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Numerical studies of the two-dimensional d–p model using the Gutzwiller ansatz have exhibited the
incommensurate antiferromagnetic state coexisting with superconductivity in the under- and lightly
doped regions. Our results are based on the variational Monte Carlo method for the three-band Hubbard
model with d and p orbitals. We obtained the finite superconducting condensation energy for the
coexistent sate at the doping rate x ¼ 1=8, 1/12, and 1/16, up to the systems of 256 unit cells with 768
atoms (oxygen and copper atoms). The phase diagram for the hole-doped case is consistent with recent
results reported for layered high temperature cuprates.
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The mechanisms of superconductivity (SC) in high-
temperature superconductors have been extensively studied
using various two-dimensional (2D) models of electronic
interactions.1–4) It is of primary importance to clarify the
phase diagram, particularly the electronic state in the
underdoped region adjacent to the antiferromagnetic (AF)
phase, termed the pseudo-gap phase. It is unclear whether
the phase diagram for La2�xSrxCuO4 is intrinsic for high-Tc

cuprates or not, although it is often recognized as a typical
phase diagram. It is sometimes declared that disorder effects
play some role in the spin glass phase of La2�xSrxCuO4.
Thus, it is fair to say that the phase diagram has never been
clarified.

The 2D three-band d–p model is the most fundamental
model for high-temperature cuprates.5–11) Although we have
a solution of the gap equation within a weak coupling
perturbation theory in the limit U ! 0,12,13) it is, however,
extremely hard to show the possibility of superconductivity
exactly for finite and large Coulomb repulsion. Thus we
adopt the Gutzwiller ansatz for the wave function and
examine the ground state within the space of variational
functions. We employ the variational Monte Carlo meth-
od14–17) to evaluate the expectation values of several physical
properties.

The purpose of this study is to investigate the coexistence
of superconductivity and antiferromagnetism for the 2D d–p
model. We have found that the coexistent state has indeed
the lowest energy in the variational space at the doping rate
x ¼ 0:125, 0.08333, and 0.0625 in the low-doping region. At
x ¼ 0:125, the incommensurate antiferromagnetic state has
eight-lattice periodicity, as reported on the basis of neutron
scattering measurements.18) The periodicity increases as x

decreases; we have twelve lattice periodicity at x ¼ 0:0833

and 16-lattice periodicity at x ¼ 0:0625.
The Hamiltonian is the d–p model containing the on-site

Coulomb repulsion for d electrons and is written as19)

Hdp ¼ �d
X
i�

dyi�di�

þ �p
X
i�

ðpyiþx̂x=2� piþx̂x=2� þ pyiþŷy=2� piþŷy=2�Þ

þ tdp
X
i�

½dyi�ðpiþx̂x=2�þ piþŷy=2�� pi�x̂x=2� � pi�ŷy=2�Þþ h.c.�

þ tpp
X
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� pyi�ŷy=2� piþx̂x=2� þ pyi�ŷy=2� pi�x̂x=2� þ h.c.Þ
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X
i

dyi"di"d
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i#di#: ð1Þ

di� and dyi� are the operators for the d electrons. pi�x̂x=2� and
pyi�x̂x=2� denote the operators for the p electrons at the site
Ri�x̂x=2, and in a similar way, pi�ŷy=2� and pyi�ŷy=2� are defined.
Ud is the strength of the on-site Coulomb energy between d

electrons. The number of sites is denoted as Ns, and the total
number of atoms is Na ¼ 3Ns. The total number of fermions
is denoted as Ne. The energy unit is given by tdp in this
paper.

The van Hove singularity in the density of states plays an
important role in two-dimensional models. We define the
density of states as

Dð�Þ ¼
1

Ns

X
k

�ð�� �kÞ; ð2Þ

where �k ¼ �k � � (� is the Fermi energy) and �k is the
band crossing the Fermi energy. We examine the hole-doped
case within the hole picture where the lowest band is
occupied up to the Fermi energy �. For this purpose, we
employ the electron–hole transformation tpp!�tpp, tdp!
�tdp, and we set �p � �d > 0. The density of states Dð�Þ as a
function of the carrier density x is shown in Fig. 1 for
tpp ¼ 0:4, 0.2, 0, and �0:2. x ¼ 0 corresponds to the half-
filled band. For tpp ¼ 0, the van Hove singularity is at x ¼ 0.
It moves to the hole-doped side of x > 0 for tpp > 0 and to
the electron-doped side for tpp < 0. We have the van Hove
singularity at x � 0:16 for �p � �d ¼ 2 and tpp ¼ 0:4. Thus
we set parameters to be �p � �d ¼ 2 and tpp ¼ 0:4 in the
main computations, and Ud ¼ 8 in this paper. This is in good
accordance with the results of cluster estimations.20–22) The
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van Hove singularity approaches x ¼ 0 as the level differ-
ence �p � �d becomes large. Hence, we expect that the
critical temperature Tc has a peak as a function of �p � �d if
we fix the carrier density x.

We adopt the Gutzwiller ansatz for the ground-state wave
function  :  ¼ PG 0, where  0 is a trial one-body wave
function and

PG ¼
Y
i

½1� ð1� gÞndi"ndi#� ð3Þ

is the Gutzwiller projection operator. g is the variational
parameter in the range of 0 � g � 1. The wave function
considered in this paper is a coexistent state which is given
by the solution of the Bogoliubov–de Gennes equation:X

j

ðHij"u
�
j þ Fijv

�
j Þ ¼ E�u�i ; ð4Þ

X
j

ðF�jiu
�
j � Hji#v

�
j Þ ¼ E�v�i ; ð5Þ

for a trial Hamiltonian Hij� and Fij, where (Hij�) and (Fij) are
3Ns � 3Ns matrices including the terms for d, px, and py
orbitals. The Bogoliubov operators are written as

�� ¼
X
i

ðu�i ai" þ v�i a
y
i#Þ ðE

� > 0Þ; ð6Þ

� ��� ¼
X
i

ðu ���
i ai" þ v

���
i a
y
i#Þ ðE

��� < 0Þ: ð7Þ

ai� denotes di� , piþx̂x=2� , and piþŷy=2� corresponding to the
components of u�i and v�i . The coexistent superconducting
state is23,24)

 ¼ PN

Y
�

���
y
���
j0i

¼ const.PN exp
�
�
X
ij

	ija
y
i"a
y
j#

�
j0i; ð8Þ

where j0i is the vacuum state annihilated by di� , piþx̂x=2� , and
piþŷy=2� . Since  SC satisfies �� SC ¼ 0, using the Hausdorff
formula, 	ij is determined as

	ij ¼ ðU�1VÞij; ð9Þ

where we define the matrices U and V as U�j ¼ u�j and
V� j ¼ v�j . PN fixes the electron number to be Ne. The
antiferromagnetic order parameter is contained in (Hij�) and
the superconducting gap function is in (Fij).

Since the incommensurate state was shown to be stable in
the lightly doped region, we assume the spatial variation for
the order parameters. The trial Hamiltonian is the Hartree–
Fock Hamiltonian given as25–28)

Htrial ¼ K þ
X
i�

½�ndi � �ð�1Þxiþyimi�dyi�di�: ð10Þ

Corresponding to the energy levels �d and �p, variational
parameters ~�p�p and ~�d�d are incorporated in the noninteracting
part K in eq. (10). We assume the spatial variations to be

�ndi ¼ �
X
j

�

coshðxi � xinc
j Þ

; ð11Þ

mi ¼ �inc

Y
j

tanhðxi � xinc
j Þ; ð12Þ

for parameters �, �inc, and xinc
j . xinc

j determines the
periodicity of oscillation; we set xinc

j ¼ j=ð2xvÞ for the
variational parameter xv. The energy is computed for several
values of xv such as xv ¼ 1=4; 1=8; . . .. A small spatial
charge oscillation, which is, at most, ten percent of the total
density, is induced owing to the oscillation potential �ndi and
mi.

28) Thus we assume the following superconducting order
parameter:

�i;iþx̂x ¼ �x cos½Q�ðxi þ x̂x=2Þ�; ð13Þ
�i;iþŷy ¼ �y cosðQ�xiÞ; ð14Þ

for Q� ¼ 2
xv. We assume the d-wave symmetry for the SC
gap function: �x ¼ ��y 	 �. The superconducting order
parameter oscillates so that the amplitude has a maximum
in the hole-rich region and a minimum in hole-poor region.
The energy expectation value E ¼ h jHj i=h j i is
evaluated using a Monte Carlo Metropolis algorithm, which
is a standard method in variational Monte Carlo computa-
tions.

The condensation energy Econd is defined as the difference
Econd ¼ Eð�! 0Þ � Eð�Þ for the optimized energy. The
energy of the antiferromagnetic state would be lowered
further if we consider the incommensurate spin correlation
in the wave function. The phase diagram in Fig. 2 presents
the region of the stable AF phase in the plane of tpp and
�dp ¼ �p � �d . For large �dp ¼ �p � �d, we have the region
of the AF state with an eight-lattice periodicity in accord-
ance with the results of neutron-scattering measure-
ments.18,29) In the incommensurate antiferromagnetic region,
we obtain a finite SC condensation energy, assuming a
spatial oscillation, which is shown in Fig. 3. The variational
parameters are g ¼ 0:386, ~��d ¼ �1:578, ~��p ¼ 0, � ¼ �3:09,
�inc ¼ 0:5, and � ¼ 0:02.

The main results of this study are shown in Fig. 4 where
the size dependence of the SC condensation energy is shown
for x ¼ 0:2, 0.125, 0.08333, and 0.0625. We set the
parameters to be �p � �d ¼ 2 and tpp ¼ 0:4 in tdp units,
which is reasonable from the viewpoint of the density of
states and in the region of eight-lattice periodicity at
x ¼ 1=8. We have carried out the Monte Carlo calculations
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Fig. 1. Density of states of the d–p model as a function of the carrier

density x for tpp ¼ 0:4, 0.2, 0.0, and �0:2. We set �p ¼ 0, �d ¼ �1, and

tdp ¼ 1 (energy unit).
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up to 16� 16 unit cells (768 atoms in total). In the
overdoped region in the range of 0:18 < x < 0:28, we have
the uniform d-wave pairing state as the ground state. The
periodicity of spatial variation judged from the condensation
energy increases proportionally to 1=x as the doping rate x

decreases. In the figure, we have the 12-lattice periodicity at
x ¼ 0:08333 and the 16-lattice periodicity at x ¼ 0:0625.
For x ¼ 0:2, 0.125, and 0.08333, the results strongly suggest
a finite condensation energy in the bulk limit. We believe
that the size dependence of the SC condensation energy in
the incommensurate region is rather weak because the main
part of the superfluid density is in the hole-rich region of the
striped structure. Thus we expect a finite condensation
energy even at x ¼ 0:08333 and 0.0625. The SC condensa-
tion energy obtained on the basis of specific heat measure-
ments agrees well with the result of variational Monte Carlo
computations.30) In general, the Monte Carlo statistical
errors are much larger than those for the single-band
Hubbard model. A large number of Monte Carlo steps

(more than 5:0� 107) is required to obtain convergent
expectation values for each set of parameters.

In Fig. 5 the order parameters �AF and �SC were
evaluated using the formula Econd ¼ ð1=2ÞNð0Þ�2 where
Nð0Þ is the density of states. The SC condensation energy
decreases as the doping rate x is decreased because of the
striped structure of the electronic state. Hence, �SC also
decreases. Here, we have set Nð0Þ � 5=tdp, since Nð0Þ is
estimated to be Nð0Þ � 2 to 3 (eV)�1 for the optimally doped
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Fig. 2. Phase diagram of stable antiferromagnetic state in the plane of

�dp ¼ �p � �d and tpp obtained for 16� 4 lattice.
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YBa2Cu3O6þx using Nð0ÞðkBTcÞ2=2.31) The phase diagram is
consistent with the recently reported phase diagram for
layered cuprates.32) Although the incommensurate order has
never been observed in experiments, there is a possibility
that observed commensurability of magnetic order may be
brought about by the effect of nearby layers, that is, the
cancellation of incommensurability between layers.

We examined the phase diagram of high-temperature
superconductors with respect to the carrier density, on the
basis of the d–p model. We carried out variational Monte
Carlo calculations for the 2D d–p model to investigate the
ground state for large Ud. In the lightly doped region we
obtain the coexistent state of antiferromagnetism and super-
conductivity at the doping rate x ¼ 0:125, 0.0833, and
0.0625. As long as we employ the Gutzwiller ansatz, the
ground state exhibits coexistence in the lightly doped region.
In recent experimental works for layered cuprates, the
possibility of the coexistent state of antiferromagnetism and
superconductivity has been explored.32,33)
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