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Ground state of the three-band Hubbard model
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The ground state of the two-dimensional three-band Hubbard model in oxide superconductors is investigated
by using the variational Monte Carlo method. The Gutzwiller-projected BCS and spin density(832Vé
functions are employed in the search for a possible ground state with respect to dependences on electron
density. Antiferromagnetic correlations are considerably strong near half-filling. It is shown thdiwthee
state may exist away from half-filling for both the hole and electron doping cases. The overall structure of the
phase diagram obtained by our calculations qualitatively agrees with experimental indications. The supercon-
ducting condensation energy is in reasonable agreement with the experimental value obtained from specific
heat and critical magnetic field measurements for optimally doped samples. The inhomogeneous SDW state is
also examined near 1/8 doping. Incommensurate magnetic structures become stable due to hole doping in the
underdoped region, where the transfgy between oxygen orbitals plays an important role in determining a
stable stripe structure.
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[. INTRODUCTION In order to investigate the possibility and origin of super-
conductivity, the recent work by Kondo is important where it
In order to investigate the mechanism of superconductivhas been shown that tltewave state has lower energy than
ity (SO in cuprate highF, superconductorswe examine the normal state for small by employing the perturbation
the ground state of the two-dimension@D) three-band theory inU for the one-band Hubbard mod&lThis indi-
Hubbard model for Cu®planes which are contained com- cates that the ground state is superconductive @ditiave
monly in their crystal structures. It is believed that the GuO symmetry for small values dfi. We can expect that this also
plane contains the essential features of Higteuprates®It  holds for the three-band mod¥lt is then natural to expect
is not an easy task to clarify the ground-state properties ofhat thed-wave state is stable for finitd unless there occurs
the 2D three-band Hubbard model because of strong corresome ordering in the ground state. Among several possible
lations amongd and p electrons. We must treat the strong long-range orderings, the antiferromagnetic one should be
correlations properly to understand the phase diagram of thexamined because the state with antiferromagnetic ordering
high-T. cuprates. The quantum variational Monte Carlois considerably stable near half-filling. In fact, according to
(VMC) method is a tool to investigate the overall structure ofVMC work for the one-band Hubbard model, the antiferro-
the phase diagram from weak to strong correlation regionsnagnetic(AF) energy gain is larger than the SC energy gain
In this paper we investigate possible ground states in thby almost two orders of magnitude near half-filling. Then the
three-band Hubbard model for Cy@lane by employing the competition between SC and AF states is very severe for the
VMC method. SC staté?**The SC region for the one-band Hubbard model
Superconductivity in the one-band Hubbard model hags considerably restricted and the possibility of a pure super-
been studied by numeriéal® and analyticdf*~° calcula-  conducting state is very smafl.A similar feature has been
tions. The three-band Hubbard model has also been investbbtained by VMC evaluations for th&ly=c three-band
gated with intensive efforts recenflfz>°The exact diagonal- Hubbard modéf where the antiferromagnetic region extends
ization computations for the three-band model in early stagep to 50% doping and thd-wave phase exists only in the
of high-T research supported the possibility of superconducinfinitesimally small region near the boundary of the antifer-
tivity by showing that holes can bind in small systetfrd! It romagnetic phase. Thus VMC results performed recently are
is also reported that the attractive interaction works for bottconsistent with constrained path QMC calculatfSria the
the d-wave and extendesl-wave channels based on finite- sense that the possibility ofdawave phase for the one-band
temperature quantum Monte Call@MC) simulations?® It Hubbard model andJy= three-band Hubbard model is
has been shown recently that one can predict fihjteor the ~ small at present, although an attractive interaction works for
three-band Hubbard model based on perturbative calculatwave pairing.
tions such as generalized random phase approximation We expect that the antiferromagnetic region will shrink
(RPA) treatment£®~28n perturbative treatments of the one- for the three-band Hubbard model if we adjust the param-
band and three-band Hubbard models, the spin fluctuatiomaters contained in the model. The parameters of the three-
induced by the on-site Coulomb interaction promote anisoband Hubbard model are given by the Coulomb repulsion
tropic pairing correlations. QMC evaluations with some con-Ug; energy levels op electronsg,, andd electronsey ; and
straints due to the fermion sign problem are against a posstransfer betweemp orbitals given byt,,. A purpose of this
bility of superconductivity in the three-band Hubbard paper is to investigate the property of the antiferromagnetic
model® state and the competition between antiferromagnetism and
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superconductivity for finiteUy based on the three-band state properties with several long-range orderings. They have

model following the ansatz of Gutzwiller-projected wave been investigated intensively for the one-band Hubbard

functions. model!1~13%1759n Refs. 51 and 55 it has been discussed that
It has also been argued that holes doped in the antiferrdhey can be improved systematically by operating correlation

magnetically correlated spin systems induce incommensurafactors e *Hoe~ ¢V, For the model shown above they are

spin correlations in the ground state for the one-band Hubwritten as

bard mode~° and three-band mod®lwithin the mean-

field approximation. In the mean-field treatment the energy v=Ps I o 10) 3

scales appear to be extremely large compared to values for n G|k|skF'U kol

real materials. Recent neutron-scattering experiments re-

vealed that incommensurate spin structfe® developed at M-

low temperatures and at low energies. The static incommen- ¥sc= PGPNel_k[ (Ut vy aly)[0), 4)

surate structure was reported on LSCO samples:

La, ,SrCuQy, Layg xNdy,CuQ,, and Lg ,SKNiOyyy .

Incommensurate magnetic peaks have been also reported for sow=Ps 11 Bi0), 5)

YBa,Cu;0;_ s by inelastic neutron-scattering experiments. Ikl=<kg .o

This type of inhomogeneous state may possibly provide gnereq,, is the linear combination oy, , Pyke andpy i,

key concept to resolve the anomalous properties of fiigh- constructed to express an operator for the lowest band of a

cuprates in the underdoped region. We will examine a posponinteracting Hamiltonian in the hole picture. Rop=0,
sible phase of incommensurate states for the three-band Hub- =

bard model by the variational Monte Carlo method. Yo 1S expressed in terms of a variational parametgr
The paper is organized as follows. In the next section the €d-

wave functions are presented. The SC state and uniform ~ o~ 112

spin-density-wavéSDW) state are discussed in Sec. Il and ot = 14 Gp—Gd) qf

a stability of incommensurate state is examined in the sub- ke 2Ey ke

sequent section. A summary is given in the last section.

1

2

+i
II. HAMILTONIAN AND WAVE FUNCTIONS

1_zp—zd)

1/2
Wikt Wyk 4
2E,

Wi pXko'+W_kpyko' ’ (6)

The Hamiltonian is given 83330

where Wy = 2tg, Sinfk,/2), Wy=2tq,SinKk/2), wy= (W,
+wi) M2 andEy=[ (e, €4)/4+wi ]2 The Fourier trans-

t t N . ;
H= ediZ diT,,di(,Jr epiz (P32 Pis 20+ pi+9/2’0pi+9/2’0) forms of d- and p-electron operators are defined as

1 .
Tt T aik-R;
+tdpi§: [diTo(pi+;</2,0+ Pi+y20~ Pi—x2.0~ Pi—yr2.0) dks N1’22i dige™ ™, @)
+H.c]+ty,>, [pJr S Pitx —pJr S Piex T 1 T ik- (R +x/2)
.C. ppio i+ylRoMitx20 i+yRoFi—x2,0 pXk‘T:N_llzzi pi+§</206 i , (8)
t . T .
“Pi_ypPi+x20t Py, Pi-k2e T H-C] L
o= T k- (R+Y/2)
Pyke=—15 2 i 45,8 ®TY, )
+Ud2i df;dirdf dij =Ho+V, D) TN T
whereN is the total number of cells which consist @fp,,
where andp, orbitals. Coefficientsi, andv, appearing only as a
ratio, are given by the BCS form
V=Uy>, didjdfd; . 2
i Uk Ay
- ~ . o T 2, A2\12 (10
X andy represent unit vectors along tieandy directions, ko &t (Gt Ap)

. T R
respectivelyp;. s, , andpj =32, denote the operators for the o, ¢ — ¢, — 1, where ¢, is the energy dispersion for the

p electrons at sit&, = x/2. Similarly p;ri)},zg andp;.y;,, are  lowest bandPg is the Gutzwiller projection operator for the
defined. Other notation are standard and energies are me@u d site andPy_is a projection operator which extracts
sured in units ofy,. For simplicity we neglect the Coulomb only the states with a fixed total electron number. The SC

interaction among electrons. order parameted is assumed to have the followirtfyz_ 2-
We consider the normal-state, BCS, and SDW wave funcand extended-wave form:

tions with the Gutzwiller projection. These types of functions
are standard wave functions and well describe the ground- d:  Ay=Ag(cosk,—cosk,), (11
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s*: Ay=Ag(cosk,+cosky). (12 @15 l l T T

Equation(4) is written as
Ne/2 ] t =04
Uk + ¢ € N pp
Usc=Pg ; u_kakTa—kL) . (13 =010 ‘\\ 4
L‘JU) ~ 5
The wave function given by Eq13) agrees with < n EEsal
[
YBCcs= Pel_k[ (Ut ogagaly))]0) (14 0050 [ ‘\\ 4
.20 .

in the thermodynamic limit. For the commensurate SDW e “m
stategy,, is given by a linear combination of two wave num- = _%f ‘oo AN
bersk and k+ Q for the commensurate vect@= (,). e e R e ’ Y ;
We can also investigate the incommensurate SDW state witt e bos 0L 015 M2 0B 0% 0.5

incommensurate vecta@=(w=*=2w45,7) by diagonalizing
the Hartree-Fock Hamiltonian with antiferromagnetic long-
range order. The system sizes are given by66and 8x 8 FIG. 1. Energy per siteH,,,ma— E)/N of the SDW state as a
for the projected BCS wave function and8, 24xX6, 32  function of hole densitys for t,,=0.4 andU4=8. From the top,
X8, 40x10, and 1616 for the incommensurate SDW e€,—¢€4=3, 2, 1.5, and 1. The results are fox6, 8x8, 10x10,
states. Our calculations are performed with periodic and anand 16<12 systems. Antiperiodic and periodic boundary conditions
tiperiodic boundary conditions for the andy directions, are imposed in thec andy directions, respectively. Curves are a
respectively. This set of boundary conditions was chosen sguide for the eye. Monte Carlo errors are within the size of the
that A, does not vanish for ank points possibly occupied Symbols.
by electrons.

The expectation values are calculated following the stant,=8, andey—e,=2 and the doping ratio is given b§
dard Monte Carlo procedure by using the Metropolis algo-=0.111 for(a) and §=0.333 for(b). The d-wave supercon-
rithm. In the process of finding a minimum of energy, we ductivity is most stable among various possible states such as
should optimize many parameters included in the wave funcisotropic sswave and anisotropis-wave pairing states. The
tions. For such a purpose we employ correlated measurgquares in Fig. 5 denote the values for the normal state,

Hole density

ments method to reduce the required CPU tifhe. which are estimated independently by using an alternative
Monte Carlo algorithm. The finite SC energy gain indicates
IIl. CONDENSATION ENERGY AND PHASE DIAGRAM that the attractive interaction works fdrwave pairing.

The SC energy gaitwhich is called the SC condensation
Fil’St, let us discuss the SDW phase near half-ﬂ”lng byenergy in this paperis also dependent Oap_ed' as is
evaluating the ground-state energy for optimized parameters
g and'e,— €4 and AF order parametekar. We sete,=0 020
throughout this paper. It is expected that holes introduced by
doping are responsible for the disappearance of long-rang
antiferromagnetic ordering">° We show the SDW energy
gain AEgpw in Fig. 1 as a function of doping ratio for sev-
eral values ok, — €;. AEgpyincreases and the SDW region mé |
becomes large ag,— ¢4 increases. Figure 2 shows the SDW < NN
energy gain for several values f,, whereAEgpyy is re- 010 \\l t =00
duced ag, increases. In Figs.(8 and 3b) the dependence i

0 ;15

on Coulomb repulsiotJ 4 is shown; the SDW phase extends IRER .. a

up to 30% doping whellq is large. Then it follows that the . “?\2 Tl

SDW region will be reduced i,— €4 and U4 decrease or e 04

tpp increases. In fact, Fig. 4 shows the boundary of the SDW e = . W

phase in the, ;-5 plane forU,=8 whered is the hole den- ®e-._ A

sity and negative density indicates electron doping. Com- ks . '05 0'1 . '15 “*0'2‘ . '25 .
pared to the calculations fdd = the SDW region is re- ' ' ’ | '
duced greatly® Hole density

Next, let us tl.Jm to the prOjected-_BCS wave function, FIG. 2. Energy per siteH,,o;ma— E)/N of the SDW state as a
theie the Gutzwiller parametey effective level difference function of hole densitys for t,,=0.0, 0.2, and 0.4. Other param-
€,— €4, chemical potentigk, and superconducting order pa- eters are given by,—€e4=2 and U4=8. The results are for 6
rameterA ¢ are considered as variational parameters. In Fig. 5¢6, 8x 8, 10x 10, and 16< 12 systems. Curves are a guide for the
we show the energy as a function af, wheret,,=0.0, eye.
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FIG. 3. (a) Energy per siteE,o;ma— E)/N of the SDW state as
a function of hole density for U4=8, 12, and 20. We se¢,
—€4=2 andt,,=0.4. (b) Antiferromagnetic order parameter as a
function of hole density foJ4=8, 12, and 20. We set,— e;=2
andt,,=0.4. The results are for$6, 8x8, 10x10, and 1&12

Hole density

systems. Curves are a guide for the eye.

shown in Fig. 6 fort,,=0.2, U43=8, and6=0.111 on a 6

X6 lattice. This shows a tendency that the SC condensatior
energy increases as,— €y increases, which is consistent
with calculations forUy=%.3 It is noted that the depen-
dence one,— €4 for the SC energy gain is rather weak com-
pared to the SDW energy gain. We also note that the SC
energy gains fold ;=8 are mostly of the same order of those

for Ug=o.3

3
From the calculations for the SDW wave functions, we
should sete,— €5 andU4 small so that the SDW phase does
not occupy a huge region near half-filling. In Fig. 7 we show
energy gains for both the SDW and SC states Ugr= 8,
tpp=0.2, ande,— €5=2, where the negativé indicates the
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FIG. 4. Boundary of the SDW state in thg,-& plane fore,

—€e4=2 and 1. We set

d:8-

phase may be possibly identified with the superconducting
phase in the overdoped region in the high-supercon-

ductors.
The superconducting condensation energy obtained by
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FIG. 5. Ground-state energy per site as a functio\gfon a

p
electron-doping case. Solid symbols indicate the results fogx 6 Jattice for (a) §=0.111 andt,,=0.0 and(b) §=0.333 and
8% 8 and open symbols for66. For this set of parameters t,,=0.0. Parameters are given byy=8 ande,— ;=2 in units of
the SDW region extends up to 20% doping and the pure,,. Squares denote the energies for the normal state evaluated

d-wave phase exists outside of the SDW phase. d-aave
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as was already shown for the Hubbard model where the SC
a energy gain in the bulk limit is given by 0.001f3ite
" =0.59 meV/site* This agreement between the theoretical
and experimental condensation energy is highly remarkable.
u We expect that this value is not far from the correct value
according to the evaluations for improved wave functiths,
where it was shown that the energy gain is not changed so
much due to multiplicative correlation factoes* ™Hoe =47V,
We cannot estimate the SC condensation energy in the un-
s derdoped region because the SDW state is more stable than
10 : ® ) e L4 thed-wave state and the SC condensation energy is not avail-
: able experimentally due to a loss of entropy in the under-
doped regiorf®
. | The phase structure obtained by our calculations agrees
well with the available phase diagram indicated by experi-
ments qualitatively, which means that a large SDW phase
exists in the underdoped region and there tsvaave super-
conducting phase next to the SDW phase in the overdoped
region. Our calculations for the electron-doping case predict
d-wave symmetry away from half-filling, which is consistent
with recent experiments on NgiCe, ;Cu0,_, %

10
1.0 2.0 3.0
€ -t
P d
FIG. 6. Superconducting(circles and antiferromagnetic
(squarey energy gains per site as a function gf—eqy for tp,
=0.2 andU4=8 on a 6x 6 lattice.

iu(; 75car|::\|/atlsgrs Sitlg |nestﬂg]act)?/zrdc?pseEéor:'((j;ggr?oggg? thelv' INCOMMENSURATE ANTIFERROMAGNETISM WITH
' SPIN MODULATION

boundary of the SDW phase from the difference between the
minimum and the intercept of thEB/N-Ag curve with the In this section let us discuss the underdoped region where
vertical axis, where we séf;,=1.5 eV as estimated from the SDW state is significantly stable as shown in the previous
cluster calculation8~%*We have also estimate,,,q from  section. Let us note that the SDW state can be possibly sta-
several experiments such as specific heat or critical fielthilized further if we take into account a spin modulation in
measurements for optimally doped samples. They are givespace, as has also been studied for the one-band Hubbard
as 0.17=0.26 meV from specific heat dat*®*and 0.26 modef®>*%%7 and thet-J model®®-"1 We can introduce a
meV from the critical magnetic field valud?/87.22% Our  stripe in the uniform spin-density state so that doped holes
value is in reasonable agreement with the experimental dataccupy new levels close to the starting Fermi energy, keep-
ing the energy loss of antiferromagnetic background mini-
-1 mum. The wave function with a stripe can be taken of the

10 : 0 0 ;
Gutzwiller type: ¢rsiripe= P isiripe- HEre ¢giipe is the
Slater determinant made from solutions of the Hartree-Fock
Hamiltoniarf’
1072} . y
&) HStI’ipe: ng+ E IE [<ndi>_ U-( - 1)Xi+yi<mi>]di‘r(rdilr )
<] o
" (15)
10+ .
whereHgp is the noninteracting part of the Hamiltonidh
with variational parametee,—eq. (ng) and(m;) are ex-
B pressed in terms of modulation vectdpg and Q. for spin
10 - 7 and charge part, respectively. Including the constant part of
(ng;) in the definition of variational parametey, we diag-
onalize the following one-particle Hamiltonian to determine
o .
107 ! ! ! ! wstripe'
06 04 D02 0 02 04 0.6
Hole density Hstripe: ng-l- E [6ngi—o(— 1)Xi+yimi]d;rgdig .
lo
FIG. 7. Condensation energy per site as a function of hole den- (16)

sity o for t,,=0.2, e,—€4=2, andU4=8. Circles, squares, and
diamonds denote the energy gain per site in reference to the norm
state energy fod-wave, SDW, and extendesiwave states, respec-
tively. Solid symbols are for 88 and open symbols are for&s. Sngi=— E alcosh (X _X,str)/gc]’ (17)
Curves are a guide for the eye. j !

Qi andm; are assumed to have the form
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pp

0.2
FIG. 8. Energies of commensurate and incommensurate SDW
states on a 164 lattice até=1/8 for Uy3=8. Circles and triangles
are for four-lattice and eight-lattice stripes, respectively. Squares
denote energy for the commensurate SDW state. From thetop
—e4=1.2, 2.0, and 2.4. We impose antiperiodic boundary condi-
tions in thex direction and periodic boundary conditions in the
direction.

h

5w s
0.1p, '

mi=m[ [ tant (x;—x")/&],
j

Hole density n - 1
e

(18)

with parameterse, m, &, and &. Here x>"

(b)
;" denotes the
position of a stripe. In actual calculations we gg&1 and 0 5'0 ' '
¢,=1 since the energy expectation values are mostly inde- '
pendent oft; and&,. Since any eigenfunction of the Hamil-

L
tonian ng can be a variational wave function, we optimize

FIG. 9. Spin(a) and chargéb) densities for the incommensurate
a instead of fixing it in order to lower the energy expectationstate at6=1/8 for t,,=0.4, U4=8, ande,— e,=2 on a 16<4
value further. It is also possible to assume thag; andm;
oscillate according to the cosine curve given as cos¢)

and cos(zréx), respectively. Both methods give almost the
same results within Monte Carlo statistical errors.

In Fig. 8 we show the energies for commensurate and
. . iqcommensurate SDW states on axi# lattice at6=1/8 as
Recent neutron-scattering experiments suggested tha

modulation vectors are given 9= (w=*2x46,7) and Q.

afunction oft,,, where we impose antiperiodic and periodic
=(*=4m4,0) in the underdoped region, whefadenotes the

boundary conditions in th& andy directions, respectively,
doping ratio. Here we definelattice stripe as an incommen- so that the closed-shell structure is followed for doped holes.
surate state with one stripe parladders for whichQg is

We assumed that,—e4=1.2, 2, and 2.4. The eight-lattice
given by Q.= (= m/n, ). Then the incommensurate state Stripe state for small,, changes into a uniform state
predicted by neutron experiments fér=1/8 is given by a

four-lattice stripe. For the three-band model, the trangfgr

lattice. The boundary conditions are same as in Fig. 8.

increases. It shows that incommensurate states become stable

for a large level differences,—€y. The spin and charge
between oxygen orbitals p|ays an important role to determinéenSities of the incommensurate state are shown in Fig. 9 for

a possible SDW state. tf,, is very large, the uniform SDW  tpp=0.4 ande,— e4=2 where the charge density is a sum of
state is expected to be stabilized because holes doped twle numbers om, p,, andp, orbitals at siteL. The spin
oxygen sites can move around on the lattice, producing disdensityS,(i) =ng;; —Nng;; vanishes at the positions of stripes
order effects on spin ordering uniformly. For smgj|, the  associated with peaks of the hole density. The spin structure
stripe states are considered to be realfZe@ur motivation  factorS,(q) really has incommensurate peaks as is shown in
to consider nonuniform states for the three-band model lie§ig. 10. Figures 1(r) and 11b) present the energies of in-
in the idea that the distance between stripes may be depensemmensurate states for X686 lattice (which contains 768
dent uport,,; i.e., for smallt,, the distance between stripes atoms where we set antiperiodic and periodic boundary con-
is large, for intermediate values of, the four-lattice stripe ditions in thex andy direction, respectively, fofa) and in the
state is realized, and for largg, the uniform state or normal y and x directions, respectively, foth). Both figures give
state is stable. almost the same results as evidence that the effect of bound-
184509-6
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q 19 I !
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FIG. 10. Spin structure function for the incommensurate state at t
5=1/8 fort,,=0.4, 0.1,U,=8, ande,— ;=2 on a 16<4 lattice. ”
The boundary conditions are same as in Fig. 8. 00
ary conditions is small for a 2616 system. As expected, the )
structure of the incommensurate state is dependent upon the 2or
values oft,,. :
Let us turn to a discussion of the energy gain due to a ? L
formation of stripes, which is estimated from an extrapola- [,
tion to the bulk limit as shown in Fig. 12. One notes that the
energy gain increases as the system size increases. The el _ |
ergy gain per site for a four-lattice stripe state is given by
=0.0154,=22.5 meV. Furthermore, the energy difference —8— uniform AF
between commensurate and incommensurate states is foun —®—4-lattice stripes
to be finite in the bulk limit, which is shown in Fig. 13. Thus --A--g-lattice stripes
within the VMC method the stripe state with spin modulation
is stable ats=1/8 doping. -10 ‘ ‘
The antiferromagnetic order parametein Eq. (18) is of 02 03 c 04 05
the order of 0.§,=0.75 eV, while the SC order parameter PP

A (which gives the minimum of energys of the order of

(0.01-0.015)4,=15-20 meV at5_~0.2. The magnitude of iven bye,— eq=2, Ug=8, andt,,—0.4. Symbols are the same as
the SC order parameter agrees with measurements of tunn ' Fig. 8. For(a) boundary conditions are antiperiodic and periodic

ing spectroscopy”® where A is estimated asAs iy the x andy directions, respectively, and fdb) periodic and
=17 meV for a YBCO sampl& The antiferromagnetic or-  antiperiodic boundary conditions are imposed in xhandy direc-
der parameter is larger than the SC order parameter at leagins, respectively.

by one order of magnitude. The charge order parameier
Eq. (17) is small and negligible compared to, .

FIG. 11. Energies af=1/8 for a 16< 16 lattice. Parameters are

d-wave region is restricted to an infinitesimally small region
near the boundary of the antiferromagnetic phase. For inter-
mediate values of) ; and e, — €4 the SDW region is reduced
and thed-wave superconducting phase may exist. The fact
We have presented our evaluations for the 2D three-banthat the SC condensation energy agrees reasonably with the
Hubbard model based on the variational Monte Carloexperimental data for optimally doped samples supports our
method. Our work is regarded as a starting step for moreéomputations. The magnitude of the SC order parameter is
sophisticated calculations in the future such as the inclusioglso consistent with tunneling spectroscopy experiments.
of correlation factors of Jastrow type or Green functionFrom our data foAEgc andAg and the reIatiorN(O)A§/2
Monte Carlo approaches. The SC energy scales obtained AEg(, the effective density of staté(0) can be estimated
from our evaluations are consistent with experimental indi-asN(0)=3-6.7 (eV)‘1z4.4—1Oldp at 6~0.2 in the over-
cations, which provides support to our approaches. doped region, which is not far from the BCS estimate
According to the VMC method the attractive interaction N(0)~2-3 (eV) ! by usingN(0)(ksT.)?/2 for optimally
works for d-wave pairing due to electron correlations. The doped YBCO®* We expect that the puré-wave state from
strength of U, is also important to determine the phaseoptimal to overdoped regions may be described by the
boundary of the SDW phase. U, is extremely large, the projected-BCS wave function. The phase diagram for elec-
SDW region extends up to large doping for which thetron doping is consistent with the available experimental

V. SUMMARY
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FIG. 12. Eqgrmar— Eincom @S @ function of M. Parameters are
given byt,,=0.4, Uy=8, ande,— e4=2. Solid circles are for 24 FIG. 13. E¢com— Eincom @s a function of M. Parameters are
X6, 32<8, and 40<10. The open circle is for 2616. We set  given byt,,=0.4, Uy4=8, ande,— ¢4=2. Circles are for rectangu-
antiperiodic and periodic boundary conditions in thendy direc- lar lattices and the square is for X86. Boundary conditions are

tions, respectively. the same as in Fig. 12.

indications suggesting that the properties of electron-dopedmong the uniform SDW state, SDW state with stripes, and
materials may be understood within our approach. In thepured-wave SC is highly nontrivial. A picture for the hole-
SDW region the incommensurate spin structures are stab#@loping case followed from our evaluations is that a stripe
lized for the low-doping case to keep the energy loss ministate is stable in the underdoped region and changes into
mum due to disorder effect caused by holes. Competitio-wave SC in the overdoped region.

1See, for exampleProceedings of 22nd International Conference '°H. Shimahara and S. Takada, J. Phys. Soc. 3pn1044(1988.
on Low Temperature Physicklelsinki, Finland, 1999 Physica 16N.E. Bickers, D.J. Scalapino, and S.R. White, Phys. Rev. B&ft.

B 284-288(2000]. 961 (1989.
2\/.J. Emery, Phys. Rev. Let8, 2794(1988. 17C-H. Pao and N.E. Bickers, Phys. Rev4B, 1586(1994); Phys.
SL.H. Tjeng, H. Eskes, and G.A. Sawatzky, $trong Correlation Rev. Lett.72, 1870(1994).
and Superconductivityedited by H. Fukuyama, S. Maekawa, ®P. Monthoux and D.J. Scalapino, Phys. Rev. Lé®. 72 (1994.
and A.P. MalozemoffSpringer, Berlin, 1989 p. 33. 19T, Dahm and L. Tewordt, Phys. Rev. &, 1297(1995.
4J.E. Hirsch, Phys. Rev. Lets4, 1317(1985. 203 E. Hirsch, E.Y. Loh, D.J. Scalapino, and S. Tang, Phys. Rev. B
5S.R. White, D.J. Scalapino, R.L. Sugar, E.Y. Loh, J.E. Gubernatis, 39, 243(1989.
and R.T. Scalettar, Phys. Rev.4®, 506 (1989. 21R.T. Scalettar, D.J. Scalapino, R.L. Sugar, and S.R. White, Phys.
5N. Furukawa and M. Imada, J. Phys. Soc. J®ph.3331(1992. Rev. B44, 770(1991)).
"E. Dagotto, Rev. Mod. Phy$6, 763(1994). 22G. Dopf, A. Muramatsu, and W. Hanke, Phys. Rev4B 9264
8T. Husslein, 1. Morgenstein, D.M. Newns, P.C. Pattnaik, J.M.  (1990.
Singer, and H.G. Matuttis, Phys. Rev.58, 16 179(1996. 23G. Dopf, A. Muramatsu, and W. Hanke, Phys. Rev. L&8&, 353
9K. Kuroki, H. Aoki, T. Hotta, and Y. Takada, Phys. Rev. 35, (1992.
2764(1997). 24K Kuroki and H. Aoki, Phys. Rev. Let76, 4400(1996.
105, Zhang, J. Carlson, and J.E. Gubernatis, Phys. Rev. T&tt. 2°M. Guerrero, J.E. Gubernatis, and S. Zhang, Phys. Re§7,B
4486 (1997). 11 980(1998.
11T, Nakanishi, K. Yamaji, and T. Yanagisawa, J. Phys. Soc. Jpn?®T. Hotta, J. Phys. Soc. Jpf3, 4126(1994.
66, 294 (1997. 27T, Takimoto and T. Moriya, J. Phys. Soc. J@6, 2459(1997.
12K Yamaji, T. Yanagisawa, T. Nakanishi, and S. Koike, Physica C?®A. Kobayashi, A. Tsuruta, T. Matsuura, and Y. Kuroda, J. Phys.
304, 225(1998; 304, 141 (2000. Soc. Jpn67, 2626(1998.

13K. Yamaji, T. Yanagisawa, and S. Koike, J. Phys. Chem. Solids?®S. Koikegami and K. Yamada, J. Phys. Soc. J%#8.768(2000.
62, 237 (2009); in Physics in Local Lattice Distortion: Funda- *°M. Ogata and H. Shiba, J. Phys. Soc. J5%.3074(1988.
mentals and Novel Conceptsdited by A. Bianconi and H. Oy-  3'W.H. Stephan, W. Linden, and P. Horsch, Phys. Re@982924

anagi, AIP Conf. Proc. No. 55@AIP, New York, 200}, p. 222. (1989.
14D.J. Scalapino, E. Loh, and J.E. Hirsch, Phys. Re®438190  *2J. Kondo, Bull. Electrotechnical Laborato§4, 67 (2000; J.
(1986. Phys. Soc. Jpnz0, 808 (200)).

184509-8



GROUND STATE OF THE THREE-BAND HUBBARD MODEL

33T, Asahata, A. Oguri, and S. Maekawa, J. Phys. Soc. Gar865
(1996.

343, Koikegami and T. Yanagisaw@anpublishel

35D. Poilblanc and T.M. Rice, Phys. Rev. 3, 9749(1989.

36M. Kato, K. Machida, H. Nakanishi, and M. Fujita, J. Phys. Soc.

Jpn.59, 1047(1990.

S7H. Schulz, Phys. Rev. Let64, 1445(1990.

383, Zaanen and A.M. Oleénn. Phys5, 224 (1996.

39M.1. Salkola, V.J. Emery, and S.A. Kivelson, Phys. Rev. L&,
155(1996.

40M. Ichioka and K. Machida, J. Phys. Soc. JBi8, 4020(1999.

413, Zaanen and O. Gunnarsson, Phys. Re#0B7391(1989.

423 M. Tranquada, D.J. Buttery, and V. Sachan, Phys. Re§4B
12318(1996.

43J.M. Tranquada, J.D. Axe, N. Ichikawa, A.R. Moodenbaugh, Y.

Nakamura, and S. Uchida, Phys. Rev. L&8&, 338 (1997).

44T, Suzuki, T. Goto, K. Chiba, T. Fukase, H. Kimura, K. Yamada,

M. Ohashi, and Y. Yamaguchi, Phys. Rev5B, 3229(1998.

45K. Yamada, C.H. Lee, K. Kurahashi, J. Wada, S. Wakimoto, S.

Ueki, H. Kimura, and Y. Endoh, Phys. Rev.5, 6165(1998.

PHYSICAL REVIEW B4 184509

52C. Gros, Ann. Phys(N.Y.) 189, 53 (1989.

53T, Giamarchi and C. Lhuillier, Phys. Rev. 43, 12 943(1997).

54K. Yamaji, T. Yanagisawa, and S. Koike, Physic284-288 415
(2000; Physica C341, 141(2000.

5T, Yanagisawa, S. Koike, and K. Yamaji, J. Phys. Soc. &m.
3867(1998.

56C.J. Umrigar, K.G. Wilson, and J.W. Wilkins, Phys. Rev. Léfl,
1719(1988.

57p. Prelovsek, Phys. Lett. A26, 287 (19889.

58M. Inui and S. Doniach, Phys. Rev. 8, 6631(1988.

59T, Yanagisawa, Phys. Rev. Le@8, 1026(1992.

60H. Eskes, G.A. Sawatzky, and L.F. Feiner, Physicd@D, 424
(1989.

61M.S. Hybertson, E.B. Stechel, M. Schén, and D.R. Jennison,
Phys. Rev. B41, 11 068(1990.

627 K. McMahan, J.F. Annett, and R.M. Martin, Phys. Rev4B,
6268(1990.

633.W. Loram, K.A. Mirza, J.R. Cooper, and W.Y. Liang, Phys. Rev.

Lett. 71, 1470(1993.
64p W. Anderson, Scienc279, 1196(1998.

M. Arai, T. Nishijima, Y. Endoh, T. Egami, S. Tajima, K. To- 657 Hao, J.R. Clem, M.W. McElfresh, L. Civale, A.P. Malozemoff,

mimoto, Y. Shiohara, M. Takahashi, A. Garrett, and S.M. Ben-

nington, Phys. Rev. LetB3, 608 (1999.

and F. Holtzberg, Phys. Rev. 83, 2844(1991).
6C.C. Tsuei and J.R. Kirtley, Phys. Rev. L85, 182 (2000).

47s. Wakimoto, R.J. Birgeneau, M.A. Kastner, Y.S. Lee, R. Erwin, ®’T. Giamarchi and C. Lhuillier, Phys. Rev. £, 10 641(1990.
P.M. Gehring, S.H. Lee, M. Fujita, K. Yamada, Y. Endoh, K. %8S. White and D.J. Scalapino, Phys. Rev. L88, 1272(1998.

Hirota, and G. Shirane, Phys. Rev.&, 3699(2000.

693, White and D.J. Scalapino, Phys. Rev. L8it, 3227(1998.

48M. Matsuda, M. Fujita, K. Yamada, R.J. Birgeneau, M.A. Kast- °c.s. Hellberg and E. Manousakis, Phys. Rev. L&8, 132

ner, H. Hiraka, Y. Endoh, S. Wakimoto, and G. Shirane, Phys.

Rev. B62, 9148(2000.

“°H.A. Mook, D. Pengcheng, F. Dogan, and R.D. Hunt, Nature

(London 404, 729 (2000.

50T, Yanagisawa, S. Koike, and K. Yamaji, Physica2B4, 467
(2000; 281, 933(2000.

51T, Yanagisawa, S. Koike, and K. Yamaji, J. Phys. Soc. .
3608(1999.

(1999.
7K. Kobayashi and H. Yokoyama, J. Low Temp. Ph¢47, 199
(1999.

23, Kashiwaya, T. Ito, K. Oka, S. Ueno, H. Takashima, M. Koy-

anagi, Y. Tanaka, and K. Kajimura, Phys. Rev.58, 8680
(1998.

73T, Nakano, N. Momono, M. Oda, and M. Ido, J. Phys. Soc. Jpn.

67, 2622(1998.

184509-9



