theory models are
the φ4 model, the non-linear sigma model and the sine-Gordon model. Each of these models
represents universality as a representative of a universal class.

The φ4 model is the model of a phase transition, which is often referred to as the Ginzburg-
Landau model. The renormalization of the φ4 model gives a prototype of renormalization
group procedures in field theory [20–24].

The non-linear sigma model appears in various fields of physics [15, 25–27] and is the effective
model of Quantum chromodynamics (QCD) [28] and also that of magnets (ferromagnetic and
anti-ferromagnetic materials) [29–32]. This model exhibits an important property called the
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asymptotic freedom. The non-linear sigma model is generalized to a model with fields that
take values in a compact Lie group G [33–42]. This is called the chiral model.

The sine-Gordon model also has universality [43–49]. The two-dimensional (2D) sine-Gordon
model describes the Kosterlitz-Thouless transition of the 2D classical XY model [50, 51]. The
2D sine-Gordon model is mapped to the Coulomb gas model where particles interact with
each other through a logarithmic interaction. The Kondo problem [52, 53] also belongs to the
same universality class where the scaling equations are just given by those for the 2D sine-
Gordon model, i.e. the equations for the Kosterlitz-Thouless transition [53–57]. The one-
dimensional Hubbard model is also mapped onto the 2D sine-Gordon model on the basis of a
bosonization method [58, 59]. The Hubbard model is an important model of strongly corre-
lated electrons [60–65]. The Nambu-Goldstone (NG) modes in a multi-gap superconductor
become massive due to the cosine potential, and thus the dynamical property of the NG mode
can be understood by using the sine-Gordon model [66–71]. The sine-Gordon model will play
an important role in layered high-temperature superconductors because the Josephson plasma
oscillation is analysed on the basis of this model [72–75].

In this paper, we discuss the renormalization group theory for the φ4 theory, the non-linear
sigma model and the sine-Gordon model. We use the dimensional regularization procedure to
regularize the divergence [76].

2. φ4 model

2.1. Lagrangian

The φ4 model is given by the Lagrangian

L ¼ 1
2
ð∂μφÞ2 $

1
2
m2φ2 $ g

4!
φ4, ð1Þ

where φ is a scalar field and g is the coupling constant. In the unit of the momentum μ, the
dimension of L is given by d, where d is the dimension of the space-time: ½L& ¼ μd. The
dimension of the field φ is ðd$ 2Þ=2: ½φ& ¼ μðd$2Þ=2. Because gφ4 has the dimension d, the
dimension of g is given by 4 – d: [g] = μ4 – d. Let us adopt that φ has N components as φ = (φ1,
φ2, …, φN). The interaction term φ4 is defined as

φ4 ¼
XN

i¼1
φ2
i

! "2
: ð2Þ

The Green’s function is defined as

Giðx$ yÞ ¼ $i〈0jTφiðxÞφiðyÞj0〉, ð3Þ

where T is the time-ordering operator and |0〉 is the ground state. The Fourier transform of the
Green’s function is
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GiðpÞ ¼
ð
d dxeip$xGiðxÞ: ð4Þ

In the non-interacting case with g = 0, the Green’s function is given by

Gð0Þ
i ðpÞ ¼ 1

p2 %m2 , ð5Þ

where p2 ¼ ðp0Þ
2 % p!

2
for p ¼ ðp0, p

!Þ.

Let us consider the correction to the Green’s function by means of the perturbation theory in
terms of the interaction term gφ4. A diagram that appears in perturbative expansion contains,
in general, L loops, I internal lines and V vertices. They are related by

L ¼ I % V þ 1: ð6Þ

There are L degrees of freedom for momentum integration. The degree of divergence D is
given by

D ¼ d $ L% 2I: ð7Þ

We have a logarithmic divergence whenD = 0. Let E be the number of external lines. We obtain

4V ¼ Eþ 2I: ð8Þ

Then, the degree of divergence is written as

D ¼ d $ L% 2I ¼ dþ ðd% 4ÞV þ 1% d
2

" #
E: ð9Þ

In four dimensions d = 4, the degree of divergence D is independent of the numbers of internal
lines and vertices

D ¼ 4% E ð10Þ

When the diagram has four external lines, E = 4, we obtainD = 0 which indicates that we have a
logarithmic (zero-order) divergence. This divergence can be renormalized.

Let us consider the Lagrangian with bare quantities

L ¼ 1
2
ð∂μφ0Þ

2 % 1
2
m2

0φ
2
0 %

1
4!
g0φ

4
0, ð11Þ

where φ0 denotes the bare field, g0 denotes the bare coupling constant andm0 is the bare mass. We
introduce the renormalized field φ, the renormalized coupling constant g and the renormalized
mass m. They are defined by
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φ0 ¼
ffiffiffiffiffiffi
Zφ

q
φ, ð12Þ

g0 ¼ Zgg, ð13Þ

m2
0 ¼ m2Z2=Zφ, ð14Þ

where Zφ, Zg and Z2 are renormalization constants. When we write Zg as

Zg ¼ Z4=Z2
φ, ð15Þ

we have g0Z
2
φ ¼ gZ4. Then, the Lagrangian is written by means of renormalized field and

constants

L ¼ 1
2
Zφð∂μφÞ2 $

1
2
m2Z2φ2 $ 1

4!
gZ4φ4: ð16Þ

2.2. Regularization of divergences

2.2.1. Two-point function

We use the perturbation theory in terms of the interaction gφ4. For a multi-component scalar
field theory, it is convenient to express the interaction φ4 as in Figure 1, where the dashed line
indicates the coupling g. We first examine the massless case with m ! 0. Let us consider the
renormalization of the two-point function Γð2ÞðpÞ ¼ iGðpÞ$1. The contributions to Γ(2) are
shown in Figure 1. The first term indicates p2Zφ and the contribution in the second term is
represented by the integral

I ¼
ð

d dq
ð2πÞd

1
q2 $m2 : ð17Þ

Using the Euclidean co-ordinate q4 = –iq0, this integral is evaluated as

I ¼ $i
Ωd

ð2πÞd
md$2 1

2
Γ

d
2

# $
Γ 1$ d

2

# $
, ð18Þ

whereΩd is the solid angle in d dimensions. For d > 2, the integral I vanishes in the limitm! 0.
Thus, the mass remains zero in the massless case. We do not consider mass renormalization in
the massless case. Let us examine the third term in Figure 2.

There are 42 % 2N þ 42 % 22 ¼ 32N þ 64 ways to connect lines for an N-component scalar field to
form the third diagram in Figure 2. This is seen by noticing that this diagram is represented as
a sum of two terms in Figure 3.

The number of ways to connect lines is 32N for (a) and 64 for (b). Then we have the factor from
these contributions as
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1
4!
g

! "2

ð32N þ 64Þ ¼ N þ 2
18

g2: ð19Þ

The momentum integral of this term is given as

JðkÞ :¼
ð

d dp
ð2πÞd

ddq
ð2πÞd

1
p2q2ðpþ qþ kÞ2

: ð20Þ

The integral J exhibits a divergence in four dimensions d = 4. We separate the divergence as 1/E
by adopting d = 4 – E. The divergent part is regularized as

J ¼ % 1
8π2

! "2 1
8E

þ regular terms ð21Þ

To obtain this, we first perform the integral with respect to q by using

=

φi

φi

φj

φj

φi

φi

φj

φj

Figure 1. φ4 interaction with the coupling constant g.

++

Figure 2. The contributions to the two-point function Γð2ÞðpÞ up to the order of g2.

(a () b)

Figure 3. The third term in Figure 2 is a sum of two configurations (a) and (b).
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1
q2ðpþ qþ kÞ2

¼
ð1

0
dx

1
½q2xþ ðpþ qþ kÞ2ð1& xÞ'2

: ð22Þ

For q0 = q + (1 – x)(p + k), we have
ð

ddq
ð2πÞd

1
q2ðpþ qþ kÞ2

¼
ð

ddq0

ð2πÞd

ð1

0
dx

1
½q0 2 þ xð1& xÞðpþ kÞ2'2

¼ Ωd

ð2πÞd

ð1

0
dx
"
xð1& xÞ

#d
2&2 "

ðpþ kÞ2
#d

2&2
ð∞

0
drrd&1 1

ðr2 þ 1Þ2

¼ Ωd

ð2πÞd
1
2
Γ

d
2

$ %
Γ 2& d

2

$ %
Γ

d
2
& 1

$ %2 1
Γðd& 2Þ

"
ðpþ kÞ2

#d
2&2

:

ð23Þ

Here, the following parameter formula was used

1
AnBm ¼ ΓðnþmÞ

ΓðnÞΓðmÞ

ð1

0
dx

xn&1ð1& xÞm&1

½xAþ ð1& xÞB'nþm : ð24Þ

Then, we obtain
ð

ddp
ð2πÞd

1

p2
"
ðpþ kÞ2

#2&d=2 ¼
Γð3& d=2Þ
Γð2& d=2Þ

ð1

0
dxð1& xÞ1&d=2

ð
ddp0

ð2πÞd
1

½p02 þ xð1& xÞk2'3&d=2

¼ Ωd

ð2πÞd
Γð3& d=2Þ

#

Γð2& d=2Þ
B d& 2,

d
2
& 1

$ %
1
2
B

d
2
, 3& d

$ %
ðk2Þd&3:

ð25Þ

Here B(p, q) = Γ(p)Γ(q)/Γ(p+q). We use the formula

ΓðEÞ ¼ 1
E
þ finite terms ð26Þ

for E ! 0. This results in

ð
ddp
ð2πÞd

ddq
ð2πÞd

1
p2q2ðpþ qþ kÞ2

¼ & 1
8π2

$ %2 1
8E

k2 þ regular terms ð27Þ

Therefore, the two-point function is evaluated as

Γð2ÞðpÞ ¼ Zφp2 þ
1
8E

N þ 2
18

g
8π2

" #2
p2, ð28Þ

up to the order of O(g2). In order to cancel the divergence, we choose Zφ as

Zφ ¼ 1& 1
8E

N þ 2
18

1
8π2

$ %2

g2: ð29Þ
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2.2.2. Four-point function

Let us turn to the renormalization of the interaction term g4. The perturbative expansion of the

four-point function is shown in Figure 4. The diagram (b) in Figure 4, denoted as ΔΓð4Þb , is given
by for N = 1:

ΔΓð4Þ
b ðpÞ ¼ g2

1
2

ð
ddq
ð2πÞd

1

ðq2 $m2Þ
"
ððpþ qÞ2 $m2

# : ð30Þ

As in the calculation of the two-point function, this is regularized as

ΔΓð4Þ
b ðpÞ ¼ i

1
8π2

1
2E

g2, ð31Þ

for d = 4 – E. Let us evaluate the multiplicity of this contribution for N > 1. For N = 1, we have a
factor 42322/4!4!=1/2 as shown in Eq. (30). Figure 4c and d gives the same contribution as in
Eq. (31), giving the factor 3/2. For N > 1, there is a summation with respect to the components
of φ. We have the multiplicity factor for the diagram in Figure 4b as

1
4!

$ %2

22222N ¼ N
18

: ð32Þ

Since we obtain the same factor for diagrams in Figure 4c and d, we have N/6 in total. We
subtract 1/6 for N = 1 from 3/2 to have 8/6. Finally, the multiplicity factor is given by (N + 8)/6.
Then, the four-point function is regularized as

ΔΓð4ÞðpÞ ¼ i
1

8π2
N þ 8

6
1
E
g2: ð33Þ

Because g has the dimension 4 – d such as [g] = μ4–d, we write g as gμ4–d so that g is the
dimensionless coupling constant. Now, we have

Γð4ÞðpÞ ¼ $igZ4μE þ i
1

8π2
N þ 8

6
1
E
g2: ð34Þ

for d = 4 – Ewhere we neglect μE in the second term. The renormalization constant is determined as

= + + +

(a) (b) (c) (d)

Figure 4. Diagrams for four-point function.
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Z4 ¼ 1þN þ 8
6E

1
8π2 g: ð35Þ

As a result, the four-point function Γ(4) becomes finite.

2.3. Beta function β(g)

The bare coupling constant is written as g0 ¼ Zggμ4%d ¼ ðZ4=Z2
φÞgμ4%d. Since g0 is independent

of the energy scale, μ, we have μ∂g0=∂μ ¼ 0. This results in

μ
∂g
∂μ

¼ ðd% 4Þg% gμ
∂g
∂μ

∂lnZg

∂g
, ð36Þ

where Zg ¼ Z4=Z2
φ. We define the beta function for g as

βðgÞ ¼ μ
∂g
∂μ

, ð37Þ

where the derivative is evaluated under the condition that the bare g0 is fixed. Because

Zg ¼ 1þN þ 8
6E

1
8π2 gþOðg2Þ, ð38Þ

the beta function is given as

βðgÞ ¼ %Eg

1þ g ∂ lnZg
∂g

¼ %EgþN þ 8
6

1
8π2 g

2 þOðg3Þ: ð39Þ

β(g) up to the order of g2 is shown as a function of g for d < 4 in Figure 5. For d < 4, there is a
non-trivial fixed point at

gc ¼ E
48π2

N þ 8
: ð40Þ

For d = 4, we have only a trivial fixed point at g = 0.

For d = 4 and N = 1, the beta function is given by

βðgÞ ¼ 3
16π2 g

2 þ ⋯: ð41Þ

In this case, the β(g) has been calculated up to the fifth order of g [77]:

βðgÞ ¼ 3
16π2 g

2 % 17
3

1
ð16π2Þ2

g3 þ 145
8

þ 12ζð3Þ
! "

1
ð16π2Þ3

g4 þ A5
1

ð16π2Þ4
g5, ð42Þ

where
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A5 ¼ " 3499
48

þ 78ζð3Þ " 18ζð4Þ þ 120ζð5Þ
! "

, ð43Þ

and ζ(n) is the Riemann zeta function. The renormalization constant Zg and the beta function
β(g) are obtained as a power series of g. We express Zg as

Zg ¼ 1þN þ 8
6E

gþ b1
E2

þ b2
E

! "
g2 þ c1

E3
þ c2

E2
þ c3

E

# $
g3 þ⋯, ð44Þ

and then β(g) is written as

βðgÞ ¼ "Egþ Eg2
N þ 8
6E

þ 2
b1
E2

þ b2
E

! "
gþ ðN þ 8Þ2

36E2
gþ⋯

" #

¼ "EgþN þ 8
6

g2 " 9N þ 42
36

g3 þ ⋯
ð45Þ

Here, the factor 1/8π2 is included in g. The terms of order 1/E2 are cancelled because of

b1 ¼ "ðN þ 8Þ2

72
: ð46Þ

In general, the nth order term in β(g) is given by n!gn. The function β(g) is expected to have the
form

βðgÞ ¼ "EgþN þ 8
6

g2 þ ⋯þ n!annbcgn þ ⋯, ð47Þ

where a, b and c are constants.

Figure 5. The beta function of g for d < 4. There is a finite fixed point gc.
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2.4. n-point function and anomalous dimension

Let us consider the n-point function Γ(n). The bare and renormalized n-point functions are

denoted as ΓðnÞ
B ðpi, g0, m0,μÞ and ΓðnÞ

R ðpi, g, m,μÞ, respectively, where pi (i = 1,…, n) indicate

momenta. The energy scale μ indicates the renormalization point. ΓðnÞ
R has the mass dimension

n + d – nd/2: ½ΓðnÞ
R $ ¼ μnþd'nd=2. These quantities are related by the renormalization constant Zφ as

ΓðnÞ
R ðpi, g, m

2,μÞ ¼ Zn=2
φ ΓðnÞ

B ðpi, g0, m
2
0,μÞ: ð48Þ

Here, we consider the massless case and omit the mass. Because the bare quantity ΓðnÞ
B is

independent of μ, we have

d
dμ

ΓðnÞ
B ¼ 0: ð49Þ

This leads to

μ
d
dμ

!
Z'n=2
φ ΓðnÞ

R

"
¼ 0: ð50Þ

Then we obtain the equation for ΓðnÞ
R :

μ
∂
∂μ

þ μ
∂g
∂μ

∂
∂g

' n
2
γφ

# $
ΓðnÞ
R ðpi, g,μÞ ¼ 0; ð51Þ

where γφ is defined as

γφ ¼ μ
∂
∂μ

lnZφ: ð52Þ

A general solution of the renormalization equation is written as

ΓðnÞ
R ðpi, g,μÞ ¼ exp

n
2

ðg

g1

γφðg0Þ
βðg0Þ dg0

0

B@

1

CAf ðnÞðpi, g,μÞ, ð53Þ

where

f ðnÞðpi, g,μÞ ¼ F pi, lnμ'
ðg

g1

1
βðg0Þ dg

0

 !

, ð54Þ

for a function F and a constant g1. We suppose that β(g) has a zero at g = gc. Near the fixed point

gc, by approximating γφðg0Þ by γφðgcÞ, Γ
ðnÞ
R is expressed as
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ΓðnÞR ðpi, gc,μÞ ¼ μ
n
2γφðgcÞf ðnÞðpi, gc,μÞ: ð55Þ

In general, we define γ(g) as

γðgÞlnμ ¼
ðg

g1

γφðg0Þ
βðg0Þ

dg0, ð56Þ

Then, we obtain

ΓðnÞ
R ðpi, g,μÞ ¼ μ

n
2γðgÞf ðnÞðpi, g,μÞ: ð57Þ

Under a scaling pi ! ρpi, Γ
ðnÞ
R is expected to behave as

ΓðnÞ
R ðρpi, gc, μÞ ¼ ρnþd%nd=2ΓðnÞ

R ðpi, gc, μ=ρÞ, ð58Þ

because ΓðnÞ
R has the mass dimension nþ d% nd=2. In fact, Figure 4b gives a contribution being

proportional to

g2ðμ4%dÞ2
ð
ddq

1
q2ðρpþ qÞ2

¼ g2ðμ4%dÞ2ρd%4
ð
ddq

1
q2ðpþ qÞ2

¼ ρ4%dg2 μ
ρ

" #2ð4%dÞ
ð
ddq

1
q2ðpþ qÞ2

,
ð59Þ

after the scaling pi ! ρpi for n = 4. We employ Eq. (58) for n = 2

Γð2Þ
R ðρpi, gc, μÞ ¼ ρ2Γð2Þ

R ðpi, gc, μ=ρÞ ¼ ρ2 μ
ρ

" #γ
f ð2Þðpi, gc, μ=ρÞ

¼ ρ2%γμγf ð2Þðpi, gc, μ=ρÞ ¼ ρ2%γΓð2Þ
R ðpi, gc, μ=ρÞ:

ð60Þ

This indicates

Γð2ÞðpÞ ¼ p2%η ¼ p2%γ ¼ ðp2Þ1%γ=2: ð61Þ

Thus, the anomalous dimension η is given by η = γ. From the definition of γ(g) in Eq. (56), we
have

γφðgÞ ¼ γðgÞ þ βðgÞ ∂γðgÞ
∂g

ln μ: ð62Þ

At the fixed point g = gc, this leads to

η ¼ γ ¼ γðgcÞ ¼ γφðgcÞ: ð63Þ

The exponent η shows the fluctuation effect near the critical point.

The Green’s function GðpÞ ¼ Γð2ÞðpÞ%1 is given by

Renormalization Group Theory of Effective Field Theory Models in Low Dimensions
http://dx.doi.org/10.5772/intechopen.68214

107



GðpÞ ¼ 1
p2$η: ð64Þ

The Fourier transform of G(p) in d dimensions is evaluated as

GðrÞ ¼
ð

1
p2$η e

ip%rddp ¼ Ωd
1

rd$2þη
π

2Γð4$ η$ dÞ sin
"
ð4$ η$ dÞπ=2

# : ð65Þ

When 4 – η – d is small near four dimensions, G(r) is approximated as

GðrÞ ≈ Ωd
1

rd$2þη : ð66Þ

The definition of γφ in Eq. (52) results in

γφðgÞ ¼ μ
∂g
∂μ

∂
∂g

lnZφ ¼ βðgÞ ∂
∂g

lnZφ: ð67Þ

Up to the lowest order of g, γφ is given by

γφ ¼ $ 1
8E

N þ 1
9

1
ð8π2Þ2

g

 !

βðgÞ þ Oðg3Þ

¼ N þ 2
72

1
ð8π2Þ2

g2 þ Oðg3Þ:

ð68Þ

At the critical point g = gc, where

1
8π2 gc ¼

6∈
N þ 8

, ð69Þ

the anomalous dimension is given as

η ¼ γφðgcÞ ¼
N þ 2

2ðN þ 8Þ2
E2 þOðE3Þ: ð70Þ

For N = 1 and E = 1, we have η = 1/54.

2.5. Mass renormalization

Let us consider the massive case m 6¼ 0. This corresponds to the case with T > Tc in a phase
transition. The bare mass m0 m and renormalized mass m are related through the relation
m2 ¼ m2

0Zφ=Z2. The condition μ ∂m0=∂μ ¼ 0 leads to
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μ
∂lnm
∂μ

¼ μ
∂
∂μ

ln
Zφ

Z2
: ð71Þ

From Eq. (50), the equation for ΓðnÞ
R is

μ
∂
∂μ

þ βðgÞ ∂
∂g

% n
2
γφ þ μ

∂
∂μ

ln
Zφ

Z2

! "
&m2 ∂

∂m2

# $
ΓðnÞ
R ðpi, g, μ, m

2Þ ¼ 0: ð72Þ

We define the exponent ν by

1
ν
% 2 ¼ μ

∂
∂μ

ln
Z2

Zφ

! "
, ð73Þ

then

μ
∂
∂μ

þ βðgÞ ∂
∂g

% n
2
γφ % 1

ν
% 2

! "
m2 ∂

∂m2

# $
ΓðnÞ
R ðpi, g, μ, m

2Þ ¼ 0: ð74Þ

At the critical point g = gc, we obtain

μ
∂
∂μ

% n
2
η% ζm2 ∂

∂m2

# $
ΓðnÞ
R ðpi, gc, μ, m

2Þ ¼ 0, ð75Þ

where γφ = η and we set

ζ ¼ 1
ν
% 2: ð76Þ

At g = gc, Γ
ðnÞ
R has the form

ΓðnÞ
R ðpi, gc, μ, m

2Þ ¼ μ
n
2FðnÞðpi, μm

2=ζÞ: ð77Þ

because this satisfies Eq. (75).

In the scaling pi ! ρpi, we adopt

ΓðnÞ
R ðρpi, gc, μ, m

2Þ ¼ ρnþd%nd=2ΓðnÞ
R ðpi, gc, μ=ρ, m

2=ρ2Þ: ð78Þ

From Eq. (77), we have

ΓðnÞ
R ðki, gc, μ, m

2Þ ¼ ρnþd%nd=2%nη=2μ
n
2ηFðnÞ

%
ρ%1ki, ρ%1μðρ%2m2Þ1=ζ

&
, ð79Þ

where we put ρpi ¼ ki. We assume that F(n) depends only on ρ%1ki. We choose ρ as

ρ ¼ ðμm2=ζÞζ=ðζþ2Þ ¼ μ
m2

μ2

! "1=ðζþ2Þ

: ð80Þ

This satisfies ρ%1μðρ%2m2Þ1=ς ¼ 1 and results in
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ΓðnÞ
R ðki, gc, μ, m

2Þ ¼ μdþn
2ð2%d%ηÞ m2

μ2

! "{dþn
2ð2%d%ηÞ} 1

ζþ2

μ
n
2ηFðnÞ μ%1 m2

μ2

! "% 1
ζþ2

ki

 !

: ð81Þ

We take μ as a unit by setting μ = 1, so that ΓðnÞ
R is written as

ΓðnÞ
R ðki, gc, 1, m

2Þ ¼ m2ν dþn
2ð2%dþηÞf gFðnÞðkim%2νÞ, ð82Þ

because ςþ 2 ¼ 1=ν. We can define the correlation length ξ by

ðm2Þ%ν ¼ ξ: ð83Þ

The two-point function is written as

Γð2Þ
R ðk,m2Þ ¼ m2νð2%ηÞFð2Þðkm%2νÞ: ð84Þ

Now let us turn to the evaluation of ν. Since γφ ¼ μ ∂ lnZφ=∂μ, from Eq. (73) ν is given by

1
ν
¼ 2þ μ

∂
∂μ

ln
Z2

Zφ

! "
¼ 2þ βðgÞ ∂

∂g
lnZ2 % γφðgÞ: ð85Þ

The renormalization constant Z2 is determined from the corrections to the bare mass m0. The
one-loop correction, shown in Figure 6, is given by

Σðp2Þ ¼ i
N þ 2

6
g
ð

ddk
ð2πÞd

1
k2 %m2

0
, ð86Þ

where the multiplicity factor is (8 + 4N)/4!. This is regularized as

Σðp2Þ ¼ N þ 2
6

g
ð

ddk
ð2πÞd

1
k2E þm2

0
¼ %N þ 2

6
g

1
8π2 m

2
0
1
E
, ð87Þ

for d = 4–E. Therefore the renormalized mass is

= +

(a () b)

Figure 6. Corrections to the mass term. Multiplicity weights are 8 for (a) and 2N for (b).
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m2 ¼ m2
0 þ Σðp2Þ ¼ m2

0 1%N þ 2
6E

1
8π2 g

! "
ð88Þ

Z2 is determined to cancel the divergence in the form m2Z2/Zφ. The result is

Z2 ¼ 1þN þ 2
6E

1
8π2 g: ð89Þ

Then, we have

βðgÞ ∂
∂g

lnZ2 ¼ %N þ 2
6

1
8π2 gþOðg2Þ: ð90Þ

Eq. (85) is written as

1
ν

¼ 2%N þ 2
6

1
8π2 gc % η ¼ 2%N þ 2

N þ 8
EþOðE2Þ, ð91Þ

where we put g = gc and used η ¼ γφðgÞ ¼ ðN þ 2Þ=
#
2ðN þ 8Þ2

$
& E. Now the exponent ν is

ν ¼ 1
2

1þ N þ 2
2ðN þ 8Þ E

! "
þOðE2Þ: ð92Þ

In the mean-field approximation, ν = 1/2. This formula of ν contains the fluctuation effect near
the critical point. For N = 1 and E = 1, we have ν = 1/2 + 1/12 = 7/12.

3. Non-linear sigma model

3.1. Lagrangian

The Lagrangian of the non-linear sigma model is

L ¼ 1
2g

ð∂μφÞ2, ð93Þ

where φ is a real N-component field φ = (φ1,…,φN) with the constraint φ2 = 1. This model has
an O(N) invariance. The field φ is represented as

φ ¼ ðσ, π1, π2, ⋯, πN%1Þ ð94Þ

with the condition ο2 þ π2
1 þ⋯þ π2

N%1 ¼ 1. The fields πi (i = 1, …, N – 1) are regarded as
representing fluctuations. The Lagrangian is given by
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L ¼ 1
2g

fð∂μσÞ2 þ ð∂μπiÞ2g, ð95Þ

where summation is assumed for index i. In this Section we consider the Euclidean Lagrangian
from the beginning. Using the constraint σ2 þ π2

i ¼ 1, the Lagrangian is written in the form

L ¼ 1
2g

ð∂μπiÞ2 þ
1
2g

1
1% π2

i
ðπi∂μπiÞ2 ð96Þ

¼ 1
2g

ð∂μπiÞ2 þ
1
2g

ðπi∂μπiÞ2 þ ⋯ ð97Þ

The second term in the right-hand side indicates the interaction between πi fields. The diagram
for this interaction is shown in Figure 7.

Here, let us check the dimension of the field and coupling constant. Since ½L' ¼ μd, we obtain
½π' ¼ μ0 (dimensionless) and ½g' ¼ μ2%d. g0 and g are used to denote the bare coupling constant
and renormalized coupling constant, respectively. The bare and renormalized fields are indi-
cated by πBi and πRi, respectively. We define the renormalization constants Zg and Z by

g0 ¼ gμ2%dZg, ð98Þ

πBi ¼
ffiffiffiffiffi
Z

p
πRi ð99Þ

where g is the dimensionless coupling constant. Then, the Lagrangian is expressed in terms of
renormalized quantities:

L ¼ μd%2Z
2gZg

ð∂μπRiÞ2 þ
1
4
ð∂μπ2

RiÞ
2 þ ⋯

" #
: ð100Þ

In order to avoid the infrared divergence at d = 2, we add the Zeeman term to the Lagrangian
which is written as

p

− p+ q

p'

− p'− q

qµ − qµ

Figure 7. Lowest order interaction for πi.
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LZ ¼ HB

g0
σ ¼ HB

g0
1" Z

2
π2
Ri "

Z2

8
π4
Ri þ ⋯

! "
ð101Þ

¼ const: " HB
Z

2gZg
μd"2π2

Ri " HB
Z2

8gZg
μd"2ðπ2

RiÞ
2: ð102Þ

Here, HB is the bare magnetic field and the renormalized magnetic field H is defined as

H ¼
ffiffiffiffi
Z

p

Zg
HB ð103Þ

Then, the Zeeman term is given by

Lz ¼ const: "
ffiffiffiffi
Z

p

2g
Hμd"2π2

Ri "
Z

3
2

8g
Hμd"2ðπ2

RiÞ
2 þ ⋯: ð104Þ

3.2. Two-point function

The diagrams for the two-point function Γð2ÞðpÞ ¼ Gð2ÞðpÞ"1 are shown in Figure 8. The contri-
butions in Figure 8c and d come from the magnetic field. Figure 8b presents

Ib ¼
ð

ddk
ð2πÞd

ðkþ pÞ2

k2 þH
¼ ðp2 "HÞ

ð
ddk
ð2πÞd

1
k2 þH’

ð105Þ

where we used the formula in the dimensional regularization given as

ð
ddk ¼ 0: ð106Þ

Near two dimensions, d = 2 + E, the integral is regularized as

Ib ¼ ðp2 "HÞ Ωd

ð2πÞd
H

d
2"1Γ

d
2

! "
Γ 1" d

2

! "
¼ "ðp2 "HÞ Ωd

ð2πÞd
1
E
: ð107Þ

The H-term Ic in Figure 8c just cancels with –H in Ib. The contribution Id in Figure 8d has the
multiplicity 2 & 2 & ðN " 1Þ because (πi) has N – 1 components. Id is evaluated as

Ic ¼
1
8
& 4ðN " 1Þ

ð
ddk
ð2πÞd

1
k2 þH

¼ " Ωd

ð2πÞd
N " 1

2
1
E
: ð108Þ

As a result, up to the one-loop-order the two-point function is
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Γð2ÞðpÞ ¼ Z
Zgg

p2 þ
ffiffiffiffi
Z

p

g
H % 1

E
p2 þN % 1

2
H

" #
, ð109Þ

where the factor Ωd=ð2πÞd is included in g for simplicity. To remove the divergence, we choose

Z
Zg

¼ 1þ g
E
, ð110Þ

ffiffiffiffi
Z

p
¼ 1þN % 1

2E
g: ð111Þ

This set of equations indicates

Zg ¼ 1þN % 1
E

gþOðg2Þ, ð112Þ

Z ¼ 1 þ N % 1
E

gþOðg2Þ: ð113Þ

The case N = 2 is s special case, where we have Zg = 1. This will hold even when including
higher order corrections. For N = 2, we have one π field satisfying

σ2 þ π2 ¼ 1 ð114Þ

When we represent σ and π as σ = cos θ and π = sin θ, the Lagrangian is

L ¼ 1
2g

fð∂μσÞ2 þ ð∂μπÞ2g ¼ 1
2g

ð∂μθÞ2: ð115Þ

If we disregard the region of θ, 0 ≤θ ≤ 2π, the field θ is a free field suggesting that Zg = 1.

3.3. Renormalization group equations

The beta function β(g) of the coupling constant g is defined by

βðgÞ ¼ μ
∂g
∂μ

, ð116Þ

where the bare quantities are fixed in calculating the derivative. Since μ ∂ g0=∂μ ¼ 0, the beta
function is derived as

++ +

(a () b () c) (d)

HH

Figure 8. Diagrams for the two-point function. The diagrams (c) and (d) come from the Zeeman term.
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βðgÞ ¼ Eg
1þ g ∂

∂g lnZg
¼ Eg% ðN % 2Þg2 þOðg3Þ; ð117Þ

for d = 2 + E. The beta function is shown in Figure 9 as a function of g. We mention here that the
coefficient N – 2 of g2 term is related with the Casimir invariant of the symmetry group O(N)
[34, 49].

In the case of N = 2 and d = 2, β(g) vanishes. This case corresponds to the classical XY model as
mentioned above and there may be a Kosterlitz-Thouless transition. The Kosterlitz-Thouless
transition point cannot be obtained by a perturbation expansion in g.

In two dimensions d = 2, β(g) shows asymptotic freedom for N > 2. The coupling constant g
approaches zero in high-energy limit μ ! ∞ in a similar way to QCD. For N = 1, g increases as
μ ! ∞ as in the case of QED. When d > 2, there is a fixed point gc:

gc ¼
E

N % 2
, ð118Þ

for N > 2. There is a phase transition for N > 2 and d > 2.

Let us consider the n-point function ΓðnÞðki, g, μ, HÞ. The bare and renormalized n-point
functions are introduced similarly and they are related by the renormalization constant Z

ΓðnÞ
R ðki, g, μ, HÞ ¼ Zn=2ΓðnÞ

B ðki, g, μ, HÞ: ð119Þ

From the condition that the bare function ΓðnÞ
B is independent of μ, μ d ΓðnÞ

B =dμ ¼ 0, the
renormalization group equation is followed

μ
∂
∂μ

þ μ
∂g
∂μ

∂
∂g

% n
2
ζðgÞ þ 1

2
ζðgÞ þ 1

g
βðgÞ % ðd% 2Þ

! "
H

∂
∂H

# $
ΓðnÞ
R ðki, g, μ, HÞ ¼ 0, ð120Þ

where we defined

(a) (b)

Figure 9. The beta function β(g) as a function of g for d = 2 (a) and d > 2 (b). There is a fixed point for N > 2 and d > 2. β(g) is
negative for d = 2 and N > 2, which indicates that the model exhibits an asymptotic freedom.
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ζðgÞ ¼ μ
∂
∂μ

lnZ ¼ βðgÞ ∂
∂g

lnZ: ð121Þ

From Eq. (113), ζ(g) is given by

ζðgÞ ¼ ðN $ 1ÞgþOðg2Þ: ð122Þ

Let us define the correlation length ξ ¼ ξðg,μÞ. Because the correlation length near the transi-
tion point will not depend on the energy scale, it should satisfy

μ
d
dμ

ξðg,μÞ ¼ μ
∂
∂μ

þ βðgÞ ∂
∂g

! "
ξðg,μÞ ¼ 0: ð123Þ

We adopt the form ξ ¼ μ$1f ðgÞ for a function f(g), so that we have

βðgÞ df ðgÞ
dg

¼ f ðgÞ: ð124Þ

This indicates

f ðgÞ ¼ C exp
ðg

g&

1
βðg0Þ

dg0
 !

, ð125Þ

where C and g* are constants. In two dimensions (E = 0), the beta function in Eq. (117) gives

ξ ¼ Cμ$1exp
1

N $ 2
1
g
$ 1
g&

! "! "
: ð126Þ

When N > 2, ξ diverges as g ! 0, namely, the mass proportional to ξ$1 vanishes in this limit.
When d > 2 (E > 0), there is a finite-fixed point gc. We approximate β(g) near g = gc as

βðgÞ ≈ aðg$ gcÞ, ð127Þ

with a < 0, ξ is

ξ ¼ μ$1exp
1
a
ln

g$ gc
g& $ gc

$ %! "
: ð128Þ

Near the critical point g ≈ gc, ξ is approximated as

ξ$1 ≈ μ⌊g$ gc⌋
1=⌊a⌋: ð129Þ

This means that ξ ! ∞ as g ! gc. We define the exponent v by
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ξ!1 ≈ ⌊g! gc⌋
ν, ð130Þ

then we have

ν ¼ ! 1
β0ðgcÞ

: ð131Þ

Since β
0ðgcÞ ¼ E! 2ðN ! 2Þgc ¼ !E, this gives

1
ν
¼ E þ OðE2Þ ¼ d! 2þOðE2Þ: ð132Þ

Including the higher-order terms, ν is given as

1
ν
¼ d! 2þ ðd! 2Þ2

N ! 2
þ ðd! 2Þ3

2ðN ! 2Þ þOðE4Þ: ð133Þ

3.4. 2D quantum gravity

A similar renormalization group equation is derived for the two-dimensional quantum grav-
ity. The space structure is written by the metric tensor gμν and the curvature R. The quantum
gravity Lagrangian is

L ¼ ! 1
16πG

ffiffiffi
g

p
R ð134Þ

where g is the determinant of the matrix ðgμνÞ and G is the coupling constant. The beta function
for G was calculated as [78–81]

βðGÞ ¼ EG! bG2, ð135Þ

for d ¼ 2þ E with a constant b. This has the same structure as that for the non-linear sigma
model.

4. Sine-Gordon model

4.1. Lagrangian

The two-dimensional sine-Gordon model has attracted a lot of attention [43–49, 82–91]. The
Lagrangian of the sine-Gordon model is given by

L ¼ 1
2t0

ð∂μφÞ2 þ
α0

t0
cosφ, ð136Þ

where φ is a real scalar field, and t0 and α0 are bare coupling constants. We also use the
Euclidean notation in this section. The second term is the potential energy of the scalar field.
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We adopt that t and α are positive. The renormalized coupling constants are denoted as t and
α, respectively. The dimensions of t and α are ½t" ¼ μ2$d and ½α" ¼ μ2. The scalar field φ is
dimensionless in this representation. The renormalization constants Zt and Zα are defined as
follows

t0 ¼ tμ2$dZt, α0 ¼ αμ2Zα: ð137Þ

Here, the energy scale μ is introduced so that t and α are dimensionless. The Lagrangian is
written as

L ¼ μd$2

2tZt
ð∂μφÞ2 þ

μdαZα

tZt
cosφ: ð138Þ

We can introduce the renormalized field φB ¼
ffiffiffiffiffiffi
Zφ

p
φR where Zφ is the renormalization con-

stant. Then the Lagrangian is

L ¼
μd$2Zφ

2tZt
ð∂μφÞ2 þ

μdαZα

tZt
cosφ: ð139Þ

where φ denotes the renormalized field φR.

4.2. Renormalization of α

We investigate the renormalization group procedure for the sine-Gordon model on the basis of
the dimensional regularization method. First consider the renormalization of the potential
term. The lowest-order contributions are given by diagrams with tadpole contributions. We
use the expansion cosφ ¼ 1$ 1

2φ
2 þ 1

4!φ
4 $⋯ . Then the corrections to the cosine term are

evaluated as follows. The constant term is renormalized as

1$ 1
2
〈φ2〉þ 1

4!
〈φ4〉$ ⋯ ¼ 1$ 1

2
〈φ2〉þ 1

2
1
2
〈φ2〉

" #2

$ ⋯ ¼ exp $ 1
2
〈φ2〉

" #
: ð140Þ

Similarly, the φ2 is renormalized as

$ 1
2
φ2 þ 1

4!
6〈φ2〉φ2 $ 1

6!
15 ( 3〈φ2〉2φ2 þ ⋯ ¼ exp $ 1

2
〈φ2〉

" #
$ 1
2
φ2

" #
: ð141Þ

Hence the αZα cos ð
ffiffiffiffiffiffi
Zφ

p
φÞ is renormalized to

αZαexp $ 1
2
Zφ〈φ2〉

" #
cos

ffiffiffiffiffiffi
Zφ

q
φ

$ %
≈αZα 1$ 1

2
Zφ〈φ2〉þ⋯

" #
cos

ffiffiffiffiffiffi
Zφ

q
φ

$ %
: ð142Þ

The expectation value 〈φ2〉 is regularized as
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Zφ〈φ2〉 ¼ tμ2"d Zt

ð
ddk
ð2πÞd

1
k2 þm2

0
¼ " t

E
Ωd

ð2πÞd
, ð143Þ

where d ¼ 2þ E and we included a mass m0 to avoid the infrared divergence and Zt=1 to this
order. The constant Zα is determined to cancel the divergence:

Zα ¼ 1" t
2
1
E

Ωd

ð2πÞd
: ð144Þ

From the equations μ ∂t0=∂μ ¼ 0 and μ ∂α0=∂μ ¼ 0, we obtain

μ
∂t
∂μ

¼ ðd" 2Þt" tμ
∂ lnZt

∂μ
, ð145Þ

μ
∂α
∂μ

¼ "2α" αμ
∂ lnZα

∂μ
ð146Þ

The beta function for α reads

βðαÞ & μ
∂α
∂μ

¼ "2αþ tα
1
2

Ωd

ð2πÞd
, ð147Þ

where we set μ ∂ t=∂μ ¼ ðd" 2Þt with Zt ¼ 1 up to the lowest order of α. The function β(α) has
a zero at t ¼ tc ¼ 8π.

4.3. Renormalization of the two-point function

Let us turn to the renormalization of the coupling constant t. The renormalization of t comes
from the correction to p2 term. The lowest-order two-point function is

Γð2Þð0Þ
B ðpÞ ¼ 1

t0
p2 ¼ 1

tμ2"dZt
p2: ð148Þ

The diagrams that contribute to the two-point function are shown in Figure 10 [88]. These
diagrams are obtained by expanding the cosine function as cosφ ¼ 1" ð1=2Þφ 2 þ⋯. First, we
consider the Green’s function,

G0ðxÞ ¼ Zφ<φðxÞφð0Þ> ¼ tμ2"dZt

ð
ddp
ð2πÞd

p
eip'x

p2 þm2
0
¼ tμ2"dZt

Ωd

ð2πÞd
K0ðm0jxjÞ, ð149Þ

where K0 is the zeroth modified Bessel function and m0 is introduced to avoid the infrared
singularity. Because sinh I " I ¼ I3=3!þ⋯, the diagrams in Figure 10 are summed up to give
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ΣðpÞ ¼
ð
ddx½eip%xðsinh I & IÞ & ðcosh I & 1Þ', ð150Þ

Where I ¼ G0ðxÞ. Since sinh I & I ≈ eI=2 and cosh I ≈ eI=2, the diagrams in Figure 10 lead to

Γð2Þc
B ðpÞ ¼ & 1

2
αμdZα

tZt

" #2ð
ddxðeip%x & 1ÞeG0ðxÞ: ð151Þ

We use the expansion eip%x ¼ 1þ ip % x& ð1=2Þðp % xÞ2 þ⋯, and keep the p2 term. We denote the
derivation of t from the fixed point tc ¼ 8π as ν:

t
8π

¼ 1þ ν, ð152Þ

for d = 2. Using the asymptotic formula K0ðxÞe& γ& lnðx=2Þ for small x, we obtain

Γð2Þc
B ðpÞ ¼ 1

8
αμd

tZt

" #2

p2ðc0m2
0Þ

&2&2νΩd

ð∞

0
dxxdþ1 1

ðx2 þ a2Þ2þ2ν

¼ & 1
8
p2

αμd

tZt

" #2

ðc0m2
0Þ

&2Ωd
1
E
þ OðνÞ

≈ & 1
tμ2&dZt

p2
1
32

α2μdþ2ðc0m2
0Þ

&2 1
E
þOðνÞ

ð153Þ

where c0 is a constant and a ¼ 1=μ is a small cut-off. The divergence of α was absorbed by Zα.
Now the two-point function up to this order is

Γð2Þ
B ðpÞ ¼ 1

tμ2&dZt
p2 & 1

32
α2μdþ2ðc0m2

0Þ
&2 1

E

$ %
ð154Þ

The renormalized two-point function is Γð2Þ
R ¼ ZφΓ

ð2Þ
B . This indicates that

Figure 10. Diagrams that contribute to the two-point function.
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Zφ

Zt
¼ 1þ 1

32
α2μdþ2ðc0m2

0Þ
%2 1

E
: ð155Þ

Then, we can choose Zφ = 1 and

Zt ¼ 1% 1
32

α2μdþ2ðc0m2
0Þ

%2 1
E
: ð156Þ

Zt=Zφ can be regarded as the renormalization constant of t up to the order of α2, and thus we
do not need the renormalization constant Zφ of the field φ. This means that we can adopt the
bare coupling constant as t0 ¼ tμ2%d ~Zt with ~Zt ¼ Zt=Zφ.

The renormalization function of t is obtained from the equation μ ∂ t0=∂μ ¼ 0 for t0 ¼ tμ2%dZt:

βðtÞ & μ
∂t
∂μ

¼ ðd% 2Þtþ 1
32

ðc0m2
0Þ

%2 1
E

2αμdþ2μ
∂α
∂μ

þ ðdþ 2Þα2μdþ2
! "

t

¼ ðd% 2Þtþ 1
32

μdþ2ðc0m2
0Þ

%2tα2

ð157Þ

Because the finite part of G0ðx ! 0Þ is given by G0ðx ! 0Þ ¼ %ð1=2πÞlnðeγm0=2μÞ, we perform
the finite renormalization of α as α ! αc0m2

0a
2 ¼ αc0m2

0μ
%2. This results in

βðtÞ ¼ ðd% 2Þtþ 1
32

tα2: ð158Þ

As a result, we obtain a set of renormalization group equations for the sine-Gordon model

βðαÞ ¼ μ
∂α
∂μ

¼ %α 2% 1
4π

t
! "

, ð159Þ

βðtÞ ¼ μ
∂t
∂μ

¼ ðd% 2Þtþ 1
32

tα2, ð160Þ

Since the equation for α is homogeneous in α, we can change the scale of α arbitrarily. Thus, the
numerical coefficient of tα2 in β(t) is not important.

4.4. Renormalization group flow

Let us investigate the renormalization group flow in two dimensions. This set of equations
reduces to that of the Kosterlitz-Thouless (K-T) transition. We write t ¼ 8πð1þ νÞ, and set
x ¼ 2ν and y ¼ α=4. Then, the equations are
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μ
∂x
∂μ

¼ y2, ð161Þ

μ
∂y
∂μ

¼ xy, ð162Þ

These are the equations of K-T transition. We have

x2 $ y2 ¼ const: ð163Þ

The renormalization flow is shown in Figure 11. The Kosterlitz-Thouless transition is a beau-
tiful transition that occurs in two dimensions. It was proposed that the transition was associ-
ated with the unbinding of vortices, that is, the K-T transition is a transition of the binding-
unbinding transition of vortices.

The Kondo problem is also described by the same equations. In the s-d model, we put

x ¼ πβJz $ 2, y ¼ 2jJ⊥jτ: ð164Þ

where Jz and J⊥ð¼ Jx ¼ JyÞ are exchange coupling constants between the conduction electrons
and the localized spin, and β is the inverse temperature. τ is a small cut-off with τ∝1=μ. The
scaling equations for the s-d model are [53, 57]

τ
∂x
∂τ

¼ $ 1
2
y2, ð165Þ

τ
∂y
∂τ

¼ $ 1
2
xy: ð166Þ

The Kondo effect occurs as a crossover from weakly correlated region to strongly correlated
region. A crossover from weakly to strongly coupled systems is a universal and ubiquitous

tt
c

a

Figure 11. The renormalization group flow for the sine-Gordon model as μ ! ∞.
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phenomenon in the world. There appears a universal logarithmic anomaly as a result of the
crossover.

5. Scalar quantum electrodynamics

We have examined the φ4 theory and showed that there is a phase transition. This is a second-
order transition. What will happen when a scalar field couples with the electromagnetic field?
This issue concerns the theory of a complex scalar field φ interacting with the electromagnetic
field Aμ, called the scalar quantum electrodynamics (QED). The Lagrangian is

L ¼ 1
2
jðDμφÞj2 $

1
4
gðjφj2Þ2 $ 1

4
F2μν; ð167Þ

where g is the coupling constant and Fμν ¼ ∂μAν $ ∂νAμ.Dμ is the covariant derivative given as

Dμ ¼ ∂μ $ ieAμ, ð168Þ

with the charge e. The scalar field φ is an N component complex scalar field such as
φ ¼ ðφ1, ⋯, φNÞ. This model is actually a model of a superconductor. The renormalization
group analysis shows that this model exhibits a first-order transition near four dimensions
d ¼ 4$ E when 2N < 365 [92–96]. Coleman and Weinberg first considered the scalar QED
model in the case N = 1. They called this transition the dimensional transmutation. The result
based on the E-expansion predicts that a superconducting transition in a magnetic field is a
first-order transition. This transition may be related to a first-order transition in a high mag-
netic field [97].

The bare and renormalized fields and coupling constants are defined as

φ0 ¼
ffiffiffiffiffiffi
Zφ

q
φ, ð169Þ

g0 ¼
Z4

Z2
φ
gμ4$d, ð170Þ

e0 ¼
Zeffiffiffiffiffiffiffiffiffiffiffiffi
ZAZφ

p e, ð171Þ

Aμ0 ¼
ffiffiffiffiffiffi
ZA

p
Aμ, ð172Þ

where φ, g, e and Aμ are renormalized quantities. We have four renormalization constants.
Thanks to the Ward identity

Ze ¼ ZA, ð173Þ

three renormalization constants should be determined. We show the results:
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Zφ ¼ 1þ 3
8π2E

e2, ð174Þ

ZA ¼ 1% 2N
48π2E

e2, ð175Þ

Zg ¼ 1þ 2N þ 8
8π2E

gþ 3
8π2E

1
g
e4: ð176Þ

The renormalization group equations are given by

μ
∂e2

∂μ
¼ %Ee2 þ N

24π2 e
4, ð177Þ

μ
∂g
∂μ

¼ %EgþN þ 4
4π2 g2 þ 3

8π2 e
4 % 3

4π2 e
2g: ð178Þ

The fixed point is given by

ec ¼
24
N

π2E, ð179Þ

gc ¼ E
2π2

N þ 4
1þ 18

N
& ðn2 % 360n% 2160Þ1=2

n

( )

, ð180Þ

where n ¼ 2N. The square root δ ' ðn2 % 360n% 2160Þ1=2 is real when 2N > 365. This indicates
that the zero of a set of beta functions exists when N is sufficiently large as long as 2N > 365.
Hence there is no continuous transition when N is small, 2N ≤ 365, and the phase transition is
first-order.

There are also calculations up to two-loop-order for scalar QED [98, 99]. This model is also
closely related with the phase transition from a smectic-A to a nematic liquid crystal for which
a second-order transition was reported [100]. When N is large as far as 2N > 365, the transition
becomes second-order. Does the renormalization group result for the scalar QED contradict
with second-order transition in superconductors? This subject has not been solved yet. A
possibility of second-order transition was investigated in three dimensions by using the
renormalization group theory [101]. An extra parameter c was introduced in [101] to impose a
relation between the external momentum p and the momentum q of the gauge field as q ¼ p=c.
It was shown that when c > 5:7, we have a second-order transition. We do not think that it is
clear whether the introduction of c is justified or not.

6. Summary

We presented the renormalization group procedure for several important models in field
theory on the basis of the dimensional regularization method. The dimensional method is very
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useful and the divergence is separated from an integral without ambiguity. We invested three
fundamental models in field theory: φ4 theory, non-linear sigma model and sine-Gordon
model. These models are often regarded as an effective model in understanding physical
phenomena. The renormalization group equations were derived in a standard way by regular-
izing the ultraviolet divergence. The renormalization group theory is useful in the study of
various quantum systems.

The renormalization means that the divergences, appearing in the evaluation of physical
quantities, are removed by introducing the finite number of renormalization constants. If we
need infinite number of constants to cancel the divergences for some model, that model is
called unrenormalizable. There are many renormalizeable field theoretic models. We consid-
ered three typical models among them. The idea of renormalization group theory arises
naturally from renormalization. The dependence of physical quantities on the renormalization
energy scale easily leads us to the idea of renormalization group.
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