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Ground state of the three-band Hubbard model
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The ground state of the two-dimensional three-band Hubbard model in oxide superconductors is investigated
by using the variational Monte Carlo method. The Gutzwiller-projected BCS and spin density wave~SDW!
functions are employed in the search for a possible ground state with respect to dependences on electron
density. Antiferromagnetic correlations are considerably strong near half-filling. It is shown that thed-wave
state may exist away from half-filling for both the hole and electron doping cases. The overall structure of the
phase diagram obtained by our calculations qualitatively agrees with experimental indications. The supercon-
ducting condensation energy is in reasonable agreement with the experimental value obtained from specific
heat and critical magnetic field measurements for optimally doped samples. The inhomogeneous SDW state is
also examined near 1/8 doping. Incommensurate magnetic structures become stable due to hole doping in the
underdoped region, where the transfertpp between oxygen orbitals plays an important role in determining a
stable stripe structure.
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I. INTRODUCTION

In order to investigate the mechanism of superconduc
ity ~SC! in cuprate high-Tc superconductors,1 we examine
the ground state of the two-dimensional~2D! three-band
Hubbard model for CuO2 planes which are contained com
monly in their crystal structures. It is believed that the Cu2
plane contains the essential features of high-Tc cuprates.2,3 It
is not an easy task to clarify the ground-state properties
the 2D three-band Hubbard model because of strong co
lations amongd and p electrons. We must treat the stron
correlations properly to understand the phase diagram of
high-Tc cuprates. The quantum variational Monte Ca
~VMC! method is a tool to investigate the overall structure
the phase diagram from weak to strong correlation regio
In this paper we investigate possible ground states in
three-band Hubbard model for CuO2 plane by employing the
VMC method.

Superconductivity in the one-band Hubbard model h
been studied by numerical4–13 and analytical14–19 calcula-
tions. The three-band Hubbard model has also been inv
gated with intensive efforts recently.20–29The exact diagonal-
ization computations for the three-band model in early st
of high-Tc research supported the possibility of supercond
tivity by showing that holes can bind in small systems.30,31 It
is also reported that the attractive interaction works for b
the d-wave and extended-s wave channels based on finite
temperature quantum Monte Carlo~QMC! simulations.21 It
has been shown recently that one can predict finiteTc for the
three-band Hubbard model based on perturbative calc
tions such as generalized random phase approxima
~RPA! treatments.26–28 In perturbative treatments of the on
band and three-band Hubbard models, the spin fluctuat
induced by the on-site Coulomb interaction promote ani
tropic pairing correlations. QMC evaluations with some co
straints due to the fermion sign problem are against a po
bility of superconductivity in the three-band Hubba
model.25
0163-1829/2001/64~18!/184509~9!/$20.00 64 1845
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In order to investigate the possibility and origin of supe
conductivity, the recent work by Kondo is important where
has been shown that thed-wave state has lower energy tha
the normal state for smallU by employing the perturbation
theory in U for the one-band Hubbard model.32 This indi-
cates that the ground state is superconductive withd-wave
symmetry for small values ofU. We can expect that this als
holds for the three-band model.34 It is then natural to expec
that thed-wave state is stable for finiteU unless there occurs
some ordering in the ground state. Among several poss
long-range orderings, the antiferromagnetic one should
examined because the state with antiferromagnetic orde
is considerably stable near half-filling. In fact, according
VMC work for the one-band Hubbard model, the antiferr
magnetic~AF! energy gain is larger than the SC energy ga
by almost two orders of magnitude near half-filling. Then t
competition between SC and AF states is very severe for
SC state.12,13The SC region for the one-band Hubbard mod
is considerably restricted and the possibility of a pure sup
conducting state is very small.12 A similar feature has been
obtained by VMC evaluations for theUd5` three-band
Hubbard model33 where the antiferromagnetic region exten
up to 50% doping and thed-wave phase exists only in th
infinitesimally small region near the boundary of the antife
romagnetic phase. Thus VMC results performed recently
consistent with constrained path QMC calculations25 in the
sense that the possibility of ad-wave phase for the one-ban
Hubbard model andUd5` three-band Hubbard model i
small at present, although an attractive interaction works
d-wave pairing.

We expect that the antiferromagnetic region will shri
for the three-band Hubbard model if we adjust the para
eters contained in the model. The parameters of the th
band Hubbard model are given by the Coulomb repuls
Ud ; energy levels ofp electrons,ep , andd electronsed ; and
transfer betweenp orbitals given bytpp . A purpose of this
paper is to investigate the property of the antiferromagn
state and the competition between antiferromagnetism
©2001 The American Physical Society09-1
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superconductivity for finiteUd based on the three-ban
model following the ansatz of Gutzwiller-projected wa
functions.

It has also been argued that holes doped in the antife
magnetically correlated spin systems induce incommensu
spin correlations in the ground state for the one-band H
bard model35–40 and three-band model41 within the mean-
field approximation. In the mean-field treatment the ene
scales appear to be extremely large compared to value
real materials. Recent neutron-scattering experiments
vealed that incommensurate spin structures42–49developed at
low temperatures and at low energies. The static incomm
surate structure was reported on LSCO samp
La22xSrxCuO4, La1.62xNd0.4CuO4, and La22xSrxNiO41y .
Incommensurate magnetic peaks have been also reporte
YBa2Cu3O72d by inelastic neutron-scattering experimen
This type of inhomogeneous state may possibly provid
key concept to resolve the anomalous properties of highTc
cuprates in the underdoped region. We will examine a p
sible phase of incommensurate states for the three-band
bard model by the variational Monte Carlo method.

The paper is organized as follows. In the next section
wave functions are presented. The SC state and unif
spin-density-wave~SDW! state are discussed in Sec. III an
a stability of incommensurate state is examined in the s
sequent section. A summary is given in the last section.

II. HAMILTONIAN AND WAVE FUNCTIONS

The Hamiltonian is given as25,33,50

H5ed(
is

dis
† dis1ep(

is
~pi 1 x̂/2,s

†
pi 1 x̂/2,s1pi 1 ŷ/2,s

†
pi 1 ŷ/2,s!

1tdp(
is

@dis
† ~pi 1 x̂/2,s1pi 1 ŷ/2,s2pi 2 x̂/2,s2pi 2 ŷ/2,s!

1H.c.#1tpp(
is

@pi 1 ŷ/2,s
†

pi 1 x̂/2,s2pi 1 ŷ/2,s
†

pi 2 x̂/2,s

2pi 2 ŷ/2,s
†

pi 1 x̂/2,s1pi 2 ŷ/2,s
†

pi 2 x̂/2,s1H.c.#

1Ud(
i

di↑
† di↑di↓

† di↓5H01V, ~1!

where

V5Ud(
i

di↑
† di↑di↓

† di↓ . ~2!

x̂ and ŷ represent unit vectors along thex and y directions,
respectively.pi 6 x̂/2,s

† andpi 6 x̂/2,s denote the operators for th

p electrons at siteRi6 x̂/2. Similarly pi 6 ŷ/2,s
† andpi 6 ŷ/2,s are

defined. Other notation are standard and energies are
sured in units oftdp . For simplicity we neglect the Coulom
interaction amongp electrons.

We consider the normal-state, BCS, and SDW wave fu
tions with the Gutzwiller projection. These types of functio
are standard wave functions and well describe the grou
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state properties with several long-range orderings. They h
been investigated intensively for the one-band Hubb
model.11–13,51–55In Refs. 51 and 55 it has been discussed t
they can be improved systematically by operating correlat
factors e2lH0e2aV. For the model shown above they a
written as

cn5PG )
uku<kF ,s

aks
† u0&, ~3!

cSC5PGPNe)k
~uk1vkak↑

† a2k↓
† !u0&, ~4!

cSDW5PG )
uku<kF ,s

bks
† u0&, ~5!

whereaks is the linear combination ofdks , pxks , andpyks

constructed to express an operator for the lowest band
noninteracting Hamiltonian in the hole picture. Fortpp50,
aks is expressed in terms of a variational parameterẽp

2 ẽd :

aks
† 5F1

2
S 11

ẽp2 ẽd

2Ek
D G1/2

dks
†

1 iF1

2
S 12

ẽp2 ẽd

2Ek
D G1/2S wxk

wk
pxks

† 1
wyk

wk
pyks

† D , ~6!

where wxk52tdp sin(kx/2), wyk52tdp sin(ky/2), wk5(wxk
2

1wyk
2 )1/2, andEk5@( ẽp2 ẽd)2/41wk

2#1/2. The Fourier trans-
forms of d- andp-electron operators are defined as

dks
† 5

1

N1/2 (
i

dis
† eik•Ri, ~7!

pxks
† 5

1

N1/2 (
i

pi 1 x̂/2s
†

eik•(Ri1 x̂/2), ~8!

pyks
† 5

1

N1/2 (
i

pi 1 ŷ/2s
†

eik•(Ri1 ŷ/2), ~9!

whereN is the total number of cells which consist ofd, px ,
andpy orbitals. Coefficientsuk andvk , appearing only as a
ratio, are given by the BCS form

vk

uk
5

Dk

jk1~jk
21Dk

2!1/2
, ~10!

for jk5ek2m, where ek is the energy dispersion for th
lowest band.PG is the Gutzwiller projection operator for th
Cu d site andPNe

is a projection operator which extrac
only the states with a fixed total electron number. The
order parameterDk is assumed to have the followingdx22y2-
and extendeds-wave form:

d: Dk5Ds~coskx2cosky!, ~11!
9-2
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GROUND STATE OF THE THREE-BAND HUBBARD MODEL PHYSICAL REVIEW B64 184509
s* : Dk5Ds~coskx1cosky!. ~12!

Equation~4! is written as

cSC5PGS (
k

vk

uk
ak↑

† a2k↓
† D Ne/2

. ~13!

The wave function given by Eq.~13! agrees with

cBCS5PG)
k

~uk1vkak↑
† a2k↓

† !u0& ~14!

in the thermodynamic limit. For the commensurate SD
statebks is given by a linear combination of two wave num
bers k and k1Q for the commensurate vectorQ5(p,p).
We can also investigate the incommensurate SDW state
incommensurate vectorQ5(p62pd,p) by diagonalizing
the Hartree-Fock Hamiltonian with antiferromagnetic lon
range order. The system sizes are given by 636 and 838
for the projected BCS wave function and 1634, 2436, 32
38, 40310, and 16316 for the incommensurate SDW
states. Our calculations are performed with periodic and
tiperiodic boundary conditions for thex and y directions,
respectively. This set of boundary conditions was chosen
that Dk does not vanish for anyk points possibly occupied
by electrons.

The expectation values are calculated following the st
dard Monte Carlo procedure by using the Metropolis alg
rithm. In the process of finding a minimum of energy, w
should optimize many parameters included in the wave fu
tions. For such a purpose we employ correlated meas
ments method to reduce the required CPU time.56

III. CONDENSATION ENERGY AND PHASE DIAGRAM

First, let us discuss the SDW phase near half-filling
evaluating the ground-state energy for optimized parame
g and ẽp2 ẽd and AF order parameterDAF . We setep50
throughout this paper. It is expected that holes introduced
doping are responsible for the disappearance of long-ra
antiferromagnetic ordering.57–59 We show the SDW energy
gain DESDW in Fig. 1 as a function of doping ratio for sev
eral values ofep2ed . DESDW increases and the SDW regio
becomes large asep2ed increases. Figure 2 shows the SD
energy gain for several values oftpp , whereDESDW is re-
duced astpp increases. In Figs. 3~a! and 3~b! the dependence
on Coulomb repulsionUd is shown; the SDW phase extend
up to 30% doping whenUd is large. Then it follows that the
SDW region will be reduced ifep2ed and Ud decrease or
tpp increases. In fact, Fig. 4 shows the boundary of the SD
phase in thetpp-d plane forUd58 whered is the hole den-
sity and negative density indicates electron doping. Co
pared to the calculations forUd5` the SDW region is re-
duced greatly.33

Next, let us turn to the projected-BCS wave functio
where the Gutzwiller parameterg, effective level difference
ẽp2 ẽd , chemical potentialm, and superconducting order pa
rameterDs are considered as variational parameters. In Fig
we show the energy as a function ofDs where tpp50.0,
18450
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Ud58, anded2ep52 and the doping ratio is given byd
50.111 for~a! andd50.333 for~b!. Thed-wave supercon-
ductivity is most stable among various possible states suc
isotropic s-wave and anisotropics-wave pairing states. The
squares in Fig. 5 denote the values for the normal st
which are estimated independently by using an alterna
Monte Carlo algorithm. The finite SC energy gain indicat
that the attractive interaction works ford-wave pairing.

The SC energy gain~which is called the SC condensatio
energy in this paper! is also dependent onep2ed , as is

FIG. 1. Energy per site (Enormal2E)/N of the SDW state as a
function of hole densityd for tpp50.4 andUd58. From the top,
ep2ed53, 2, 1.5, and 1. The results are for 636, 838, 10310,
and 16312 systems. Antiperiodic and periodic boundary conditio
are imposed in thex and y directions, respectively. Curves are
guide for the eye. Monte Carlo errors are within the size of
symbols.

FIG. 2. Energy per site (Enormal2E)/N of the SDW state as a
function of hole densityd for tpp50.0, 0.2, and 0.4. Other param
eters are given byep2ed52 and Ud58. The results are for 6
36, 838, 10310, and 16312 systems. Curves are a guide for th
eye.
9-3
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TAKASHI YANAGISAWA, SOH KOIKE, AND KUNIHIKO YAMAJI PHYSICAL REVIEW B 64 184509
shown in Fig. 6 fortpp50.2, Ud58, andd50.111 on a 6
36 lattice. This shows a tendency that the SC condensa
energy increases asep2ed increases, which is consisten
with calculations forUd5`.33 It is noted that the depen
dence onep2ed for the SC energy gain is rather weak com
pared to the SDW energy gain. We also note that the
energy gains forUd58 are mostly of the same order of thos
for Ud5`.33

From the calculations for the SDW wave functions, w
should setep2ed andUd small so that the SDW phase doe
not occupy a huge region near half-filling. In Fig. 7 we sho
energy gains for both the SDW and SC states forUd58,
tpp50.2, andep2ed52, where the negatived indicates the
electron-doping case. Solid symbols indicate the results
838 and open symbols for 636. For this set of parameter
the SDW region extends up to 20% doping and the p
d-wave phase exists outside of the SDW phase. Thed-wave

FIG. 3. ~a! Energy per site (Enormal2E)/N of the SDW state as
a function of hole densityd for Ud58, 12, and 20. We setep

2ed52 and tpp50.4. ~b! Antiferromagnetic order parameter as
function of hole density forUd58, 12, and 20. We setep2ed52
and tpp50.4. The results are for 636, 838, 10310, and 16312
systems. Curves are a guide for the eye.
18450
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phase may be possibly identified with the superconduc
phase in the overdoped region in the high-Tc supercon-
ductors.

The superconducting condensation energy obtained

FIG. 4. Boundary of the SDW state in thetpp-d plane forep

2ed52 and 1. We setUd58.

FIG. 5. Ground-state energy per site as a function ofDs on a
636 lattice for ~a! d50.111 andtpp50.0 and~b! d50.333 and
tpp50.0. Parameters are given byUd58 andep2ed52 in units of
tdp . Squares denote the energies for the normal state evalu
independently.
9-4
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GROUND STATE OF THE THREE-BAND HUBBARD MODEL PHYSICAL REVIEW B64 184509
our calculations is estimated asEcond.0.0005tdp
50.75 meV per site in the overdoped region near
boundary of the SDW phase from the difference between
minimum and the intercept of theE/N-Ds curve with the
vertical axis, where we settdp51.5 eV as estimated from
cluster calculations.60–62We have also estimatedEcond from
several experiments such as specific heat or critical fi
measurements for optimally doped samples. They are g
as 0.17.0.26 meV from specific heat data12,63,64 and 0.26
meV from the critical magnetic field valueHc

2/8p.12,65 Our
value is in reasonable agreement with the experimental

FIG. 6. Superconducting~circles! and antiferromagnetic
~squares! energy gains per site as a function ofep2ed for tpp

50.2 andUd58 on a 636 lattice.

FIG. 7. Condensation energy per site as a function of hole d
sity d for tpp50.2, ep2ed52, andUd58. Circles, squares, an
diamonds denote the energy gain per site in reference to the no
state energy ford-wave, SDW, and extended-s-wave states, respec
tively. Solid symbols are for 838 and open symbols are for 636.
Curves are a guide for the eye.
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as was already shown for the Hubbard model where the
energy gain in the bulk limit is given by 0.00117t/site
50.59 meV/site.54 This agreement between the theoretic
and experimental condensation energy is highly remarka
We expect that this value is not far from the correct va
according to the evaluations for improved wave functions51

where it was shown that the energy gain is not changed
much due to multiplicative correlation factorse2DtH0e2DtV.
We cannot estimate the SC condensation energy in the
derdoped region because the SDW state is more stable
thed-wave state and the SC condensation energy is not a
able experimentally due to a loss of entropy in the und
doped region.63

The phase structure obtained by our calculations ag
well with the available phase diagram indicated by expe
ments qualitatively, which means that a large SDW ph
exists in the underdoped region and there is ad-wave super-
conducting phase next to the SDW phase in the overdo
region. Our calculations for the electron-doping case pre
d-wave symmetry away from half-filling, which is consiste
with recent experiments on Nd1.85Ce0.15CuO42y .66

IV. INCOMMENSURATE ANTIFERROMAGNETISM WITH
SPIN MODULATION

In this section let us discuss the underdoped region wh
the SDW state is significantly stable as shown in the previ
section. Let us note that the SDW state can be possibly
bilized further if we take into account a spin modulation
space, as has also been studied for the one-band Hub
model35–40,67 and the t-J model.68–71 We can introduce a
stripe in the uniform spin-density state so that doped ho
occupy new levels close to the starting Fermi energy, ke
ing the energy loss of antiferromagnetic background m
mum. The wave function with a stripe can be taken of t
Gutzwiller type: cstripe5PGcstripe

0 . Here cstripe
0 is the

Slater determinant made from solutions of the Hartree-F
Hamiltonian67

Hstripe5Hdp
0 1

U

2 (
is

@^ndi&2s~21!xi1yi^mi&#dis
† dis ,

~15!

whereHdp
0 is the noninteracting part of the HamiltonianH

with variational parameterẽp2 ẽd . ^ndi& and ^mi& are ex-
pressed in terms of modulation vectorsQs and Qc for spin
and charge part, respectively. Including the constant par

^ndi& in the definition of variational parameterẽd , we diag-
onalize the following one-particle Hamiltonian to determi
cstripe

0 :

Hstripe5Hdp
0 1(

is
@dndi2s~21!xi1yimi #dis

† dis .

~16!

dndi andmi are assumed to have the form

dndi52(
j

a/cosh@~xi2xj
str!/jc#, ~17!

n-
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TAKASHI YANAGISAWA, SOH KOIKE, AND KUNIHIKO YAMAJI PHYSICAL REVIEW B 64 184509
mi5m)
j

tanh@~xi2xj
str!/js#, ~18!

with parametersa, m, jc , and js . Here xj
str denotes the

position of a stripe. In actual calculations we setjc51 and
js51 since the energy expectation values are mostly in
pendent ofjc andjs . Since any eigenfunction of the Hami
tonianHdp

0 can be a variational wave function, we optimiz
a instead of fixing it in order to lower the energy expectati
value further. It is also possible to assume thatdndi andmi
oscillate according to the cosine curve given as cos(4pdxi)
and cos(2pdxi), respectively. Both methods give almost t
same results within Monte Carlo statistical errors.

Recent neutron-scattering experiments suggested
modulation vectors are given byQs5(p62pd,p) and Qc
5(64pd,0) in the underdoped region, whered denotes the
doping ratio. Here we definen-lattice stripe as an incommen
surate state with one stripe pern ladders for whichQs is
given byQs5(p6p/n,p). Then the incommensurate sta
predicted by neutron experiments ford51/8 is given by a
four-lattice stripe. For the three-band model, the transfertpp
between oxygen orbitals plays an important role to determ
a possible SDW state. Iftpp is very large, the uniform SDW
state is expected to be stabilized because holes dope
oxygen sites can move around on the lattice, producing
order effects on spin ordering uniformly. For smalltpp the
stripe states are considered to be realized.41 Our motivation
to consider nonuniform states for the three-band model
in the idea that the distance between stripes may be de
dent upontpp ; i.e., for smalltpp the distance between stripe
is large, for intermediate values oftpp the four-lattice stripe
state is realized, and for largetpp the uniform state or norma
state is stable.

FIG. 8. Energies of commensurate and incommensurate S
states on a 1634 lattice atd51/8 for Ud58. Circles and triangles
are for four-lattice and eight-lattice stripes, respectively. Squa
denote energy for the commensurate SDW state. From the toep

2ed51.2, 2.0, and 2.4. We impose antiperiodic boundary con
tions in thex direction and periodic boundary conditions in they
direction.
18450
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In Fig. 8 we show the energies for commensurate a
incommensurate SDW states on a 1634 lattice atd51/8 as
a function oftpp , where we impose antiperiodic and period
boundary conditions in thex and y directions, respectively
so that the closed-shell structure is followed for doped ho
We assumed thatep2ed51.2, 2, and 2.4. The eight-lattic
stripe state for smalltpp changes into a uniform state astpp

increases. It shows that incommensurate states become s
for a large level differenceep2ed . The spin and charge
densities of the incommensurate state are shown in Fig. 9
tpp50.4 andep2ed52 where the charge density is a sum
hole numbers ond, px , and py orbitals at siteL. The spin
densitySz( i )5ndi↑2ndi↓ vanishes at the positions of stripe
associated with peaks of the hole density. The spin struc
factorSz(q) really has incommensurate peaks as is shown
Fig. 10. Figures 11~a! and 11~b! present the energies of in
commensurate states for 16316 lattice~which contains 768
atoms! where we set antiperiodic and periodic boundary co
ditions in thex andy direction, respectively, for~a! and in the
y and x directions, respectively, for~b!. Both figures give
almost the same results as evidence that the effect of bo

W

s

i-

FIG. 9. Spin~a! and charge~b! densities for the incommensurat
state atd51/8 for tpp50.4, Ud58, and ep2ed52 on a 1634
lattice. The boundary conditions are same as in Fig. 8.
9-6



e

o
la
he
e
b
ce
ou
s
on

er

f
nn

-
le

an
rl
o
io

on
in
d

n
he
se

he

on
ter-

act
the

our
r is
nts.

te

the
ec-
tal

e

e
s
ic

GROUND STATE OF THE THREE-BAND HUBBARD MODEL PHYSICAL REVIEW B64 184509
ary conditions is small for a 16316 system. As expected, th
structure of the incommensurate state is dependent upon
values oftpp .

Let us turn to a discussion of the energy gain due t
formation of stripes, which is estimated from an extrapo
tion to the bulk limit as shown in Fig. 12. One notes that t
energy gain increases as the system size increases. Th
ergy gain per site for a four-lattice stripe state is given
.0.015tdp.22.5 meV. Furthermore, the energy differen
between commensurate and incommensurate states is f
to be finite in the bulk limit, which is shown in Fig. 13. Thu
within the VMC method the stripe state with spin modulati
is stable atd51/8 doping.

The antiferromagnetic order parameterm in Eq. ~18! is of
the order of 0.5tdp.0.75 eV, while the SC order paramet
Ds ~which gives the minimum of energy! is of the order of
(0.01–0.015)tdp515–20 meV atd;0.2. The magnitude o
the SC order parameter agrees with measurements of tu
ing spectroscopy72,73 where Ds is estimated as Ds
.17 meV for a YBCO sample.72 The antiferromagnetic or
der parameter is larger than the SC order parameter at
by one order of magnitude. The charge order parametera in
Eq. ~17! is small and negligible compared tomi .

V. SUMMARY

We have presented our evaluations for the 2D three-b
Hubbard model based on the variational Monte Ca
method. Our work is regarded as a starting step for m
sophisticated calculations in the future such as the inclus
of correlation factors of Jastrow type or Green functi
Monte Carlo approaches. The SC energy scales obta
from our evaluations are consistent with experimental in
cations, which provides support to our approaches.

According to the VMC method the attractive interactio
works for d-wave pairing due to electron correlations. T
strength of Ud is also important to determine the pha
boundary of the SDW phase. IfUd is extremely large, the
SDW region extends up to large doping for which t

FIG. 10. Spin structure function for the incommensurate stat
d51/8 for tpp50.4, 0.1,Ud58, andep2ed52 on a 1634 lattice.
The boundary conditions are same as in Fig. 8.
18450
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ed
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d-wave region is restricted to an infinitesimally small regi
near the boundary of the antiferromagnetic phase. For in
mediate values ofUd andep2ed the SDW region is reduced
and thed-wave superconducting phase may exist. The f
that the SC condensation energy agrees reasonably with
experimental data for optimally doped samples supports
computations. The magnitude of the SC order paramete
also consistent with tunneling spectroscopy experime
From our data forDESC andDs and the relationN(0)Ds

2/2
5DESC, the effective density of stateN(0) can be estimated
asN(0).3 –6.7 (eV)21.4.4–10/tdp at d;0.2 in the over-
doped region, which is not far from the BCS estima
N(0);2 –3 (eV)21 by usingN(0)(kBTc)

2/2 for optimally
doped YBCO.64 We expect that the pured-wave state from
optimal to overdoped regions may be described by
projected-BCS wave function. The phase diagram for el
tron doping is consistent with the available experimen

at

FIG. 11. Energies atd51/8 for a 16316 lattice. Parameters ar
given byep2ed52, Ud58, andtpp50.4. Symbols are the same a
in Fig. 8. For~a! boundary conditions are antiperiodic and period
in the x and y directions, respectively, and for~b! periodic and
antiperiodic boundary conditions are imposed in thex andy direc-
tions, respectively.
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indications suggesting that the properties of electron-do
materials may be understood within our approach. In
SDW region the incommensurate spin structures are st
lized for the low-doping case to keep the energy loss m
mum due to disorder effect caused by holes. Competi

FIG. 12. Enormal2Eincom as a function of 1/N. Parameters are
given by tpp50.4, Ud58, andep2ed52. Solid circles are for 24
36, 3238, and 40310. The open circle is for 16316. We set
antiperiodic and periodic boundary conditions in thex andy direc-
tions, respectively.
ce

a,

ti

M

.

p

C

lid
-

18450
d
e
i-

i-
n

among the uniform SDW state, SDW state with stripes, a
pured-wave SC is highly nontrivial. A picture for the hole
doping case followed from our evaluations is that a str
state is stable in the underdoped region and changes
d-wave SC in the overdoped region.

FIG. 13. Ecom2Eincom as a function of 1/N. Parameters are
given bytpp50.4, Ud58, andep2ed52. Circles are for rectangu
lar lattices and the square is for 16316. Boundary conditions are
the same as in Fig. 12.
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