
Prog. Theor. Exp. Phys. 2021, 033A01 (19 pages)
DOI: 10.1093/ptep/ptab026

Renormalization group theory of the generalized
multi-vertex sine-Gordon model

Takashi Yanagisawa∗

Electronics and Photonics Research Institute, National Institute of Advanced Industrial Science and Technol-
ogy, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan
∗E-mail: t-yanagisawa@aist.go.jp

Received January 18, 2021; Accepted February 17, 2021; Published February 25, 2021

... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
We investigate the renormalization group theory of the generalized multi-vertex sine-Gordon
model by employing the dimensional regularization method and also the Wilson renormalization
group method. The vertex interaction is given by cos(kj · φ), where kj (j = 1, 2, . . . , M ) are
momentum vectors and φ is an N -component scalar field. The beta functions are calculated for
the sine-Gordon model with multiple cosine interactions. The second-order correction in the
renormalization procedure is given by the two-point scattering amplitude for tachyon scattering.
We show that new vertex interaction with the momentum vector k� is generated from two vertex
interactions with vectors ki and kj when ki and kj meet the condition k� = ki±kj, called the triangle
condition. A further condition ki · kj = ±1/2 is required within the dimensional regularization
method. The renormalization group equations form a set of closed equations when {kj} form an
equilateral triangle for N = 2 or a regular tetrahedron for N = 3. The Wilsonian renormalization
group method gives qualitatively the same result for beta functions.
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1. Introduction

The sine-Gordon model is an interesting universal model that appears as an effective model in
various fields of physics [1–17]. The two-dimensional (2D) sine-Gordon model can be mapped to
the Coulomb gas model that has logarithmic Coulomb interaction [18,19]. The 2D sine-Gordon
model has been investigated using several methods, in particular the renormalization group method.
The physics of the sine-Gordon model is closely related to that of the Kosterlitz–Thouless transition
of the 2D XY model [20,21].

The sine-Gordon model is a model of a scalar field under periodic potential, and can be generalized
in several ways. The massive chiral model is regarded as a generalization of the sine-Gordon model
where the potential term Tr(g+g−1) is considered for g in a gauge group (Lie group) G (g ∈ G) [22–
24]. The chiral model was generalized to include the Wess–Zumino term as the Wess–Zumino–Witten
model [25–28]. The other way of generalizing is to include the potential terms of high-frequency
modes [29,30]. A generalized potential term is given as

V = 1

t

L∑
n=1

αn cos(nφ), (1)

where φ is a one-component scalar field and L is an integer. In the Wilson renormalization group
method, the cosine potential cos((n − m)φ) is generated from cos(nφ) and cos(mφ) in the second-
order perturbation. Thus there will be a correction to the beta function of αn in the form α�αm, with
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n = |� − m|. For the hyperbolic sine-Gordon model, αn has a correction from α� and αm satisfying
n = � + m [31].

This kind of model can be generalized to a multi-component scalar field. In this paper we investigate
a multi-vertex sine-Gordon model with multiple cosine potentials. The cosine vertex interaction is
given by cos

(∑
� kj�φ�

)
, where φ = (φ1, . . . , φN ) is a scalar field and kj = (kj1, . . . , kjN ) (j =

1, . . . , M ) are momentum vectors of real numbers; kj represents the direction of oscillation of the
field φ. The model for M = 3 was considered in Ref. [32]. The condition to generate a new vertex
interaction shown above is generalized to kn = k� ± km. This is called the triangle condition in this
paper. We further consider a generalized multi-vertex sine-Gordon model.

It has been pointed out that there is a close relation between the sine-Gordon model and string
propagation in a tachyon background [33]. In fact, two-vertex correction in the renormalization
procedure is given by the two-point scattering amplitude for tachyon scattering in second-order
perturbation theory. The multi-vertex correction will be given by the multi-point tachyon scattering
amplitude.

This paper is organized as follows. In Sect. 3 we present the multi-vertex sine-Gordon model.
We show the renormalization procedure based on the dimensional regularization method in Sect. 4.
We apply the Wilsonian renormalization group method to our model in Sect. 5. We consider the
generalized multi-vertex sine-Gordon model and calculate the beta functions in Sect. 6, and provide
a summary in the last section.

2. Multi-vertex sine-Gordon model

We consider an N -component real scalar field φ = (φ1, . . . , φN ). The model is a d-dimensional
generalized multi-vertex sine-Gordon model given by

L = 1

2t0

(
∂μφ

)2 + 1

t0

M∑
j=1

α0j cos
(
kj · φ

)
, (2)

where t0(> 0) and α0j (j = 1, . . . , M ) are bare coupling constants, and kj (j = 1, . . . , M ) are N -
component constant vectors. We use the notation (∂μφ)2 = ∑

j(∂μφj)
2 and kj · φ = ∑

� kj�φ� for
kj = (kj1, . . . , kjN ). We use the Euclidean notation in this paper. The second term is the potential
energy with multiple cosine interactions. The dimensions of t0 and α0j are given as [t0] = μ2−d and
[α0j] = μ2 for the energy scale parameter μ. The analysis is performed near two dimensions, d = 2.
We introduce the renormalized coupling constants t and αj, where the renormalization constants are
defined as

t0 = tμ2−dZt , α0j = αjμ
2Zαj , (3)

where we set that t and αj are dimensionless constants. The renormalized field φR is introduced with
the renormalization constant Zφ as

φ = √
ZφφR. (4)
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In the following, φ denotes the renormalized field φR for simplicity. Then, the Lagrangian density is
given as

L = μd−2Zφ

2tZt

(
∂μφ

)2 + μd

tZt

∑
j

Zαjαj cos(kj · φ). (5)

We examine the renormalization group procedure for this model in Sects. 3 and 4. We also investigate
the component dependence of renormalization in Sect. 5 by generalizing the model as follows:

L =
∑

�

μd−2Zφ

2t�Zt�
(∂μφ�)

2 +
∑

j

μdαjZαj

tjZtj
cos

(√
Zφkj · φ

)
. (6)

We need some conditions so that we have one fixed point for t. For this purpose we normalize k
vectors as

k2
j =

N∑
�=1

k2
j� = 1, (j = 1, . . . , M ). (7)

From two vertices with momentum vectors ki and kj, a new vertex with momentum km is generated
when the triangle condition is satisfied:

km = ki ± kj. (8)

We assume that the set {αj} includes all vertices that will be generated from multi-vertex interactions
with each other. For a triangle or a regular polyhedron which is composed of equilateral triangles,
M becomes finite since {kj} form a finite set. For example, we will consider an equilateral triangle or
a regular tetrahedron. For an equilateral triangle (N = 2, M = 3) or a regular tetrahedron (N = 3,
M = 6), we further have

M∑
j=1

k2
j� = C(M ) for � = 1, . . . , N , (9)

where C(M ) is a constant depending on M . For an equilateral triangle for a three-component scalar
field (N = 3 and M = 3), this relation does not hold. These conditions will be explained in the
following sections.

3. Renormalization by dimensional regularization

We evaluate the beta functions for the multi-vertex sine-Gordon model by using the dimensional
regularization method [34–36].

3.1. Tadpole renormalization of αj

The lowest-order contributions to the renormalization of αj are given by tadpole diagrams. Using
the expansion cos φ = 1 − 1

2φ2 + 1
4!φ

4 − · · · , the cosine potential is renormalized as

cos
(√

Zφkj · φ
) →

(
1 − 1

2
Zφ〈(kj · φ)2〉 + · · ·

)
cos

(√
Zφkj · φ

)
. (10)

3/19

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2021/3/033A01/6149488 by AIST user on 06 April 2021



PTEP 2021, 033A01 T. Yanagisawa

〈φ2〉 is regularized as

〈φ2
� 〉 = tμ2−dZt

Zφ

∫
ddk

(2π)d

1

k2 + m2
0

= − tμ2−dZt

Zφ

1

ε

�d

(2π)d
(11)

for d = 2 + ε, where a mass m0 is introduced to avoid the infrared divergence. We set Zt = 1
in the lowest order of t. We adopt that 〈φiφ�〉 = δi�〈φ2

i 〉 and 〈φ2
� 〉 is independent of �. Then the

renormalization of the potential term is given as

αjZαj

(
1 − 1

2
Zφk2

j 〈φ2
1〉 + · · ·

)
cos

(√
Zφkj · φ

)

= αjZαj

(
1 + 1

2
k2

j
1

ε
tμ2−d �d

(2π)d
+ · · ·

)
cos

(√
Zφkj · φ

)
. (12)

The renormalization constant Zαj is determined as

Zαj = 1 − t

4πε
k2

j . (13)

Since the bare coupling constant α0j = αjμ
2Zαj is independent of μ, we have

β(αj) := μ
∂αj

∂μ
= −2αj + 1

4π
k2

j tαj. (14)

The beta function of αj has a zero at

t = tcj = 8π/k2
j = 8π , (15)

since k2
j = 1.

3.2. Vertex–vertex interaction

We investigate the corrections to t and αj from vertex–vertex interactions. The second-order
contribution I (2) to the action is given by

I (2) = −1

2

(
μd

tZt

)2 ∫
ddxddx′∑

ij

αiαjZαi Zαj cos
(√

Zφki · φ(x)
)

cos
(√

Zφkj · φ(x′)
)

= −1

4

(
μd

tZt

)2 ∫
ddxddx′∑

ij

αiαjZαi Zαj

[
cos

(√
Zφ(ki · φ(x) − kj · φ(x′))

)

+ cos
(√

Zφ(ki · φ(x) + kj · φ(x′))
) ]

. (16)

We first examine the first term, denoted as I (2)
1 :

I (2)
1 = −1

4

(
μd

tZt

)2 ∫
ddxddx′∑

ij

αiαjZαi Zαj cos
(√

Zφ(ki · φ(x) − kj · φ(x′))
)

. (17)

We evaluate the renormalization of the cosine term by calculating 〈(ki · φ − kj · φ)2〉. We adopt
that 〈φ�(x)φm(x′)〉 = δ�m〈φ�(x)φ�(x′)〉, and 〈φ�(x)φ�(x′)〉 is independent of �: 〈φ�(x)φ�(x′)〉 =
〈φ1(x)φ1(x′)〉. Then

〈(ki · φ − kj · φ)2〉 =
∑

�

[
k2

i�〈φ�(x)
2〉 + k2

j�〈φ�(x
′)2〉 − 2ki�kj�〈φ�(x)φ�(x

′)〉
]

. (18)
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I (2)
1 is renormalized as

I (2)
1 = −1

4

(
μd

tZt

)2 ∫
ddxddx′

[∑
i

α2
i Z2

αi
exp

(−Zφk2
i 〈φ1(x)

2〉 + Zφk2
i 〈φ1(x)φ1(x

′)〉)

× cos
(√

Zφ(ki · (φ(x) − φ(x′)))
)

+
∑
i �=j

αiαjZαi Zαj exp
[

− Zφ

2
(k2

i 〈φ1(x)
2〉 + k2

j 〈φ1(x
′)2〉) + Zφki · kj〈φ1(x)φ1(x

′)〉
]

× cos
(√

Zφ(ki · φ(x) − kj · φ(x′))
) ]

. (19)

The two-point function is written as

〈φ�(x)φ�(y)〉 = tμ2−dZt

Zφ

∫
ddp

(2π)d

eip·(x−y)

p2 + m2
0

= tμ2−dZt

Zφ

�d

(2π)d
K0(m0|x − y|), (20)

where we introduced m0 to avoid the infrared divergence and K0 is the zeroth modified Bessel
function.

3.3. Renormalization of t

The first term of I (2)
1 gives a contribution to the renormalization of the coupling constant t. Since

K0(m0r) increases as r → 0, we can expand in terms of r. By using cos
(√

Zφki ·(φ(x)−φ(x+r))
) 	

1 − (1/2)Zφ(rμ∂μ(ki · φ(x)))2, where ∂μ = ∂/∂xμ, the first term I (2)
1a of I (2)

1 is written as

I (2)
1a 	 1

4

(
μd

tZt

)2 ∫
ddxddr

∑
i

α2
i Z2

αi

1

4
Zφ(∂μφ̃i)

2r2 exp
(

−Zφk2
i 〈φ2

1〉 + tZtk
2
i

�d

(2π)d
K0(m0r)

)
,

(21)
where φ̃i = ∑

� ki�φ�. If (kj�) ∈ SO(N ) (with M = N ), we have
∑

i(∂μφi)
2 = ∑

i(∂μφ̃i)
2. In

general, we have

∑
i

(∂μφ̃i)
2 =

∑
i�

k2
i�(∂μφ�)

2 +
∑

i,��=m

ki�kim∂μφ�∂μφm. (22)

As mentioned in Sect. 2, we consider the case where {kj} form an equilateral triangle (M = 3) or
a regular tetrahedron (M = 6), and we obtain

∑
i k2

i� = constant ≡ C depending on M , such as
C = 3/2 for M = 3 and N = 2, and C = 2 for M = 6 and N = 3. In this case,

∑
i

(∂μφ̃i)
2 = C

∑
i

(∂μφi)
2 +

∑
i,��=m

ki�kim∂μφ�∂μφm. (23)

In order to recover the kinetic term in the original action, we use the approximation

∑
i

α2
i Z2

αi
(∂μφ̃i)

2 → 1

M

∑
i

α2
i · C(∂μφ)2 ≡ 〈α2

i 〉C(∂μφ)2; (24)
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otherwise, the renormalization of the kinetic term becomes complicated since we must introduce {ti}
that depend on components of φ. This may not be essential for the renormalization group flow. We
discuss this point later.

〈φ2
1〉 is evaluated as

〈φ2
1〉 = tμ2−dZt

Zφ

�d

(2π)d
K0(m0a), (25)

where a is a small cutoff. The r-integration is calculated as

Jj :=
∫

ddrr2 exp
(

tk2
j

�d

(2π)d
K0(m0

√
r2 + a2)

)

	 �d

∫
drrd+1

(
1

cm2
0(r

2 + a2)

) t
4π

k2
j

, (26)

where c = (eγ /2)2. We put

d = 2 + ε, (27)

and

t

8π
= 1 + v, (28)

since we normalize k2
j = 1. Then we have

Jj = �d(cm2
0)

−2
∫ ∞

0
drrd+1 1

(r2 + a2)2+2v

= −�d(cm2
0)

−2 1

ε
+ O(v). (29)

This indicates that

I (2)
1a = −C

8

(
μd

tZt

)2

〈α2
i 〉 exp

(−Zφ〈φ2
1〉)�d(cm2

0)
−2 1

ε

∫
ddx

1

2
Zφk2

i (∂μφ)2 + O(vi)

= −C

8

(
μd

tZt

)2

〈α2
i 〉(cm2

0a2)tZt/4π�d(cm2
0)

−2 1

ε

∫
ddx

1

2
Zφ(∂μφ)2 + O(v)

= −C

8
〈α2

i 〉�d

8π
μd+2a4 1

ε

∫
ddx

μd−2Zφ

2tZt
(∂μφ)2 + O(v). (30)

Then we choose

Zt = 1 − C

32
〈α2

i 〉μd+2a4 1

ε
, (31)

where we set Zαi = 1 to the lowest order of αi.
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Since the bare coupling constant t0 = tμ2−dZt is independent of the energy scale μ, we have
μ∂t0/∂μ = 0. This results in

β(t) := μ
∂t

∂μ
= (d − 2)t − tμ

∂ ln Zt

∂μ

= (d − 2)t + C

32
t〈α2

i 〉, (32)

where we used μ∂αi/∂μ = −2(αi − t/8π), neglecting terms of the order of t2α2
i , and we put

a = μ−1.

3.4. Vertex–vertex correction to αj

We consider the second term in I (2)
1b that contains multi-vertex interaction:

I (2)
1b := −1

4

(
μd

tZt

)2 ∫
ddxddx′∑

i �=j

αiαjZαi Zαj exp
[

− Zφ

2

(
k2

i 〈φ1(x)
2〉 + k2

j 〈φ1(x
′)2〉

)

+ Zφki · kj〈φ1(x)φ1(x
′)〉
]

cos
(√

Zφ(ki · φ(x) − kj · φ(x′))
)

. (33)

Let us examine the integral given by

Jij :=
∫

ddr exp
(
Zφki · kj〈φ(x)1φ1(x + r)〉)

=
∫

ddr exp
(

ki · kjtμ
2−dZt

�d

(2π)d
K0(m0r)

)

	 �d

∫ ∞

0
drrd−1

(
1

cm2
0(r

2 + a2)

)tki·kj/4π

= �d

(
1

cm2
0a2

)tki·kj
ad/2

2

1

�(tki · kj/4π)
�

(
d

2

)
�

(
t

4π
ki · kj − d

2

)
, (34)

where the cutoff a is introduced. We put t = 8π(1 + v), then we have a divergence near two
dimensions when

ki · kj = 1/2. (35)

This means that the two vectors ki and kj form an equilateral triangle. When ki and kj satisfy this
condition, we have

Jij = −�d(cm2
0)

−1 1

ε
+ O(v). (36)

Then we obtain

I (2)
1b 	 1

4

(
μd

tZt

)2∑
i �=j

αiZαiαjZαj
(
cm2

0a2)t/4π 1

ε
�d(cm2

0)
−1
∫

ddx cos
(√

Zφ(ki − kj) · φ(x)
)

	 1

ε

cm2
0

16

∑
i �=j

αiαj
1

tZt
μ2da4

∫
ddx cos

(√
Zφ(ki − kj) · φ(x)

)
. (37)
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(a) (b)

Fig. 1. Triangles formed by wave vectors ki, kj, and k� for (a) ki · kj = 1/2 and (b) ki · kj = −1/2.

Let k� be a vector such that ki, kj, and k� form an equilateral triangle:

ki − kj = k�. (38)

Then the potential term with coefficient α� has the correction as

μd

tZt
α�Zα�

(
1 + t

4πε
+ 1

16ε

αiαj

α�

μdcm2
0a4
)

cos
(√

Zφk� · φ
)

. (39)

We choose the renormalization constant Zα�
as

Zα�
= 1 − t

4πε
− 1

16ε

αiαj

α�

μdcm2
0a4. (40)

This leads to the beta function β(α�) with correction as

β(α�) = −2α�

(
1 − t

8π

)
+ 1

8
cm2

0a2αiαj. (41)

Since the coefficient of the correction term is dependent on the cutoff parameters, we choose cm2
0a2 =

1 to have

β(α�) = −2α�

(
1 − t

8π

)
+ 1

16
αiαj. (42)

There is also a contribution from the second term in I (2) where kj is replaced by −kj. In this case,
vertices with ki · kj = −1/2 generate a new vertex with k� satisfying

ki + kj = k�. (43)

In the dimensional regularization method, two vertices satisfying ki · kj = ±1/2 generate a new
vertex with ki ∓ kj (see Fig. 1). As a result, the beta function for α� reads

β(α�) = −2α�

(
1 − t

8π

)
+ 1

16

′∑
ij

αiαj, (44)

where the summation should take for those satisfying k� = ki ± kj (i, j, � = 1, . . . , N ).
When k1, k2, and k3 form an equilateral triangle (M = 3), the renormalization group equations

for α1, α2, and α3 are closed within three equations. When k1, k2, . . ., k6 form a regular tetrahedron
(M = 6), we again have a closed set of equations for αj (j = 1, 2, . . . , 6). In the Wilsonian method, the
same beta equation for α� is obtained, as discussed in the next section. In the Wilson renormalization
method, however, a new vertex ki ∓ kj is generated from any two vectors ki and kj except in the case
ki · kj = 0.

8/19

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2021/3/033A01/6149488 by AIST user on 06 April 2021



PTEP 2021, 033A01 T. Yanagisawa

3.5. Relation to the tachyon scattering amplitude in a bosonic string theory

The two-vertex correction Jij is related to the tachyon scattering amplitude in a bosonic string theory.
The n-point scattering amplitude for tachyon scattering is given as [37,38]

An :=
∫

dμ

∫
DX exp

[
− 1

4πα′

∫
(∂zXμ∂z̄X μ)d2z + i

n∑
i=1

kiμX μ

]

=
∫

dμ
∏

1≤i<j≤n

|zi − zj|2α′ki·kj , (45)

where the integration with the measure dμ is an integral over the various zi. If we assume the
correspondence

2πα′ = t, (46)

the zi dependence of the amplitude A2 agrees with Jij where Jij ∼ ∫
ddrAij(r)−1 with Aij(r) =

rα′ki·kj = rtki·kj/2π . The vertex–vertex renormalization is given by the amplitude for tachyon
scattering.

3.6. Renormalization group flow

For an equilateral triangle configuration of {ki} with M = 3 and N = 2, the equations read

μ
∂α1

∂μ
= −2α1

(
1 − t

8π

)
+ 1

16
α2α3,

μ
∂α2

∂μ
= −2α2

(
1 − t

8π

)
+ 1

16
α3α1,

μ
∂α3

∂μ
= −2α3

(
1 − t

8π

)
+ 1

16
α1α2, (47)

and

μ
∂t

∂μ
= (d − 2)t + C

32M
t

3∑
i=1

α2
i . (48)

We consider the simplified case where αi = α (i = 1, 2, 3). In this case, the equations read

μ
∂α

∂μ
= −2α

(
1 − t

8π

)
+ 1

16
α2,

μ
∂t

∂μ
= (d − 2)t + C

32
tα2. (49)

In two dimensions d = 2, the equations become

μ
∂α

∂μ
= 2αv + 1

16
α2,

μ
∂v

∂μ
= C

32
α2 (50)
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a

v
0

Fig. 2. Renormalization group flow as μ → ∞ in the plane of α and v.

for t = 8π(1 + v). The renormalization group flow is shown in Fig. 2 for α > 0. The dotted line
indicates α = −32v, where μ∂α/∂μ vanishes. The asymptotic line as μ → ∞ is given by α ∼ b+v,
with

b+ = 1

C

(
1 + √

1 + 64C
)

, (51)

and α ∼ b−v, with

b− = 1

C

(
1 − √

1 + 64C
)

. (52)

It is apparent from Fig. 2 that there is an asymmetry between positive v and negative v. This is due
to the two-vertex contribution. There is also an asymmetry between α > 0 and α < 0. The flow for
α < 0 is obtained just by extending straight lines into the negative α region.

4. Wilsonian renormalization group method

We investigate the renormalization of the multi-vertex sine-Gordon model by using the Wilsonian
renormalization group method. We obtain the same set of equations as that in the dimensional
regularization method. The only difference is that two vertices satisfying ki · kj �= 0 generate a new
vertex, while ki and kj should satisfy ki · kj = ±1/2 in the dimensional regularization method.

4.1. Wilsonian renormalization procedure

We write the action in the form

S =
∫

d2x

[
1

2
(∂μφ)2 +

∑
j

gj cos(βkj · φ)

]
, (53)

10/19

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2021/3/033A01/6149488 by AIST user on 06 April 2021



PTEP 2021, 033A01 T. Yanagisawa

where gj = αj/t and β = √
t. The field φ was scaled to βφ. We reduce the cutoff  in the following

way:

 →  − d =  − d� = e−d�. (54)

The scalar field φ = (φ1, . . . , φN ) is divided into two parts as φ(x) = φ1(x) + φ2(x) with φ�(x) =
(φ�1, . . . , φ�N ) (� = 1, 2), where

φ1j(x) =
∫

0≤|p|≤−d

d2p

(2π)2 eip·xφj(x),

φ2j(x) =
∫

−d≤|p|≤

d2p

(2π)2 eip·xφj(x). (55)

The action is written as

S =
∫

d2x

[ 2∑
�=1

1

2
(∂μφ�)

2 +
∑

j

gj cos(βkj · (φ1 + φ2))

]

= S0(φ1) + S0(φ2) + S1(φ1, φ2), (56)

where S1 indicates the potential term. Then the partition function is given by

Z =
∫

Dφe−S =
∫

Dφ1 exp

(
−S0(φ1) +

∞∑
n

�n(φ1)

)
, (57)

where

∞∑
n=1

�n(φ1) =
〈〈 ∞∑

n=0

1

n!(−1)nSn
1

〉〉
conn

, (58)

with

〈〈Q〉〉 = 1

Z2

∫
Dφ2e−S0(φ2)Q. (59)

〈〈·〉〉conn means keeping only connected diagrams in 〈〈·〉〉. �n (n = 1, 2, . . .) represent contributions
to the effective action.

4.2. Lowest-order renormalization of gj

The lowest-order contribution �1 = −〈〈S1〉〉 reads

�1 	 −
∑

j

gj

∫
d2x cos(βkj · φ1) exp

(
−1

2
β2〈〈(kj · φ2)

2〉〉
)

= −
∑

j

gj exp
(

−1

2
β2Gjd(0)

)∫
d2x cos(βkj · φ1), (60)

where the Green’s function Gjd is defined as

Gjd(x1 − x2) = 〈〈φ2j(x1)φ2j(x2)〉〉 = d



1

2π
J0(|x1 − x2|), (61)
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where J0 is the zeroth Bessel function. Up to this order, the action is renormalized to

S−d = S0(φ1) − �1

=
∫

d2x

[
1

2
(∂μφ1)

2 +
∑

j

gj

(
1 − β2

2
Gjd(0)

)
cos(βkj · φ)

]
. (62)

We perform the following scale transformation:

x → x′ = e−d�x,

p → p′ = ed�p,

φ1(p) → φ̃1(p′) = φ1(p)ζ−1, (63)

where ζ is the scaling parameter for the field φ1. In the real space we have

φ1(x) = ζe−2d�φ̃1(x′). (64)

Then the effective action reads

S−d =
∫

d2x′
[
ζ 2e−4d� 1

2
(∂ ′

μφ̃1(x′))2 +
∑

j

gje
2d�

(
1 − β2

4π

d



)
cos

(
βζe−2d�kj · φ̃1(x′)

) ]
.

(65)
Here we put

ζ 2e−4d� = 1, (66)

so that we obtain

S =
∫

d2x′
[

1

2
(∂ ′

μφ̃1(x′))2 +
∑

j

gj

(
1 + 2

d


− β2

4π

d



)
cos

(
βkj · φ̃1(x′)

) ]
. (67)

This leads to the renormalized gRj and βR as

gRj = gj +
(

2 − β2

4π

)
gj

d


, (68)

βR = β. (69)

Then we have


dgj

d
=
(

2 − β2

4π

)
gj,


dβ

d
= 0. (70)

Since β2 = t, these results agree with those obtained by the dimensional regularization method in
two dimensions.

12/19

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2021/3/033A01/6149488 by AIST user on 06 April 2021



PTEP 2021, 033A01 T. Yanagisawa

4.3. Multi-vertex contributions

The second-order contribution to the effective action is

�2 = 1

2
〈〈S2

1 〉〉conn

= 1

2

∑
ij

gigj

∫
d2xd2x′

[
〈〈cos(βki · φ(x)) cos(βkj · φ(x′))〉〉

− 〈〈cos(βki · φ(x))〉〉〈〈cos(βkj · φ(x′))〉〉
]

. (71)

We integrate out contributions with respect to φ2. For example, we use

〈〈eiβ(ski·φ2(x)+s′kj ·φ2(x′)〉〉 = 1

2
β2
[
(k2

i + k2
j )Gd(0) + 2ss′ki · kjGd(x − x′)

]
, (72)

where s and s′ take ±1. The second-order effective action �2 is given as

�2 = 1

4

∑
ij

gigj exp
(−β2Gd(0)

) ∫
d2xd2x′

[
(

e−β2ki·kjGd(x−x′) − 1
)

cos
(
β(ki · φ1(x) + kj · φ1(x′))

)
+
(

eβ2ki·kjGd(x−x′) − 1
)

cos(β(ki · φ1(x) − kj · φ1(x′)))
]

. (73)

When ki · kj > 0, the second term grows large for |x − x′| → 0, while the first term becomes small.
When ki · kj < 0, the first term instead becomes large. Hence, we have

�2 = 1

4

∑
ij

gigj exp
(−β2Gd(0)

) ∫
d2xd2r

[

(
eβ2|ki·kj |Gd(r) − 1

)
cos

(
β(ki · φ1(x) ∓ kj · φ1(x + r))

) ]
, (74)

where ∓ takes − when ki · kj > 0 and + for ki · kj < 0. Since the integrand is large when r is small,
�2 is written as

�2 = 1

4

∑
ij

gigjβ
2|ki · kj|

∫
d2rGd(r)

·
∫

d2x cos(β(ki ∓ kj)φ1(x))

(
1 − β2

2
(r · ∇(kj · φ1)

2)

)

	 1

4

∑
ij

gigjβ
2|ki · kj|

∫
d2rGd(r)

∫
d2x cos(β(ki ∓ kj)φ1(x))

− 1

8

∑
j

g2
j β4

∫
d2rr2 1

2
Gd(r)

∫
d2x(∂μ(kj · φ1))

2, (75)

where in the second term with the derivative of φ1 we keep only the ki = kj term since this term
otherwise becomes small due to the oscillation of the cosine function. As discussed before, we use
the approximation

∑
j g2

j (∂μ(kj · φ1))
2 	 〈g2

j 〉C(∂μφ1)
2.
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Then the effective action reads

S−d = S0(φ1) − �1 − �2

=
∫

d2x

[
1

2
(∂μφ1)

2
(

1 + A

8
β4〈g2

j 〉d

5

)

+
∑

j

gj

(
1 − β2

2
Gd(0)

)
cos(βkj · φ1)

− 1

4
B
∑

ij

gigjβ
2|ki · kj|d

3 cos(β(ki ∓ kj)φ1(x))

]
, (76)

where A and B are constants defined by

A = C
∫ 1

0
drr3J0(r), B =

∫ 1

0
drrJ0(r). (77)

We perform the scale transformation in Eqs. (63) and (64), where the parameter ζ is chosen as

ζ 2e−4d�

(
1 + A

8
β4〈g2

j 〉d

5

)
= 1. (78)

Then the renormalized action is given by

S =
∫

d2x

[
1

2
(∂μφ̃1)

2

+
∑

j

gj

(
1 + 2

d


− β2

4π

d



)
cos(βζe−2d�kj · φ̃1(x))

− B

4
β2
∑

ij

gigj|ki · kj|d

3 cos(βζe−2d�(ki ∓ kj) · φ̃1(x))

]
. (79)

This results in the following renormalization group equations:


dβ

d
= − A

164 β5〈g2
j 〉,


dgj

d
=
(

2 − β2

4π

)
gj − B

42 β2
′∑
i�

gig�|ki · k�|, (80)

where the summation is taken for ki and k� satisfying kj = ki ∓ k�.
The resulting equations are consistent with those obtained using dimensional regularization. Note

that the sign is different because the derivative is calculated in the descending direction  → −d

in the Wilsonian method. In the dimensional regularization method, the summation for gi and g� is
restricted to ki and k� that satisfy ki · k� = ±1/2. In the Wilsonian method, this condition is relaxed
and a new vertex is generated unless ki and k� are orthogonal.
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5. Generalized multi-vertex model
5.1. Renormalization of αj

As shown in the evaluation of β(t), the corrections to t are dependent on the momentum parameters
{ki}. We examine this in this section. We consider the generalized Lagrangian, given as

L =
∑

�

Zφ

2t�μ2−dZt�
(∂μφ�)

2 +
∑

j

μdαjZαj

tjZtj
cos

(√
Zφkj · φ

)
. (81)

The potential term is renormalized to

αjZαj exp

(
−1

2
Zφ

∑
�

k2
j�〈φ2

� 〉
)

cos
(√

Zφkj · φ
)

, (82)

where

〈φ2
� 〉 = t�μ2−dZt�

Zφ

∫
ddp

(2π)d

1

p2 + m2
0

= − t�μ2−dZt�

Zφ

1

ε

�d

(2π)d
. (83)

Then the correction is written as

αjZαj

(
1 + 1

2ε

∑
�

k2
j�t�μ

2−dZt�
�s

(2π)d

)
cos

(√
Zφkj · φ

)
. (84)

This results in

Zαj = 1 − 1

4πε

∑
�

k2
j�t�. (85)

Then we obtain

μ
∂αj

∂μ
= −2αj

(
1 − 1

8π

∑
�

k2
j�t�

)
. (86)

The fixed point of {t�} is obtained as a zero of this equation. For an equilateral triangle where N = 2
and M = 3, we can choose {kj} as

k1 = (1, 0), k2 = (1/2,
√

3/2), k3 = (−1/2,
√

3/2). (87)

The critical value of t� is obtained as

t1c = t2c = t3c = 8π . (88)

For N = 3 we can consider a regular tetrahedron with M = 6, and {kj} are set as

k1 = (1, 0, 0), k2 = (1/2,
√

3/2, 0), k3 = (−1/2,
√

3/2, 0),

k4 = (1/2, 1/2
√

3,
√

2/3), k5 = (1/2, −1/2
√

3,
√

2/3),

k6 = (0, −1/
√

3,
√

2/3). (89)

In this case, the fixed point of {t�} is also given by t1c = t2c = · · · = t6c = 8π .
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5.2. Renormalization of t�
From the second-order perturbation appears the term that renormalizes the kinetic term, as shown in
Sect. 3. We use the following approximation here:

cos
(√

Zφkj · (φ(x) − φ(x + r))
)

= cos
(√

Zφrμ∂μ(kj · φ(x)) − · · ·
)

= 1 − 1

2
Zφ

(
rμ∂μ(kj · φ(x))

)2 + · · ·

= 1 − 1

2
Zφrμrν

∑
�m

kj�kjm∂μφ�∂νφm + · · · . (90)

We keep the diagonal terms (∂μφ�)
2, and then I (2)

1a in Sect. 3 becomes

I (2)
1a 	 − 1

32ε

∑
j�

μd−2Zφ

2tjZαj

μd+2a4α2
j k2

j�(∂μφ�)
2, (91)

where we put t� = 8π(1 + v�) and neglect terms of order v�. Then, the kinetic term is renormalized
into

∑
�

Zφ

2t�μ2−dZt�

[
1 − 1

32ε
μd+2a4

∑
j

α2
j k2

j�

]
(∂μφ�)

2. (92)

This leads to

Zt� = 1 − 1

32ε
μd+2a4

∑
j

α2
j k2

j�. (93)

Then we obtain

μ
∂t�
∂μ

= (d − 2)t� + 1

32
t�
∑

j

α2
j k2

j�. (94)

For N = 2 and M = 3 we use {kj} for an equilateral triangle; the equations for t1 and t2 read

μ
∂t1
∂μ

= (d − 2)t1 + 1

32
t1

(
α2

1 + 1

4
α2

2 + 1

4
α2

3

)
, (95)

μ
∂t2
∂μ

= (d − 2)t2 + 1

32
t2

(
3

4
α2

2 + 3

4
α2

3

)
. (96)

This is the result for the generalized multi-vertex sine-Gordon model. The qualitative property is the
same as that obtained in Sect. 3. When α ≡ α1 ∼ α2 ∼ α3, we have

μ
∂t1
∂μ

= (d − 2)t1 + C

32
t1α

2, (97)

with C = 3/2. This agrees with the previous result.
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5.3. Multi-vertex contribution to αj

For the generalized model, I (2)
1b in Sect. 3 becomes

I (2)
1b = −1

4

∑
j �=i

μdαjZαj

tjZtj

μdαjZαi

tjZti
×

∫
ddxddr exp

[
− Zφ

2

∑
�

(k2
j� + k2

i�)〈φ2
� 〉 +

∑
�

kj�ki�t�μ
2−dZt�

1

2π
K0(m0r)

]

· cos
(√

Zφ(ki · φ(x) − kj · φ(x + r))
)

. (98)

The integral with respect to r becomes

Jij :=
∫

ddr exp

(∑
�

kj�ki�t�μ
2−dZt�

1

2π
K0(m0r)

)

	 �d

∫ ∞

0
drrd−1

(
1

cm2
0(r

2 + a2)

)∑
� kj�ki�t�/4π

. (99)

We consider the region near the fixed point t� = 8π(1 + v�), where Jij is estimated as

Jij = −�d(cm2
0)

−1 1

ε
+ O(v) (100)

when ki · kj = 1/2. This indicates that

I (2)
1b 	 1

16ε

cm2
0

8π

∑
i �=j

αjαiμ
2da4

∫
ddx cos

(√
Zφ(ki − kj) · φ(x)

)
. (101)

The potential term with two-vertex correction is obtained as

∑
�

μdα�Zα�

t�Zt�

[
1 + 1

4πε

∑
m

k2
�mtm + 1

16ε

′∑
i �=j

αjαi

α�

μdcm2
0a4
]

cos
(√

Zφk� · φ
)

, (102)

where
∑′

i �=j indicates summation under the condition that ki ± kj = k�. Then we choose Zα�
as

Zα�
= 1 − 1

4πε

∑
m

k2
�mtm − 1

16ε

′∑
i �=j

αiαj

α�

μdcm2
0a4. (103)

The beta function up to the second order of α is given as

μ
∂α�

∂μ
= −2α�

(
1 − 1

8π

∑
m

k2
�mtm

)
+ 1

16

′∑
i �=j

αiαj, (104)

where we set cm2
0a2 = 1.

6. Summary

We have investigated the multi-vertex sine-Gordon model on the basis of renormalization group
theory. We employed the dimensional regularization method and the Wilsonian renormalization
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group method; the two results are consistent with each other. The generalized sine-Gordon model
contains multiple cosine (vertex) potentials labelled by momentum parameters {kj}j=1,...,M . The
vertex–vertex scattering amplitude is given by the tachyon scattering amplitude. A new vertex k� is
generated from two vertex interactions ki and kj, and they are closed when momentum parameters
{kj} satisfy the triangle condition that ki ± kj = k�. When ki and kj are orthogonal, a new vertex is
not generated. The condition ki · kj = ±1/2 is required in the dimensional regularization method.

For a two-component scalar field (N = 2), {kj} should form a triangle (Wilson method) or an
equilateral triangle (dimensional regularization) for M = 3. For a three-component scalar field
(N = 3), a regular tetrahedron forms a closed system for M = 6. For these structures, the fixed
point of {tj} is given by t1 = t2 = · · · = tM . A regular octahedron is also possible where there
are six independent kj and thus M = 6. For an equilateral triangle, regular tetrahedron, and regular
octahedron, we have

∑
j k2

j� = C(M ) for � = 1, . . . , N , where we impose the normalization
∑

� k2
j� =

1. We expect that there exist crystal structures in higher dimensions N ≥ 3 satisfying
∑

j k2
j� = const.

for any �.
The beta function of α� is generalized to include the product αiαj for which ki ±kj = k� is satisfied.

This term is a non-trivial contribution compared to the conventional sine-Gordon model. The beta
function of t� also has contributions proportional to α2

j . These terms are positive and thus do not
change the renormalization group flow of t�. The additional terms to β(α�) change the flow of (α�, tj)
qualitatively.
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