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Green’s functions of Nambu-Goldstone modes and Higgs modes in superconductors
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We examine fundamental properties of Green’s functions of Nambu-Goldstone and Higgs modes
in superconductors with multiple order parameters. Nambu-Goldstone and Higgs modes are deter-
mined once the symmetry of the system and that of the order parameters are specified. Multiple
Nambu-Goldstone modes and Higgs modes exist when we have multiple order parameters. The
Nambu-Goldstone Green function D(ω,q) has the form 1/(gN(0))2 · (2∆)2/(ω2 − c2sq

2) with the
coupling constant g and cs = vF /

√
3 for small ω and q, with a pole at ω = 0 and q = 0 indicating the

existence of a massless mode. It is shown, based on the Ward-Takahashi identity, that the massless
mode remains massless in the presence of intraband scattering due to nonmagnetic and magnetic
impurities. The pole of D(ω,q), however, disappears as ω increases as large as 2∆: ω ∼ 2∆. The
Green function H(ω,q) of the Higgs mode is given by H(ω,q) ∝ (2∆)2/((2∆)2 − 1

3
ω2 + 1

3
c2sq

2)

for small ω and q. H(ω,q) is proportional to 1/(gN(0))2 · ∆/
√

(2∆)2 + c2sq2 − ω2 for ω ∼ 2∆

and ω < ω(q) where ω(q) =
√

(2∆)2 + c2sq2. This behavior is similar to that of the σ-particle
Green function in the Gross-Neveu model. That is, the Higgs Green function H(ω,q) has the same
singularity as the Green function of the σ boson of the Gross-Neveu model. The constant part of
the action for the Higgs modes is important since it determines the coherence length of a supercon-
ductor. There is the case that it has a large eigenvalue, indicating that the large upper critical field
Hc2 may be realized in a superconductor with multiple order parameters.

I. INTRODUCTION

When global and continuous symmetries are spon-
taneously broken, gapless excitation modes, called the
Nambu-Goldstone (NG) bosons, exist and govern the
long-distance behaviors of the system. The spontaneous
symmetry breaking indicates that the state is not in-
variant under a symmetry transformation although the
Lagrangian is invariant under this transformation. The
spontaneous symmetry breaking occurs when an asym-
metric state is realized in a symmetric system. When a
continuous symmetry is spontaneously broken, a massless
boson appears, called the Nambu-Goldstone boson (NG
boson)[1–4]. The spontaneous symmetry breaking has
been studied intensively in condensed matter physics[5–
10] and in field theory[11–21].
A superconducting transition is a typical example

of the spontaneous symmetry breaking. The Nambu-
Goldstone boson and also the Higgs boson appear as-
sociated with this transition. The second-order phase
transition that occurs as a spontaneous symmetry break-
ing is characterized by the order parameter. A multi-
component (multi-band) superconductor has been stud-
ied as a generalization of the Bardeen-Cooper-Schrieffer
(BCS) theory[22]. The study of multi-band supercon-
ductivity started from works by Moskalenko[23], Suhl
et al.[24], Peretti[25] and Kondo[26]. There appear
many interesting properties in multi-band superconduc-
tors such as time-reversal symmetry breaking[27–40],
the existence of massless modes[41–46], unusual isotope
effect[47–49] and the existence of fractionally quantized-
flux vortices[50–55]. We have multiple order parameters,
and thus there appear multiple Nambu-Goldstone bosons
and Higgs bosons[41, 56–64]. This will result in signif-
icant excitation modes that are unique in multi-band

superconductors. The phase-difference mode between
two order parameters is sometimes called the Leggett
mode[65]. An effective model for the dynamics of the
phase-difference mode, that is, the sine-Gordon model
has also been examined[21, 31, 41, 66].

The purpose of this paper is to investigate properties of
Green’s functions of Nambu-Goldstone bosons (modes)
and Higgs bosons in superconductors. The Nambu-
Goldstone mode is a phase mode of the order parameter
and the Higgs mode is a fluctuation mode of the ampli-
tude of the order parameter. We have interband cou-
plings gmn as well as intraband attractive couplings gnn
in a multi-band superconductor, where m and n stand
for band indices. The matrix g ≡ (gmn) determines the
property of superconductors. The Green functions also
show dependence on the matrix g. We investigate the
dispersion relation of excitation gaps.

In an N -band superconductor, there are N Nambu-
Goldstone modes. We have one gapless mode (Nambu-
Goldstone mode) and the other N − 1 modes are mas-
sive (called the Nambu-Goldstone-Leggett or Leggett
modes) in general when there are non-zero interband
couplings gnm. The Nambu-Goldstone mode is a mode
described by the quasiparticle excitation mode, namely
the Green function D(ω,q) is proportional to D(ω,q) ∝
(2∆)2/(ω2 − c2sq

2) with finite residue for small (ω,q)

(where cs = vF /
√
3 for the Fermi velocity vF ). D(ω,q)

has, however, no singularity when ω ∼ 2∆ (where ∆ is
the gap function).

When the time reversal symmetry is broken, which de-
pends on the matrix g, some of Leggett modes become
gapless when N is greater than 2. We can incorporate
the effects of interaction in Green’s function, using the
Ward-Takahashi identity. The Nambu-Goldstone mode
remains gapless even with electron scattering due to im-
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purities.
We also examine the property of Green’s function

of the Higgs mode. The kinetic term of the action
of Higgs modes is dependent upon temperature. The
Higgs action reduces to the time-dependent Ginzburg-
Landau model (TDGL) with dissipation when the tem-
perature is close to the critical temperature Tc. At
low temperatures, instead, the action is given by the
quadratic form without dissipation. We have H(ω,q) ∝
(ω2 − (2

√
3∆)2 − c2sq

2)−1 for small ω and q, based on
the BCS theory. This has no pole when ω is small as
far as 0 ≤ ω ≤ 2∆. When ω ∼ 2∆, H(ω,q) is given by

H(ω,q) ∝ ∆/
√

(2∆)2 + c2sq
2 − ω2.

We also mention that the constant term of the action of
Higgs modes is important since it is related with the up-
per critical field Hc2. The eigenvalue y2H of the constant
term of the action of Higgs bosons is enhanced extremely
or is softened, depending on the coupling constant matrix
g. Because yH is proportional to the inverse of the coher-
ence length ξ, the upper critical field Hc2 scales linearly
with the square of yH : Hc2 ∝ y2H . The large eigenvalue
yH indicates a possibility of the large critical field Hc2.
The paper is organized as follows. In Section II, we

briefly show formulas for spontaneous symmetry break-
ing that are necessary in later Sections. In Section III, we
examine the properties of Green’s functions of Nambu-
Goldstone modes in superconductors. In Section IV, the
plasma mode is investigated in the presence of electro-
magnetic scalar potential. We discuss Green’s functions
of the Higgs modes in Section V. We give a summary in
last Section.

II. FORMULAS FOR SPONTANEOUS

SYMMETRY BREAKING

In this section, we give a brief formal theory on sponta-
neous symmetry breaking. This can be applied to multi-
band superconductivity. Let us assume that the system
is invariant under the continuous transformation given
by a compact Lie group G. g denotes the Lie algebra of
G. The elements of the basis set of g are denoted as Ta
(a = 1, · · · , NG) where NG is the dimension of G. The
transformation of the fermion field ψ is represented as

ψ → e−iθTaψ = ψ − iθTaψ +O(θ2), (1)

where θ is an infinitesimal real parameter. We set δψa =
−iθTaψ for this transformation. When the Lagrangian L
or the Hamiltonian is invariant under the transformation
ψ → ψ + δψa, there is a conserved current.

jµa =
δL

δ(∂µψ)
δψa. (2)

We have ∂µj
µ
a = 0. The conserved quantities are given

by

Qa =

∫

drJ0
a (r), (3)

where we defined

Jµ
a = jµa /θ. (4)

In spontaneous symmetry breaking, the ground state
loses a part of symmetry that the Lagrangian possesses.
We introduce an infinitesimal term in the Lagrangian to
consider a spontaneous symmetry breaking:

LSB = λψ†Mψ, (5)

where λ is a real infinitesimal parameter and M is a her-
mitian matrix in the basis set of the Lie algebra g, that
is, M ∈ {Ta}. M indicates a broken symmetry and can
be a linear combination of Ta. The second-order phase
transition is characterized by the order parameter, where
the order parameter is gien by the expectation value of
the symmetry breaking term:

∆ = 〈ψ†Mψ〉. (6)

The spontaneous symmetry breaking occurs when ∆ does
not vanish, ∆ 6= 0, in the limit λ → 0. Under the
transformation ψ → ψ − iθTaψ, LSB is transformed to
LSB + δLSB where

δLSB = iθλψ†[Ta,M ]ψ. (7)

Then, the corresponding current is not conserved:

∂µJ
µ
a = δLSB = iλψ†[Ta,M ]ψ. (8)

The Nambu-Goldstone boson is given by

πa = iψ†[Ta,M ]ψ. (9)

πa indeed indicates a massless boson, which is shown by
evaluating the Green’s function,

Daa(x− y) = −i〈Tπa(x)πb(y)〉. (10)

The Fourier transform of Daa(x − y) has a pole at q =
(ω,q) = 0 in the limit λ → 0. We set M = Tm ∈ {Ta}
and assume that ∆m ≡ 〈ψ†Tmψ〉 6= 0 in the limit λ→ 0.
Then, we can show

∆m =
1

∑

c f
2
amc

λDaa(ω = 0,q = 0), (11)

where we assumed that [Ta, Tm] 6= 0 and famc are the
structure constants defined by

[Ta, Tb] =
∑

c

ifabcTc. (12)

This indicates that

Daa(ω = 0,q = 0) ∝ 1/λ. (13)

Hence, we have a gapless mode in the limit λ→ 0.
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TABLE I. Examples of spontaneous symmetry breaking.
BEC indicates the Bose-Einstein condensation. NJL denotes
the Nambu-Jona-Lasinio model. For superconductivity ψ in-
dicates the Nambu representation ψ(x) =t (ψ↑(x), ψ

†
↓). For

ferromagnetism ψ is a doublet of fermions given by ψ(x) =t

(ψ↑(x), ψ↓(x)). For BEC,φ is a complex scalar field. In NJL
ψ is a Dirac spinor where ψ̄ = ψ†γ0.

Phenomena Symmetry Higgs boson NG boson

Superconductivity ψ → exp(iθσ3)ψ ψ†σ1ψ ψ†σ2ψ
Ferromagnetism ψ → exp(iθσ1)ψ ψ†σ3ψ ψ†σ2ψ

BEC φ→ exp(iθ)φ φ+ φ† i(φ− φ†)
NJL ψ → exp(iθγ5)ψ ψ̄ψ iψ̄γ5ψ

The Higgs boson means the fluctuation mode of the
amplitude of the order parameter. We define the Higgs
boson as

h = ψ†Tmψ. (14)

We show examples of spontaneous symmetry breaking
in Table I. Our formulation can be applied to second-
order phase transitions that occur as a spontaneous sym-
metry breaking. An application to superconductivity is
shown in the next section. In the ferromagnetic transi-
tion, SU(2) symmetry is broken to U(1) symmetry, where
the bases of Lie algebra {Ta} are given by Pauli matrices
σa. For the Hubbard model[70–74], the Lagrangian in-

cluding the interaction term V = Uψ†
↑ψ↑ψ

†
↓ψ↓ is invariant

under the transformation ψ → e−iθσaψ for ψ =t (ψ↑, ψ↓)
and a = 1,2 and 3. The symmetry breaking term is given
as the magnetization of electrons: LSB = λψ†σ3ψ.

III. NAMBU-GOLDSTONE GREEN’S

FUNCTION IN SUPERCONDUCTORS

A. Hamiltonian and excitation modes

Let us investigate Nambu-Goldstone modes in single-
band as well as multi-band superconductors. This sub-
ject has been studied intensively[24–38, 41–46, 65]. The
Hamiltonian is

H =
∑

iσ

∫

drψ†
nσ(r)Kn(r)ψnσ(r)

−
∑

ij

gnm

∫

drψ†
n↑(r)ψ

†
n↓(r)ψm↓(r)ψm↑(r),(15)

where n and m (=1,2,· · · , N) are band indices. Kn(r)
stands for the kinetic operator given by Kn(r) =
p2/(2mn)−µ ≡ ξn(p) where µ is the chemical potential.
We assume that gnm = g∗mn. The second term indicates
the pairing interaction with the coupling constants gnm.
This model is a simplified version of multi-band model

and the coupling constants gnm are assumed to be real
constants.
We use the Nambu representation

ψn =

(

ψn↑

ψ†
n↓

)

. (16)

In the sigle-band case, the Hamiltonian is invariant under
the gauge transformation

ψ → e−iθσ3ψ, (17)

for ψ = ψ1. This means the model has U(1) phase in-
variance for ψσ → e−iθψσ. In the multi-band case, how-
ever, the inter-band interactions for n 6= m break the
gauge invariance. Thus we have only one gauge invari-
ance. This indicates the existence of one massless NG
mode and other NG fields become massive modes.
In the N -band model, we have N order parameters ∆n

(n = 1, · · · , N). The symmetry breaking terms are given
by

HSB =
∑

n

λnψ
†
nσ1ψn, (18)

where ψn is the Nambu representation for the n-th band

fermions: ψn =t (ψn↑, ψ
†
n↓). λn is an infinitesimal pa-

rameter for the n-th band. According to the discussion
in the previous section, the Nambu-Goldstone fields are

πn = ψ†
nσ2ψn. (19)

The Higgs modes are represented by

hn = ψ†
nσ1ψn, (20)

for n = 1, . . . , N . hn indicates the fluctuation mode of
the amplitude of the order parameter.

B. Green’s functions of Nambu-Goldstone modes

The NG boson Green’s functions are given as a matrix
D = (Dnm) where

Dnm(x − y) = −i〈Tπn(x)πm(y)〉. (21)

The Fourier transform of Dnm(x − y) is denoted as
Dnm(ω,q). We show diagrams that contribute to NG bo-
son Green’s function in Fig.1. The equation for NG boson
Green’s functions is written as shown in Fig.2[61, 62]:

Dnm(q) = −i
∫

dk0
2π

ddk

(2π)d
tr
[

4δnmσ2Gn(k)σ2Gn(k + q)

−2
∑

ℓ

σ2Gn(k)Λnℓ(k, k + q)Gn(k + q)Dℓm(q)
]

,

(22)

for q = (ω,q) where d is the space dimension, tr means
taking the trace of a matrix and Λnℓ indicates the vertex
function. The electron Green’s function is defined as

Gn(ω,k)
−1 =

(

ω − ξ(k) −∆̄n

−∆̄n ω + ξ(k)

)

− Σn(k), (23)
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where the gap function ∆̄n is adopted to be real. We
use the four momentum notation k = (k0,k) = (ω,k).
Σn(k) indicates the self-energy part in the n-th band,
given by a 2 × 2 matrix, that represents an interaction
effect. In the finite-temperature formulation using the
Matsubara Green’s functions, the integral with respect
to k0 is replaced by the Matsubara frequency summation.
There is a relation between the vertex function Λnℓ

and the self-energy Σn based on the Ward-Takahashi
identity[61, 62]. We put the vertex function in the form:

Λnℓ =
1

4
Λ̃ngnℓσ2, (24)

where Λ̃n shows a modification due to the self-energy cor-
rection. For the BCS model without electron interaction,
we have Λ̃n = 1. We define

χNG,n(q) = −1

2
i

∫

dk0
2π

ddk

(2π)d
trσ2Gn(k)σ2Gn(k + q),

(25)

χ̃NG,n(q) = −1

2
i

∫

dk0
2π

ddk

(2π)d
trΛ̃n(k, p)σ2Gn(k)σ2

×Gn(k + q). (26)

We use the matrix notationD = (Dnm) for the NG boson
Green’s function, and those for χNG,n and χ̃NG,n:

χ = diag(χNG,1, χNG,2, · · · ), (27)

χ̃ = diag(χ̃NG,1, χ̃NG,2, · · · ). (28)

The NG boson Green function matrix is represented as

D(q) = 8g−1(g−1 + χ̃(q))−1χ(q), (29)

where g is the matrix of coupling constants given by g =
(gnℓ). For a single-band superconductor, g itself denotes
the coupling constant. The singularity ofD is determined
by the zero of g−1 + χ̃.
We can show that a massless mode indeed exists,

namely, the dispersion ω(q) approaches zero as |q| → 0.
We consider the case where the self-energy part Σn van-
ishes. χ(q) can be calculated exactly in the limit q = 0.
The inverse of D(q) for q = (ω,q) is proportional to

(D−1(ω,q))nm

∝ (g−1)nm − δnm
2
iTrσ2G

(0)
n (k)σ2G

(0)
n (k + q)

= (g−1)nm − δnm

[

fn +
1

2
Nn(0)

ω

∆̄n

1
√

1− (ω/2∆̄n)2

×tan−1

√

(ω/2∆̄n)2

1− (ω/2∆̄n)2
+O(|q|2) + · · ·

]

, (30)

for |q| → 0 where ∆̄n is the mean-field value of the order
parameter and δnm is the Kronecker delta. vFn is the
Fermi velocity of the n-th band, and Nn(0) is the density
of states at the Fermi surface in the n-th band. We used
the notation

fn = Nn(0)

∫

dξk
1

2En
tanh

(

En

2kBT

)

, (31)

for En =
√

ξ2k + ∆̄2
n. Because the gap equation is given

as

det(g−1 − F ) = 0, (32)

where F = diag(f1, · · · , fN) is the diagonal matrix with
elements fn (n = 1, · · · , N), detD−1(ω,q) has a zero
as ω → 0 and q → 0, indicating that ω(q) → 0 as
q → 0. Thus the NG mode exists with vanishing gap.
The other N −1 modes become massive due to the inter-
band couplings gnm. These modes are called the Leggett
modes[65]. When all the couplings gnm vanish, we have
N massless modes.

+
σ2 σ2 + · · ·σ2 σ2

FIG. 1. Diagrams for Nambu-Goldstone boson Green’s func-
tion. The solid line shows the electron propagator and the
dashed line denotes the BCS pairing interaction.

= σ2 σ2 δnm + σ2

n

n

n

Λnℓ

n

Dnm Dℓm

FIG. 2. Diagrams for the equation of Nambu-Goldstone boson
Green’s function. The solid line shows the electron propaga-
tor and the wavy line denotes the NG Green function. We
introduced the vertex function indicated by the dot.

C. Poles of the NG boson Green’s function D

The energy dispersion of the NG mode is determined
by the poles of the NG Green function. In general, we
have one massless mode and N − 1 gapped modes for
an N -band superconductor. The poles depend on the
intraband and interband couplings gnm. We consider the
case Σn = 0 in this subsection. In this case we have
χ̃ = χ.
We assume that vFn|q|/q0 is small for q = (q0,q). At

absolute zero, we obtain

χNG,n(q) = −Nn(0)

∫

dξk
1

2En(ξk)

−Nn(0)
q̃n
2∆̄n

1
√

1− (q̃n/2∆̄n)2

× tan−1

(

q̃n
2∆̄n

1
√

1− (q̃n/2∆̄n)2

)

, (33)

for

q̃n =

√

q20 −
1

3
v2Fnq

2, (34)
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where we used an approximation (vF ·q)2 ≈ (1/3)v2F |q|2.
q0 and q appear as a linear combination q20 − (1/3)v2Fnq

2

for vFn|q|/q0 ≪ 1. The equation det(g−1 + χ̃)(q) =
0 determines the dispersion relation of the NG modes.
We have one massless mode since detD−1(q) vanishes as
q = (q0,q) → 0. D(q) has a pole with a finite residue.
Using tan−1 x = x − (1/3)x3 + · · · , for a single-band
superconductor, the NG Green function for small q0 and
q is written as

D(q) ≃ 8N(0)
1

(gN(0))2
(2∆)2

q20 − c2sq
2
, (35)

where cs = vF /
√
3. In the two-band case, we obtain

D(q) = D̃(q)
[ γ12
4∆̄1∆̄2

(N1 +N2)(q
2
0 − v2NGq

2)

+
N1N2

16∆̄2
1∆̄

2
2

(q40 −
1

3
(v2F1 + v2F2)q

2
0q

2)
]−1

, (36)

where

v2NG =
1

3

N1v
2
F1 +N2v

2
F2

N1 +N2
, (37)

and we write Nm = Nm(0). γnm is the strength of
Josephson coupling defined as the inverse of g:

γnm = (g−1)nm. (38)

There are corrections to the coefficient of q40 and q20q
2,

which are of the order of γ12. We neglected them in
eq.(36). D̃(q) is a matrix given as

D̃(q) = g−1

(

γ22 − f2 −N2I(
q̃2
2∆̄2

) −γ12
−γ21 γ11 − f1 −N1I(

q̃1
2∆̄1

)

)

×
(

χ1(q) 0
0 χ2(q)

)

,

(39)

where we put

I(x) =
x√

1− x2
tan−1

(

x√
1− x2

)

. (40)

In deriving D(q) in eq.(36), we used the gap equation
written as

(γ11 − f1)∆̄1 + γ12∆̄2 = 0, (41)

γ21∆̄1 + (γ22 − f2)∆̄2 = 0. (42)

From zeros of the denominator of eq.(36), the dispersions
of excitation modes (Nambu-Goldstone-Leggett modes)
are determined. The Nambu-Goldstone mode has the
dispersion ωNG(q) = vNG|q|, and the massive mode
has[67]

ωNGL(q)
2 = ω2

L + v2Lq
2, (43)

where

ωL =

√

√

√

√

√

4|γ12∆̄1∆̄2|N1+N2

N1N2

1 + 2
3γ12

(

1
N1

∆̄1

∆̄2

+ 1
N2

∆̄2

∆̄2

) , (44)

v2L =
1

3

N1v
2
F2 +N2v

2
F1

N1 +N2

+
2

9
v2F1

(

γ12
N2

∆̄2

∆̄1
− γ12
N1

∆̄1

∆̄2

)

×
(

1 +
2

3
γ12

(

1

N1

∆̄1

∆̄2
+

1

N2

∆̄2

∆̄2

))−1

,

+
2

9
v2F2

(

γ12
N1

∆̄1

∆̄2
− γ12
N2

∆̄2

∆̄1

)

×
(

1 +
2

3
γ12

(

1

N1

∆̄1

∆̄2
+

1

N2

∆̄2

∆̄2

))−1

.

(45)

We included a correction of the order of γ12. Here please
note that when γ12 < 0, we have ∆̄1∆̄2 > 0, and when
γ12 > 0, ∆̄1∆̄2 < 0 from the gap equation. Thus,
γ12∆̄1∆̄2 < 0.
We show the excitation energy as a function of g12

for two-band superconductors in Fig. 3. There are two
massless modes when g12 = 0, and the one mode becomes
massive for non-zero g12. The excitation energy ωL of
the Leggett mode is dependent upon coupling constant
{gnm}. We show ωL as a function of g22 in Fig. 4 for a
two-band superconductor. The excitation gap energy is
determined as a zero of detD−1(ω,q = 0) which is shown
in Fig. 5.
For a three-band superconductor, det(g−1 + χ) is ex-

panded as follows for small q0 and q:

det(g−1 + χ)

= −N1 +N2 +N3

4(∆̄1∆̄2∆̄3)2
(γ12γ13∆̄

2
1∆̄2∆̄3 + γ12γ23∆̄1∆̄

2
2∆̄3

+ γ13γ23∆̄1∆̄2∆̄
2
3)(q

2
0 − v2NGq

2)

− 1

16(∆̄1∆̄2∆̄3)2
[

N2(N1 +N3)γ13∆̄1∆̄3

+N1(N2 +N3)γ23∆̄2∆̄3 +N3(N1 +N2)γ12∆̄1∆̄2

]

q40

− 1

64(∆̄1∆̄2∆̄3)2
N1N2N3q

6
0

+
1

16(∆̄1∆̄2∆̄3)2
[

N1N2(γ13∆̄1∆̄3 + γ23∆̄2∆̄3)

×1

3
(v2F1 + v2F2) +N2N3(γ12∆̄1∆̄2 + γ13∆̄1∆̄3)

×1

3
(v2F2 + v2F3) +N1N3(γ12∆̄1∆̄2 + γ23∆̄2∆̄3)

×1

3
(v2F1 + v2F3)

]

q20q
2 + · · · , (46)

where we assume γnm = γmn and used the gap equation
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for three gaps:




γ11 − f1 γ12 γ13
γ21 γ22 − f2 γ23
γ31 γ32 γ33 − f3









∆̄1

∆̄2

∆̄3



 = 0. (47)

The velocity for the NG mode in the three-band case is
given by

v2NG =
1

3

N1v
2
F1 +N2v

2
F2 +N3v

2
F3

N1 +N2 +N3
. (48)

The velocity vNG in the N -band case is straightforwardly
obtained as

v2NG =
1

3

N1v
2
F1 + · · ·+NNv

2
FN

N1 + · · ·+NN
. (49)

The gap ωL of the massive mode is obtained as a zero of
det(g−1+χ) in the limit q → 0, that is, a solution of the
cubic equation for q20 . ωL is given as

ω2
L = −2A1

A0
± 2

A0

√

A2
1 − 4A0A2, (50)

where

A0 = N1N2N3, (51)

A1 = N1(N2 +N3)γ23∆̄2∆̄3 +N2(N1 +N3)γ13∆̄1∆̄3

+N3(N1 +N2)γ12∆̄1∆̄2, (52)

A2 = (N1 +N2 +N3)∆̄1∆̄2∆̄3(γ12γ13∆̄1 + γ12γ23∆̄2

+γ13γ23∆̄3). (53)

Here we assumed that A1 < 0 and A2
1 − 4A0A2 ≥ 0. The

lower energy gap is given by (2/A0)(|A1|−
√

A2
1 −A0A2).

If A2
1 ≫ A0A2 is satisfied, this leads to ω2

L ≈ 4A2/|A1|.
When the contribution of one band is small, say N3 ≪
N1, N2, this gap reduces to that of the Leggett mode in
the two-band case.
In the three-band case, there are in general three zeros

in the determinant detD−1(ω,q = 0) as shown in Fig.
6. When N ≥ 3, there is the case where several Leggett
modes become massless. This is shown in Fig. 7 where
the excitation energy ωL is presented as a function of
g12. ωL vanishes and one mode becomes massless when
the time-reversal symmetry is broken.
Let us turn to examine D(q) when q̃n ∼ 2∆̄n (q̃n ≤

2∆̄n). An analytic property of χ(q) will be changed
as q0 approaches the threshold energy 2∆̄n. Using
tan−1(1/t) ≃ π

2 − t+ 1
3 t

3 + · · · for small t > 0, we have

χn(q) ≃ −fn −Nn(0)
π

2

2∆̄n
√

(2∆̄n)2 +
1
3v

2
Fnq

2 − q20

, (54)

for q̃n =
√

q20 − 1
3v

2
Fnq

2 ≃ 2∆̄n. In the single-band case,

the Green function D(q) is

D(q) ≃ 8

g

(

1 +
1

gN(0)π∆̄

√

(2∆̄)2 +
1

3
v2Fq

2 − q20 + · · ·
)

.

(55)

At the threshold q̃ = 2∆̄, D(q) becomes a constant:
D(q) ≃ 8/g. D(q) has no pole as a function of q0 and
loses a quasiparticle character in this region.
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FIG. 3. Gap energy of the Nambu-Goldstone-Leggett mode
as a function of N1(0)g12 for two-band superconductors. The
parameters are (a) N1(0)g11 = N2(0)g22 = 0.3, and (b)
N1(0)g11 = 0.3 and N2(0)g22 = 0.25. We set ∆m =
min(∆̄1, ∆̄2) and N1(0) = N2(0).
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FIG. 4. Gap energy of the Nambu-Goldstone-Leggett mode as
a function of N2g22 for a two-band superconductor. We used
N1g11 = 0.3 and N1g12 = 0.02. We set ∆m = min(∆̄1, ∆̄2)
and N1(0) = N2(0).

D. Ward-Takahashi identity and impurity

scattering

We investigate the effect of impurity scattering on
the Nambu-Goldstone modes in superconductors. The
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FIG. 5. The determinant detD1(ω,q = 0) as a function of
ω/(2∆m) where D1 = g−1 + χ. The zero of detD1 indicates
the excitation energy. We used N1g11 = 0.3, N2g22 = 0.25
and N1g12 = 0.03. We set ∆m = min(∆̄1, ∆̄2) and N1(0) =
N2(0).
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FIG. 6. The determinant detD1(ω,q = 0) as a function of
ω/(2∆m) for D1 = g−1 + χ in a three-gap case. The zero of
detD1 indicates the excitation energy, There are three zeros
in the three-gap case. We used N1g11 = N2g22 = N3g33 =
0.3, N1g12 = 0.05, N1g23 = 0.04 and N1g13 = 0.02. We set
∆m = min(∆̄1, ∆̄2, ∆̄3) and N1(0) = N2(0) = N3(0).

Hamiltonian for impurity scattering that we consider is

0
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FIG. 7. Gap energy of the Nambu-Goldstone-Leggett mode
as a function of N1g12 in a three-gap case. The zero of
detD1 indicates the excitation energy, There are three ze-
ros in the three-gap case. We used N1g11 = N2g22 =
N3g33 = 0.3, N1g23 = 0.05, and N1g23 = 0.02. We set
∆m = min(∆̄1, ∆̄2, ∆̄3) and N1(0) = N2(0) = N3(0).

written as

Himp =
∑

i

∑

mσ

u1mm(r−Ri)ψ
†
mσ(r)ψmσ(r)

+
∑

i

∑

m

u2m(r−Ri)Si · smi

≡
∑

m

∑

σσ′

ψ†
mσVmσσ′ψmσ′ . (56)

where Ri indicates the position of an impurity, Si indi-
cates the spin operator of the impurity spin and smi is
the spin operator of the electron in the m-th band. Here
we consider only the intra band scattering for simplicity
because the interband scattering breaks the gauge invari-
ance under ψmσ → e−iθmψmσ.
We introduce the matrix self-energy to take account of

the electron scattering due to non-magnetic and magnetic
impurities:

Σm =

(

Σ1m Σ2m

Σ∗
2m Σ1m

)

. (57)

We write the Green function in the form,

Gm(k) =

(

Gm↑↑(k) Fm(k)
F ∗
m(k) Gm↓↓(k)

)

. (58)

Here we use the finite-temperature formalism by putting
k0 → iωn where ωn = (2n + 1)π/β is the Matsubara
frequency[68]. In the impurity scattering, self-energies
are given as[69]

Σ1m(iωn,k) =
1

2πτ1m

∫

dξkGm↑↑(iωn,k), (59)

Σ2m(iωn,k) =
1

2πτ2m

∫

dξkFm(iωn,k), (60)
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where τ1m and τ2m indicate relaxation times in the m-th
band due to impurity scattering. We have τ1m = τ2m for
scattering by non-magnetic impurities, and τ1m 6= τ2m
for magnetic impurities.
Σ1m and Σ2m are related as follows.

Σ1m(iωn) = − i

2τ1m

ωn + iΣ1m
√

(ω2
n + iΣ1m)2 + (∆̄m +Σ2m)2

,

(61)

Σ2m(iωn) =
1

2τ2m

∆̄m +Σ2m
√

(ω2
n + iΣ1m)2 + (∆̄m +Σ2m)2

.

(62)
We define τsm by

1

τsm
=

1

τ1m
− 1

τ2m
. (63)

When 1/τsm is small, Σ1m and Σ2m are expanded as

−Σ1m(iωn) =
1

2τ1m

iωn
√

ω2
n + ∆̄2

m

+
1

4τ1mτsm

iωn∆̄
2
m

(ω2
n + ∆̄2

m)2
,

(64)

Σ2m(iωn) =
1

2τ2m

∆n
√

ω2
n + ∆̄2

m

− 1

4τ2mτsm

iω2
n∆̄m

(ω2
n + ∆̄2

m)2
,

(65)

The inverse Green function is expressed as

G−1
n (iω,k) =

(

iω − ξ(K)− Σ1m −∆̄n − Σ2n

−∆̄∗
n − Σ∗

2n iω + ξ(k)− Σ1n

)

.

(66)

The Ward-Takahashi identity is used to obtain a re-
lation between the self-energy and the vertex function.
The Ward-Takahashi identity is given as[61, 62]

(q − k)µGn(k)Γ
µ
nm(k, q)Gn(q)

= iδnmσ3Gn(q) − iδnm(k)σ3 − λmGn(k)Γnm(k, q)Gn(q),

(67)

where

Γnm(k, q) = −2δnmσ2 +
∑

ℓ

ΛnℓDℓm(q − k). (68)

When q → k, we have

iG−1
n (k)σ3 − iσ3G

−1
n (k)−

∑

m

λmΓnm(k, k) = 0. (69)

The relation in eq.(11) is generalized to the multiband
case as:

∑

m

λmDnm(q → 0) = −8∆̄n, (70)

as λm → 0. Then we obtain
∑

m

λmΓnm(k, k) → −8
∑

ℓ

Λnℓ(k, k)∆̄ℓ (71)

in the limit λm → 0. This results in

iG−1
n (k)σ3 − iσ3G

−1
n (k) + 8

∑

ℓ

Λnℓ(k, k)∆̄ℓ = 0. (72)

The vertex function is determined as Λnℓ = (1/4)Λ̃ngnℓσ2
with

Λ̃n = 1 +
Σ2n

∆̄n
= 1 +

1

2τ2n

1
√

ω2 + ∆̄2
n

. (73)

Here we used the gap equation given by

∆̄n =
∑

ℓ

gnℓ
1

β

∑

ω

∫

ddk

(2π)d
Fℓ(iω,k). (74)

From this relation, we can show that the NG boson Green
function D(q) has a pole at q = (q0,q) = 0. In fact, the
matrix g−1 + χ̃(q) in the limit q → 0 is represented as

(g−1)nℓ + δnℓχ̃NG,n(q = 0)

= (g−1)nℓ

−δnℓ
1

∆̄n
Nn(0)π

1

β

∑

ω

∆̄n + Σ2n
√

(ω + iΣ1n)2 + (∆̄n +Σ2n)2
.

(75)

The determinant of this matrix vanishes because of the
gap equation written as

det

(

(g−1)nℓ − δnℓ
1

∆̄n
sn

)

= 0, (76)

where

sn = πNn(0)
1

β

∑

ω

∆̄n +Σ2n
√

(ω + iΣ1n)2 + (∆̄n +Σ2n)2
. (77)

IV. PLASMA MODE

The Nambu-Goldstone mode becomes a massive
plasma mode in the presence of the Coulomb potential.
The plasma mode is represented by the spatial derivative
of the phase variables θn where the order parameters are
parametrized as ∆n = ei2θn(∆̄n + hn). The action den-
sity for θj is written as[60, 62]

L[θ] =
∑

j

[

Nj(0)(∂τθj − eφ)2 + nj
1

2mj
(∇θj)2

]

+
1

8π
(∇φ)2 +

∑

ij

∆̄i(g
−1)ij∆̄j cos(2(θi − θj)),

(78)

where e is the charge of the electron and φ indicates the
Coulomb potential. The effective action for θj is obtained
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by integrating out the field φ:

L[θ] = 1

8πe2N(0)2

∑

jj′a

Nj(0)Nj′(0)∂τ ζja∂τζj′a

+
∑

ja

nj

2mj
ζ2ja +

∑

j

Nj(0) (∂τθj)
2

− 1

N(0)





∑

j

Nj(0)∂τθj





2

+
∑

ij

∆̄i(g
−1)ij∆̄j cos(2(θi − θj)) + · · · , (79)

where we put

ζja = ∇aθj , (80)

and N(0) =
∑

j Nj(0). The index a takes x, y and z.
In the single-band case, the plasma frequency is given

by

ω2
pl,a = 4πe2n/ma, (81)

where n = n1 is the electron density. In the two-band
case, the quadratic part of ζja is written as

1

β

∑

ℓ

1

8πe2N(0)2

∑

a

(ζ1a(ωℓ) ζ2a(ωℓ))Mζ

(

ζ1a(−ωℓ)
ζ2a(−ωℓ)

)

,

(82)

where

Mζ

=

(

ω2
ℓN1(0)

2 + 4πe2N(0)2n1

m1a
ω2
ℓN1(0)N2(0)

ω2
ℓN1(0)N2(0) ω2

ℓN2(0)
2 + 4πe2N(0)2n2

m2a

)

,

(83)

where N(0) = N1(0) + N2(0). Then, the plasma fre-
quency is given by the solution of detMζ(iωℓ → ω+iδ) =
0:

ω2
pl,a = 4πe2

n1n2

m1am2a

(N1(0) +N2(0))
2

n1

m1a

N2(0)2 +
n2

m2a

N1(0)2
. (84)

In an N -gap superconductor, the plasma frequency is
generalized to be

ω2
pl,a = 4πe2

n1 · · ·nN

m1a · · ·mNa
N(0)2

[

N1(0)
2 n2 · · ·nN

m2a · · ·mNa

+ · · ·+NN(0)2
n1 · · ·nN−1

m1a · · ·mN−1,a

]−1

,

(85)

for a = x, y and z where N(0) =
∑

j Nj(0). When N
gaps are equivalent, this formula reduces to

ω2
pl,a = 4πe2

n

ma
N. (86)

V. HIGGS GREEN’S FUNCTION IN

SUPERCONDUCTORS

A. Higgs Green’s function

The Green functions for the Higgs boson hn = ψ†
nσ1ψn

are defined by

Hnm(x− y) = −i〈Thn(x)hm(y)〉. (87)

The effective action for the Higgs fields, up to the one-
loop order, is written as

S[h] = −
∑

nm

∫

dtddxhn(g
−1)nmhm

+
i

2

∑

n

TrhnG
(0)
n (p)σ1G

(0)
n (p+ q)σ1hn. (88)

When the temperature T is near Tc, this gives the well-
known time-dependent Ginzburg-Landau (TDGL) ac-
tion. In the TDGL action, due to the dissipation effect,
the Higgs mode may not be defined clearly. The Higgs
mode is well defined at low temperatures.
The second term in the effective action eq.(88) for the

Higgs field is the one-loop contribution given by

Πn(iǫ,q) =
1

2β

∑

n

1

V

∑

p

tr
[

G(0)
n (iωn + iǫ,p+ q)σ1

×G(0)
n (iωn,p)σ1

]

, (89)

where we use the Matsubara formalism. At absolute zero,
Πn(q0,q) (where q0 = iǫ) is expanded in |q| as

Πn(q0,q) = −Nn(0)

∫

dξ
1

2En(ξ)

+Nn(0)
(

4∆̄2
n − q20

) 1

4∆̄2
n

F

(

q0
2∆̄n

)

+Nn(0)
1

3
c2ns

(

q

2∆̄n

)2

+ · · · , (90)

where c2ns = v2Fn/3 and En(ξ) =
√

ξ2 + ∆̄2
n. F (x) is

given by[61]

F (x) =
1

x
√
1− x2

tan−1

(

x√
1− x2

)

(0 ≤ x < 1) (91)

F (x) = − i

x
√
x2 − 1

π

2
+

1

2x
√
x2 − 1

ln
∣

∣

∣

x−
√
x2 − 1

x+
√
x2 − 1

∣

∣

∣

(1 < x). (92)

We used an approximation that the density of states is
constant.
When q0 and q are small, we have for a single-band

superconductor

1

g
+Π(q0,q) = N(0)

[

1− 1

3

( q0
2∆̄

)2 ]

+N(0)
1

3
c2s

( q

2∆̄

)2

.

(93)
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This is proportional to the inverse of the Fourier trans-
form of the Higgs Green function. This agrees with the
effective action for the Higgs mode obtained by means of
the functional integral method given as[62, 63]

S(2)[h] =

∫

dτddxN(0)
[ 1

12∆̄2

(

∂h

∂τ

)2

+
v2F

36∆̄2
(∇h)2

+h2
]

, (94)

in the imaginary-time formulation. Please note that
1/g + Π(q) does not have a zero when q0 is small as far
as 0 ≤ q0 < 2∆̄. We show the behavior of F (x) in Fig.8
and g−1 +Π(ω,q = 0) as a function of ω in Fig.9.
When vFn|q|/q0 ≪ 1, the g−1 +Π is given by
(

g−1 +Π
)

mn
= (g−1)mn − δmnfn

+ δmnNn(0)
[

1−
(

q̃n
2∆̄n

)2
]

F

(

q̃n
2∆̄n

)

,

(95)

where we put

q̃n =

√

q20 −
1

3
v2Fnq

2, (96)

for the Fermi velocity vFn in the n-th band.
We indicate the Fourier transform of the Higgs Green

function Hnm(x− y) as Hnm(q):

Hnm(x) =

∫

dp0
2π

ddp

(2π)d
eip0x0+ip·xHnm(p), (97)

for p = (p0,p). In a similar way as to the NG boson, the
Higgs Green function satisfies[61]

Hnm(q) = −i
∫

dk0
2π

ddk

(2π)d
tr
[

δnmσ1Gn(k)σ1Gn(k + q)

−
∑

ℓ

σ1Gn(k)ΛH,nℓ(k.k + q)Gn(k + q)Hℓm(q)
]

,

(98)

where we introduced the vertex function ΛH,nℓ. We can
put this in the form

ΛH,nℓ =
1

2
gnℓσ1. (99)

Then the matrix of Higgs Green’s function H = (Hnm)
is written as follows.

H(q) = 2g−1(g−1 +Π(q))−1Π(q), (100)

where Π(q) is the diagonal matrix with elements Πn(q)
(n = 1, · · · ): Π(q) = diag(Π1(q),Π2(q), · · · ).
In the single-band case, the Higgs Green function for

small q0 and q is given by

H(q) ≃ 2N(0)
1

gN(0)

(2∆̄)2

(2∆̄)2 − 1
3q

2
0 +

1
3c

2
sq

2
. (101)

When q0 is as large as 2∆̄, H(q) is approximated as

H(q) ≈ − 8

π
N(0)

(

1

gN(0)

)2
∆̄

√

ω(q)2 − q20
. (102)

for q0 < ω(q) where

ω(q) =

√

(2∆̄)2 +
1

3
v2Fq

2. (103)

In the latter case, the singularity is given by a square root
function. Thus, H(q) represents a fluctuation mode, not
a quasiparticle excitation mode since the residue at q0 =
ω(q) vanishes. H(q) is defined on a Riemann surface with
a cut from q0 = −ω(q) to q0 = ω(q) om the real axis.
For q0 > ω(q), there is the imaginary part representing
the damping effect:

H(q)−1 ≈ −1

2
g2N(0)

1

(2∆̄)2
(

q20 − ω(q)2
)

−iπ
4
g2N(0)

1

2∆̄

√

q20 − ω(q)2, (104)

when q0 is near ω(q). This behavior of the Higgs Green
function is similar to that of the σ-particle Green function
in the Gross-Neveu model[75]. The Higgs mode consid-
ered here has strong similarity with the σ boson of the
Gross-Neveu model in two dimensions. In fact, the Green
functionGσ(p), where p = (p0, p1), of the σ boson is given
as up to the one-loop order

iGσ(p)
−1 = g2

Nf

π

√

4∆̄2 − p2

p2
tan−1

√

p2

4∆̄2 − p2
,

(105)
for 0 < p2 ≡ p20 − p21 < (2∆̄)2, and

iGσ(p)
−1 = −g2Nf

2π

[

√

p2 − 4∆̄2

p2
ln

∣

∣

∣

∣

∣

√

p2 −
√

p2 − 4∆̄2

√

p2 +
√

p2 − 4∆̄2

∣

∣

∣

∣

∣

+ iπ

√

p2 − 4∆̄2

p2

]

, (106)

for p2 > (2∆̄)2, where Nf is the number of fermions and
g is the coupling constant in the Gross-Neveu model. For
p2 < 0 we have

iGσ(p)
−1 = −g2Nf

2π

√

−p2 + 4∆̄2

−p2 ln

∣

∣

∣

∣

∣

√

−p2 −
√

−p2 + 4∆̄2

√

−p2 +
√

−p2 + 4∆̄2

∣

∣

∣

∣

∣

.

(107)
In the two-band case, the Higgs Green function is given

as

H(q) = 2g−1

(

γ11 +Π1 γ12
γ21 γ11 +Π2

)−1(
Π1 0
0 Π2

)

=
2

(γ11 − f1)d2 + (γ22 − f2)d1 + d1d2

×
[ 1

detg

(

Π1 0
0 Π2

)

+Π1Π2

(

γ11 γ12
γ21 γ22

)

]

,

(108)
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where we set Πn(q) = −fn + dn(q) where

dn(q) = Nn(0)
[

1−
(

q̃n
2∆̄n

)2
]

F

(

q̃n
2∆̄n

)

, (109)

and γnm = (g−1)nm. We assume that γnm = γmn. Here
we used the gap equation

det

(

γ11 − f1 γ12
γ21 γ22 − f2

)

= 0. (110)

It is seen from this expression that the Green function
H(q) shows no divergence when ∆̄1 6= ∆̄2 in general.
This is shown in Fig. 10. The Higgs mode is not a
quasiparticle mode and exists as a fluctuation mode in a
multiband superconductor.
We define the Higgs constant potential V = (Vmn) as

Vmn = (g−1)mn + δmnΠn(q0 = 0,q = 0). (111)

This is something like the ’mass term’ for Higgs fields hn.
In the subsection 5.4, we evaluate the eigenvalue y2H of
this matrix, by solving the gap equation. In a usual field
theory, yH indicates the mass of the field h. In a super-
conductor, however, yH is different from the excitation
gap because yH is not determined from a singularity of
the Higgs Green function. The eigenvalues yHn, however,
characterize the Higgs modes and determine the spatial
expanse of the Higgs fields. In case det(Vmn) = 0, one
eigenvalue vanishes.

-2
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F
(x
)

x

FIG. 8. F (x) as a function of x = q0/2∆̄. F (x) has a sin-
gularity at x = 1. The ’mass’ term is obtained by expanding
(1− x2)F (x) in terms of x.

B. Kinetic terms of the Higgs mode

We discuss the kinetic terms of Higgs boson in this sub-
section briefly, where the kinetic terms mean (∂τh)

2 and
(∇h)2. The time-dependent Ginzburg-Landau model

0
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(1
/g
+
Π
(ω

,0
))
/N
(0
)

ω/2∆

FIG. 9. g−1 + Π(ω,q = 0) as a function of the x ≡ ω/2∆̄.
The dash-dotted line shows the curve 1 − x2/3. The dotted
line indicates 1 − x2 that corresponds to the Nambu-Jona-
Lasinio model whereN(0) is replaced by the divergent integral
I0 ≡ (1/4π2) ln(Λ/∆̄) with the cutoff Λ.
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FIG. 10. detH1 as a function of ω/2∆m in a two-band case
where H1 = Re(g−1 + Π). The lower curve is for N1g11 =
0.3, N2g22 = 0.25 and N1g12 = 0 and the upper curve is
for N1g11 = 0.3, N2g22 = 0.25 and N1g12 = 0.05. We put
∆m = min(∆̄1, ∆̄2, ∆̄3). When the interband g12 vanishes,
we have zeros at ω = ∆̄1 and ω = ∆̄2.

with dissipation is often used in a study of nonequilib-
rium properties of superconductors near the critical tem-
perature Tc. At low temperature T ≪ Tc, the action for
the Higgs mode is given by the quadratic from as shown
in the previous subsection. Thus there is a temperature
dependence. We consider here the single-band case for
simplicity. The coefficient of h∂2τh is given as, up to the
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FIG. 11. Eigenvalue y2H in a two-band superconductor as a
function of the interband coupling g12. yH is measured in unit
of that in the case of g12 = 0. We set g11N̄(0) = g22N̄(0) =
0.35 for N̄(0) = N1(0) = N2(0). The Higgs ’mass’ of one
mode remains a constant whereas the other ’mass’ grows very
large as g12 increases.

TABLE II. Kinetic terms of the Higgs field h in the action
at absolute zero T ∼ 0 and near T ∼ Tc (for the single-band
case).

T ∼ 0 T ∼ Tc

τ -part 1
12∆̄2N(0)

(

∂h
∂τ

)2 πh̄
8kBTc

hi∂h
∂τ

x-part 1
36∆̄2N(0)h̄2v2F (∇h)2 7ζ(3)h̄2v2

F

48π2k2

B
T2
c

N(0) (∇h)2

one-loop order,

Iτ ≡ 1

β

∑

ℓ

1

V

∑

k

[ ∆̄2 − ω2
ℓ − ξ2k

(ω2
ℓ + ξ2k + ∆̄2)3

− 2
ω2
ℓ

(ω2
ℓ + ξ2k + ∆̄2)3

−4
∆̄2 − ω2

ℓ − ξ2k
(ω2

ℓ + ξ2k + ∆̄2)4
ω2
ℓ

]

, (112)

where ξk denotes the electron dispersion relation. The
coefficient of h(v · ∇)2h is similarly give by

Ix ≡ 1

β

∑

ℓ

1

V

∑

k

[ ∆̄2 − ω2
ℓ − ξ2k

(ω2
ℓ + ξ2k + ∆̄2)3

− 2
ξ2k

(ω2
ℓ + ξ2k + ∆̄2)3

−4
∆̄2 − ω2

ℓ − ξ2k
(ω2

ℓ + ξ2k + ∆̄2)4
ξ2k

]

. (113)

At absolute zero, Iτ and Ix are the same since we can
exchange ωℓ and ξk. When T approaches Tc, Iτ vanishes
at some T . Then, when T ∼ Tc, the time-dependence of
h field should be given by the time-dependent Ginzburg-
Landau functional. We show the kinetic terms at T = 0
and T ∼ Tc in Table II.

C. Higgs constant potential

The Higgs constant potential V is defined by V =
g−1 + Π in the limit of q0 → 0 and q → 0. The poten-
tial V in a multi-band superconductor is crucially depen-
dent upon the coupling-constant matrix g. The quadratic
from of hn in this limit is given as

M [h] ≡
∑

mn

hmMmnhn

=
∑

mn

hm (γmn − δmnfm + δmnρm)hn, (114)

where we set

γmn = (g−1)mn, (115)

ρm =

∫

ddk

(2π)d
1

β

∑

ℓ

2∆̄2
m

(ω2
ℓ + ξ2k + ∆̄2

m)2
. (116)

γmn indicates the strength of the Josephson coupling be-
tween m and n bands. ρm = ρm(T ) equals the density of
states Nm(0) at absolute zero and is proportional to ∆̄2

m

near Tc:

ρm =

{

Nm(0) at T = 0,

Nm(0) 7ζ(3)
4π2k2

B
T 2
c

∆̄m(T )2 for T ∼ Tc.
(117)

The gap function ∆̄m are determined by the gap equa-
tion,

∑

m

γnm∆̄m = fn∆̄n. (118)

In the single-band case, we have M11 = ρ1 because of
the gap equation. In the two-band case, M = (Mmn) is
given by the 2× 2 matrix:

M =

(

γ11 − f1 + ρ1 γ12
γ21 γ22 − f2 + ρ2

)

. (119)

The critical temperature Tc is given as

kBTc =
2eγωc

π
e−λ, (120)

where

λ =
g11/N2 + g22/N1

2detg
− 1

detg

√

1

4

(

g11
N2

− g22
N1

)2

+
g12g21
N1N2

,

(121)

and ωc is the cutoff. In the simple case where two bands
are equivalent with g11 = g22, g12 = g21 and N1 = N2,
the superconducting gap at T = 0 is

∆̄1 = ∆̄2 = 2ωce
−λ, (122)

where

λ =
1

detg

(

g11
N1

− |g12|
N1

)

=
1

(g11 + |g12|)N1
. (123)
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In this case, we must notice that ∆n and Tc are finite
even when detg = 0.
When detg = 0, the gap functions are obtained as

∆̄1 = 2ωc exp

(

− 1

g11N1 + g22N2

(

1− 1

2
g22N2 ln

(

g22
g11

)))

,

(124)

for g12 = g21. ∆̄2 is obtained by exchanging the indices 1
and 2. This is in contrast to the single-band case where
the vanishing of g means the disappearance of supercon-
ductivity. A singular behavior of the ’mass’ spectra oc-
curs when the determinant detg is small. We call the
region with small detg the critical region in the follow-
ing. We find that one of the eigenvalues of the matrix M
can be very large in this region.

D. Spectra of the Higgs potential in the two-band

model

Let us consider the two-band case. There are two cases
that should be examined; they are (a) detg > 0 and (b)
detg < 0. Since the fields hi have the same dimension as
∆i, we define the fields ηn by

hn = ∆̄nηn. (125)

Correspondingly, we define the Higgs mass matrix M̃ as

M̃ =

(

(γ11 − f1 + ρ1)∆̄
2
1 γ12∆̄1∆̄2

γ12∆̄1∆̄2 (γ22 − f2 + ρ2)∆̄
2
2

)

.

(126)

(a) Higgs modes for detg > 0.

In this case, detg = g11g22 − g12g21 > 0. The
Josephson couplings γij are

γ11 =
g22
detg

, γ22 =
g11
detg

, γ12 = − g12
detg

.

(127)

We assume that g11 > 0 and g22 > 0, namely, the inter-
action in each band is attractive. Then, w have γ11 > 0
and γ22 > 0. We also set g12 = g21. When γ12 = 0, the
gap equation reduces to γnn − fn = 0 (n = 1, 2). For
γ12 6= 0, fn decreases, that is, ∆̄n increases, and thus
γnn − fn > 0. The eigenvalues x of M̃ are given as

x =
1

2
{(γ11 − f1 + ρ1)∆̄

2
1 + (γ22 − f2 + ρ2)∆̄

2
2}

±1

2

[

(γ11 − f1 + ρ1)∆̄
2
1 − (γ22 − f2 + ρ2)∆̄

2
2

+4γ212∆̄
2
1∆̄

2
2

]1/2

. (128)

Let us consider, for simplicity, a simple model with
equivalent two bands satisfying g11 = g22, N1(0) =

N2(0) ≡ N̄(0) and ∆̄1 = ∆̄2 ≡ ∆̄. This leads to f1 = f2,
ρ1 = ρ2 and γ11 − f1 = |γ12|. The eigenvalues of M̄ are

x1 = ρ1∆̄
2, x2 = (ρ1 + 2|γ12|)∆̄2. (129)

The corresponding yH1 and yH2 are given by

yH1 =

√

ρ1
N̄(0)

∆̄, yH2 =

√

ρ1 + 2|γ12|
N̄(0)

∆̄. (130)

The one mode yH2 shows a dependence on g12, while
the other value remains a constant. yH2 increases as
|g12| increases as shown in Fig.11 for the two equivalent
bands, with a very large value when detg is small. The
Fig.12 indicates the superconducting gaps and yH ’s for
g11N1(0) = 0.35 and g22N2(0) = 0.30 at absolute zero.
The coherence length ξ is proportional to the inverse of
yH , exhibiting the dependence on the coupling constant
matrix g. Thus the upper critical field Hc2, being
proportional to 1/ξ2, also shows the dependence on g.
Hc2 can be very large as detg approaches zero.

(b) Higgs potential for detg < 0.

Let us turn to the case with detg = g11g22 − g12g21 < 0.
We assume that g11 > 0 and g22 > 0. This means
that γ11 < 0 and γ22 < 0. We examine the case
with two equivalent bands. Since γ11 < 0, we have
γ11 − f1 = −|γ12|. Then, the eigenvalues of the matrix
M̄ are

x1 = ρ1∆̄
2, x2 = (ρ1 − 2|γ12|)∆̄2. (131)

Correspondingly, we have

yH1 =

√

ρ1
N̄(0)

∆̄, yH2 =

√

ρ1 − 2|γ12|
N̄(0)

∆̄. (132)

In constrast to the previous case, yH2 decreases as |γ12|
increases. Thus, the coherence length corresponding to
yH2 increases and can be very large as a function of g12|.
yH2 decreases and vanishes when |γ12| increases as |g12|
approaches g11. The appearance of massless state indi-
cates an instability of the superconducting state. When
y2H2 < 0, the state with (∆̄1, ∆̄2) = (∆̄, ∆̄) is at the sad-
dle point and thus is instable to be away from this point.
Let us examine this phenomenon in the following.
We include η4 term in the action to investigate a sta-

bility of superconducting state. The mass functional is
written as

M [η] = a1η1 + a2η2 + ηtM̃η +
b

4
(η41 + η42), (133)

with a constant b > 0, where η =t (η1, η2). ∆̄n (n = 1, 2)
are determined from the condition a1 = a2 = 0. We write
ηn = η̄n+ δηn (for n = 1, 2) where η̄n is a new stationary
value of ηn and δηn stands for fluctuation of the mode
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ηn. The condition that the linear terms in δηn should
vanish results in the equations

2M̃11η̄1 + 2M̃12η̄2 + bη̄31 = 0, (134)

2M̃12η̄1 + 2M̃22η̄2 + bη̄32 = 0. (135)

Let us consider the model with two equivalent bands
where we set ∆̄ ≡ ∆̄1 = ∆̄2 and g11 = g22. The eigen-
vectors of the matrix M̄ are t(1, 1)/

√
2 and t(1,−1)/

√
2

with the eigenvalue ρ1∆̄
2 and (ρ1 − 2|γ12|)∆̄2, respec-

tively. The eigenvalue corresponding to the mode η1−η2
can be negative and the state will show an instability
to this direction. Then, we set η̄2 = −η̄1 to obtain the
equation

2(ρ1 − 2|γ12|)∆̄2 + bη̄21 = 0, (136)

for non-trivial solution η̄1 6= 0. Then we have

η̄1 = ±
√

2(2|γ12| − ρ1)

b
∆̄. (137)

Due to fluctuation of the η1 − η2 mode, the stationary
values of the gap functions (∆̄1, ∆̄2) change from (∆̄, ∆̄)
to

(∆̄ + η̄1∆̄, ∆̄− η̄1∆̄). (138)

This is shown schematically in Fig. 13. Thus, the sta-
tionary values of ∆n break the symmetry ∆1 = ∆2 which
should hole for the case of two equivalent bands, when
detg < 0 and ρ1 − 2|γ12| < 0. This may be called the
spontaneous symmetry breaking of Z2 symmetry.
Near ((1 + η̄1)∆̄, (1− η̄1)∆̄), the potential M [η] is ex-

panded as

M [η] = const.+t δη

(

M̃11 +
3
2bη̄

2
1 M̃12

M̃21 M̃22 +
3
2bη̄

2
2

)

δη,

(139)

where δη =t (δη1, δη2). The eigenvalues of this 2 × 2
matrix give yH ’s for Higgs modes. For the case with two
equivalent bands, we have

y2H1 =
2(3|γ12| − ρ1)

N̄(0)
∆̄2, y2H2 =

2(2|γ12| − ρ1)

N̄(0)
∆̄2.

(140)
This is shown in Fig.14 where y2Hn for n = 1, 2 are shown
as a function of |γ12|/ρ1. One mode becomes massless
when 2|γ12| = ρ1. When 2|γ12| > ρ1, namely, g212 is near
g11g22, the Higgs values yH can be very large.
As we have shown above, the eigenvalues of Higgs ma-

trix M exhibit a singular behavior when detg is small.
When detg > 0, the eigenvalue and thus Hc2 can be
large. When detg < 0, there is a possibility of softening
of the eigenvalue of one Higgs mode. We show y2Hn as
a function of g12 in Fig.15. There is a singularity in the
critical region near detg = 0, which shows a possibility
of large upper critical field Hc2.
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FIG. 12. Gap functions ∆̄n and Higgs eigenvalue yHn in a
two-band superconductor (n = 1, 2) as a function of the in-
terband coupling g12. yHn is measured in unit of that in the
case of g12 = 0. We set g11N̄(0) = 0.35 and g22N̄(0) = 0.30
for N̄(0) = N1(0) = N2(0). The Higgs eigenvalue of one mode
remains a constant whereas the other grows very large as g12
increases, namely detg approaches zero. ∆n in the figure in-
dicates ∆̄n.
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FIG. 13. Gap functions and fluctuation modes when two
bands are equivalent for detg < 0 and ρ1 − 2|γ12| < 0. The
order parameters (∆̄, ∆̄) is shifted to ((1+ η̄1)∆̄, (1− η̄1)∆̄) or
((1− η̄1)∆̄, (1+ η̄1)∆̄) due to the fluctuation of η1 − η2 mode.

E. Higgs potential in a three-band superconductor

We turn to a three-band superconductor in this sub-
section. The Higgs matrix M is given by

M =





γ11 − f1 + ρ1 γ12 γ13
γ21 γ22 − f2 + ρ2 γ33
γ31 γ32 γ33 − f3 + ρ3



 .

(141)
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FIG. 15. y2Hn (n = 1, 2) as a function of g12/g11 where g12 > 0.
We have detg < 0 for g12/g11 > 1. yHn shows a singularity
near detg = 0.

Let us first consider the case where three bands are
equivalent, that is, we have g11 = g22 = g33 ≡ t > 0
and g12 = g21 = g23 = g32 = g31 = g13 ≡ v. We
have also the same density of state in every band as
N1(0) = N2(0) = N3(0) ≡ N̄(0) and ρ1 = ρ2 = ρ3 ≡ ρ,
and thus f1 = f2 = f3 ≡ f . In this case the matrix g of
coupling constants is

g =





t v v
v t v
v v t



 . (142)

Then, detg = (t−v)2(t+2v) and the Josephson couplings
γij are

γii =
t+ v

(t− v)(t+ 2v)
, γij = − v

(t− v)(t+ 2v)
(i 6= j).

(143)
The gap equation is written as

∣

∣

∣

∣

∣

∣

γ11 − f1 γ12 γ13
γ21 γ22 − f1 γ23
γ31 γ32 γ33 − f3

∣

∣

∣

∣

∣

∣

= 0. (144)

In our simple case, the critical temperature is given by

kBTc =
2eγE

π
ωD exp

(

− 1

(g11 + 2g12)N̄(0)

)

, (145)

when v = g12 > 0, and

kBTc =
2eγE

π
ωD exp

(

− 1

(g11 + |g12|)N̄ (0)

)

, (146)

when v = g12 < 0. The eigenvalues of the matrix M are

(A) x1 = ρ, x2 = ρ− 2γ12 for v > 0, (147)

(B) x1 = ρ, x2 = ρ+ 3γ12 for v < 0. (148)

For v > 0, the eigenstates with ρ − 2γ12 are doubly de-
generate. On the other hand, for v < 0, the states with
the eigenvalue ρ are doubly degenerate. We call these
two cases the case A and B, respectively. In the case A,
since γ12 is negative for 0 < v < g11, two eigenvalues of
the Higgs matrix M increase as |γ12| increases. ρ− 3γ12
diverges at the critical point detg = 0. In contrast, in
the case B, one Higgs mode has a large yH in the critical
region where detg is small.
We present a typical behavior of yHn as a function of

g12 for the case with three equivalent bands in Fig.16.
The ’mass’ of one mode remains constant as in the case
of two-band superconductivity. We show yHn for two
cases as a function of g12 in Figs.17 and 18 where three
bands are not necessarily equivalent. In Fig.17 yHn of
two modes show a large dependence of g12 indicating that
this is in the case A.
Let us investigate the case where y2Hn is negative when

|g12| becomes large across the critical point detg = 0. In
the case B with isotropic three bands, the one mode has
negative y2H1 for v = g12 < −t/2 = −g11/2. The mode

η ≡ (η1 + η2 + η3)/
√
3 shows an instability in this case.

We must include the (b/4)
∑

i η
4
i (b > 0) in the mass

functional M [ηi] to examine a stability of superconduct-
ing state. We express the shift of the stationary point of
the gap functions as ηn = η̄ + δηn. We obtain

η̄ = ±
√

2|ρ+ 3γ12|
b

, (149)

for ρ+ 3γ12 < 0. Then, the Higgs matrix M is

M =





8|γ| − 2ρ γ γ
γ 8|γ| − 2ρ γ
γ γ 8|γ| − 2ρ



 , (150)
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FIG. 16. y2Hn (n = 1, 2, 3) as a function of g12/g11 for the
model with three equivalent bands where we assume g11 =
g22 = g33, g12 = g23 = g31 and N1(0) = N2(0) = N3(0).
We set g11N1(0) = 0.3. Two Higgs values grows large as
g12(> 0) increases in the case A. In the case B, the label of
the horizontal axis should read 2|g12|/g11 for g12 < 0 and we
have a similar behavior. One of Higgs modes has a heavy
yH for large |g12|/g11 in the case A. The heavy eigenvalue
becomes very huge in the critical region where detg ∼ 0.
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the same density of states in three bands. Two of Higgs modes
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where γ = γ12. The eigenvalues are

x1 = 9|γ| − 2ρ, x2 = 6|γ| − 2ρ, (151)

where the eigenstates with the eigenvalue x1 = 9|γ| − 2ρ
are doubly degenerate. The Higgs value squared y2Hn ∝
xn is shown as a function of γ = γ12 for the case of three
equivalent bands with g12 < 0 in Fig.19. x2 vanishes at
|γ| = ρ/3 and is large for large |γ|.
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FIG. 18. y2Hn (n = 1, 2, 3) as a function of g12N̄(0) where we
assume g12 = g31. We used a set parameters as g11N̄(0) =
0.35, g22N̄(0) = 0.30, g33N̄(0) = 0.25 and g23N̄(0) = 0.05.
We also adopt that N1(0) = N2(0) = N3(0) = N̄(0). In this
case, the value of yH of one Higgs mode becomes large as g12
increases.
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FIG. 19. y2Hn (n = 1, 2, 3) as a function of γ12/ρ1 where we
assume an isotropic three-band superconductor and g12 < 0
(the case B in the text). We adopted that g11 = g22 = g33,
gij (i 6= j) are the same, and N1(0) = N2(0) = N3(0). In
this model, two Higgs states are degenerate and the other
one state becomes a massless mode at γ12/ρ1 = −1/3.

F. Discussion

We have considered the Higgs modes in multi-gap su-
perconductors. Since the upper critical field Hc2 is pro-
portional to y2H , there is a possibility that we have large
Hc2 in a multi-gap superconductor such as iron-based
superconductors by tuning interaction parameters. The
eigenvalue yH increases as |detg| decreases. In a two-gap
superconductor, we have two solutions for the gap equa-
tion and one solution with higher Tc is realized. The
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other solution with low Tc is expected to be less impor-
tant. When the coherence length of low-Tc solution is
shorter than that of the high-Tc solution, we expect that
the low-Tc solution plays a role in determining the critical
field. As a result the upper critical field may be larger.
This gives a possibility of high upper critical field in a
multi-gap superconductor.

VI. SUMMARY

We have examined the property of Green’s functions
of the Nambu-Goldstone and Higgs modes in a super-
conductor. In an N -gap superconductor, there are N
Nambu-Goldstone modes. We have, however, one gap-
less mode and N − 1 massive modes in the presence of
interband BCS couplings. The NG mode Green func-
tion D(ω,q) for small ω and q is given as D ∝ 1/(ω2 −
ω(q)2) with the dispersion ω(q) = vNG|q| where vNG =

(1/
√
3)
√

(N1v2F1 + · · ·+NNv2FN )/(N1 + · · ·+NN). An
analytic property of the NG Green function D(ω,q) is
dependent on ω. One gapless mode remains gapless in
the presence of intraband scattering due to non-magnetic
and magnetic impurities, which was shown on the basis of
the Ward-Takahashi identity. In a multiband supercon-
ductor, massive modes due to interband couplings gnm
become gapless again in a region with time-reversal sym-
metry breaking.

The Higgs Green function was also examined. The
time-dependent part of the Higgs action is dependent on
the temperature; it is given by (∂th)

2 at low tempera-
ture, while it is h∂th near the critical temperature Tc.
The Green function H(ω,q) of the Higgs mode has a sin-

gularity at ω ∼ 2∆ given as 2∆/
√

(2∆)2 + 1
3v

2
Fq

2 − ω2.

The Higgs Green function has the same singularity as
the σ-boson Green function in the Gross-Neveu model.
We have shown that when there are several order pa-
rameters, the constant part of the Higgs action is impor-
tant and crucially dependent upon the interband cou-
pling constants gij . In a multiband superconductor, the
eigenvalue of the matrix M of constant Higgs potential
can be very large as the interband coupling constant g12
increases, although the other eigenvalues of the other
Higgs mode remain constant. This indicates the pos-
sibility of the large upper critical field Hc2 because of
the relation Hc2 ∝ 1/ξ2 ∝ y2H . In iron-based super-
conductors, the extremely huge Hc2 has been reported
for NdFeAsO0.7F0.3[76] and Ba0.6K0.4Fe2As2[77]. Our
results indicate that the huge Hc2 may be due to the
multiband effect for the Higgs modes.
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