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We have performed a variational Monte Carlo simulation on a two-dimensional t–t0–t00–U Hubbard
model with a Bi-2212-type band to examine the stability of a 4�4 checkerboard state, which has been
observed recently by scanning tunneling microscopy (STM) in Bi-2212 and Na-CCOC. The
condensation energies of inhomogeneous magnetic and charge-ordered states at 1/8 hole doping are
calculated. We found that the coexistent state of bond-centered four-period diagonal and vertical spin-
checkerboard structures characterized by a multi-Q set is stabilized and composed of 4�4 period
checkerboarded spin modulation. This state can be understood as an incommensurate spin density wave
enhanced by Fermi surface nesting, which appears in the precursory peaks of spin susceptibility at
�ð�; �=2Þ, ð�=2; �Þ, and ð�=2; �=2Þ.
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The realization of incommensurate electron states in
the under-doped region of high-Tc cuprates has attracted
considerable interest recently. Several experimental
reports indicated that the stripe state is stabilized in La-
based cuprates: From elastic neutron scattering experiments
on La2�x�yNdySrxCuO4,1) La2�xSrxCuO4 (LSCO),2) and
La2�xBaxCuO4,3) incommensurate magnetic peaks have
been observed at ð�; �� �Þ or ð�� �; �Þ. A checkerboard-
like charge-density modulation with a roughly 4a�4a period
(a is a lattice spacing) has also been observed by scanning
tunneling microscopy (STM) experiments in Bi2Sr2Ca-
Cu2O8þ� (Bi-2212),4) Bi2Sr2�xLaxCuO6þ�,

5) and Ca2�xNax-
CuO2Cl2 (Na-CCOC).6) It is important whether or not these
inhomogeneous electrons can be understood within the
framework of strongly or moderately correlated electrons.

A two-dimensional Hubbard model is appropriate for
cuprates. As it is pointed out by variational Monte Carlo
(VMC) calculation,7) this model gives the condensation
energy of the superconducting state of the correct order of
the experimental one.8,9) The theoretical study of possible
inhomogeneous states in this model was started almost 20
years ago. It was discussed by using the mean field
theory10–14) that a striped incommensurate spin density wave
(ISDW) state and a charge density wave (ICDW) state
appear when an incommensurate nesting becomes favorable
in a hole-doped Hubbard band. It was shown by VMC
calculation15) that the striped ISDW wave function gives
much better variational energies than the commensurate
SDW wave function. The later VMC studies16,17) indicated
that the coexistent state of the superconductivity and the
striped ISDW is more stabilized in an under-doping region,
simultaneously explaining the relationship between the hole
density and the incommensurability in neutron scattering
data for La-based cuprates. The latter relationship was
reported to be found also in the t–J18) and d–p19) models.

Possible several electronic checkerboard states have been
proposed theoretically.20–22) The density matrix renormali-
zation group calculation performed on small t–J clusters

found that a 4�4 checkerboard-like charge modulation
appears on an eight-period vertical stripe background.20) A
Hartree–Fock calculation assuming the appropriate band
parameters of Bi-2212 and Na-CCOC revealed that Fermi
surface nesting leads to an eight-period double-Q diagonal
ISDW instability, which is accompanied by a 4�4 check-
erboarded ICDW order.21) Similar spin and charge distribu-
tions were obtained by Seibold et al. as the stable solution of
a t–t0–U Hubbard model in an unrestricted Gutzwiller
approximation study.22) They argued that the checkerboard
pattern emerges owing to a kinetic energy gain on the 2�2

ferromagnetic plaquettes formed by the intersection of
striped domain walls. However, whether different orders
compete or cooperate still remains controversial.

The present study was undertaken to determine possible
inhomogeneous electron states in a two-dimensional (2D) t–
t0–t00–U Hubbard model,

ĤH ¼ �
X

i; j;�

tijðĉcyi� ĉcj� þ h.c.Þ þ U
X

i

n̂ni"n̂ni#; ð1Þ

where the transfer energy tij ¼ t, t0, t00, and 0, if sites i and j

are first-, second-, third-nearest neighbor and otherwise,
respectively. In the following, we consider t as the unit of
energy. ĉcyi� (ĉci�) is the creation (annihilation) operator of the
electron with spin � (" or #) at site i (i ¼ 1; . . . ;Nsite) and
n̂ni� ¼ ĉcyi� ĉci� . U is the on-site Coulomb energy.

In the VMC calculation, the variational energy is written
as,

Evar ¼
h�jĤHj�i
h�j�i

: ð2Þ

We use the trial wave function j�i defined by

j�i ¼ P̂PNe
P̂PGP̂PJj�HFi; ð3Þ

where P̂PNe
is a projection operator that extracts only the

components with a fixed total electron number Ne. P̂PG is
the Gutzwiller projection operator given by P̂PG ¼

Q
i½1�

ð1� gÞn̂ni"n̂ni#�, where g is a variational parameter in the
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range from 0 to unity, which controls the on-site electron
correlation. P̂PJ is the Jastrow-type projection operator P̂PJ ¼Q
hiji h

n̂nin̂nj , which allows the occupancy of the nearest-
neighbor sites to be modified by adjusting h in the
neighborhood of 1. j�HFi is a Hartree–Fock wave function
for an inhomogeneous state. The Hartree–Fock Hamiltonian
for ISDW with ICDW, which gives the Hartree–Fock
solution j�HFi, is represented by

ĤHHF ¼
X

ij�

ð�tij � �Þĉcyi� ĉcj�

þ
U

2

X

i�

½�i þ sgnð�Þmi�n̂ni�; ð4Þ

where tij is defined as that in eq. (1) and � is the chemical
potential. The charge density �i and spin density mi are
spatially modulated as

�i ¼
X

l

�l cos½Qc
l � ðri � r0Þ�; ð5Þ

mi ¼
X

l

ml cos½Qs
l � ðri � r0Þ�; ð6Þ

where �l and ml are variational parameters.
The striped ISDW state is defined by a single-Q set; the

wave vector Qs ¼ ð�; �� 2��Þ [or ð�� 2��; �Þ] produces
the spin vertical stripe (spin-VS) state in which magnetic
domains run along the x-direction (y-direction). � is an
incommensurability defined by the inverse of the stripe
period in the y-direction. r0 represents the position of a
magnetic domain wall. The site-centered (bond-centered)
domain boundary is located on site (between sites); rSC

0 ¼
ð0; 0Þ [rBC

0 ¼ ð1=2; 1=2Þ]. Note that the hole density is
maximal on the domain wall. The charge-VS period is
one-half the spin-VS period, i.e., Qc ¼ 2Qs ¼ ð2�; 2��
4��Þ. The diagonal stripe (DS) state with the diagonal wave
vector Qs [¼ ð�� 2��; �� 2��Þ] and Qc (¼ 2Qs) can be
treated in the same manner.

On the other hand, the checkerboarded ISDW state is
described by the double-Q set.21,23) For example, vertical
wave vectors Qs

1 ¼ ð�; �� 2��Þ and Qs
2 ¼ ð�� 2��; �Þ

describes a spin vertical checkerboard (spin-VC) state,
where two diagonal domain walls are orthogonal, as
discussed in ref. 23. While, diagonal wave vectors Qs

1 ¼
ð�� 2��; �� 2��Þ and Qs

2 ¼ ð�� 2��; �� 2��Þ lead to
a spin diagonal checkerboard (spin-DC) state with a 1=�-
period. The magnetic domain walls run parallel to both x-
and y-directions. Then, the hole density forms the charge
vertical checkerboard (charge-VC) pattern with vertical
wave vectors Qc

1 ¼ ð0;�4��Þ and Qc
2 ¼ ð2�� 4��; 2�Þ in

which the hole density is maximal on the crossing point of
magnetic domain walls in the spin-DC state. If � ¼ 1=8 is
assumed as suggested in previous studies,21,22) the charge
modulation pattern is consistent with the 4a�4a charge
structure observed in STM experiments. In the following, we
examine the energy gain of the eight-period spin-DC state
with the four-period charge-VC pattern and compare it with
other states.

The energy expectation values, eq. (2), are optimized with
a total Monte Carlo step number greater than 3� 107. In this
study, we fix the on-site Coulomb energy U ¼ 8 and adopt
the square lattices L� L (L ¼ 8{20); the commensurability
with � is required to guarantee the spin-periodicity along

both x- and y-direction in the 1=�-period spin-checkerboard-
ed ISDW state. The periodic boundary conditions in both
directions are applied.

In Fig. 1(a), we show the condensation energies of some
heterogeneous states, ðEnormal � EheteroÞ=Nsite, fixing the
transfer energies t0 ¼ �0:32 and t00 ¼ 0:22 suitable for Bi-
2212. The energy of the normal state Enormal is calculated
by assuming ml ¼ �l ¼ 0 in eq. (4). The system used is a
16�16 lattice with the electron-filling � ¼ Ne=Nsite ¼ 0:875.
In our calculation, the condensation energies of both bond-
centered stripe and checkerboard states are always larger
than those of site-centered stripe and checkerboard states.
The VS state is not stable in this parameter set, which is only
stabilized with the LSCO-type band, as shown later. The
four-period spin-DC state is significantly more stable than
the eight-period spin-DC state, or 6-, 10-, 12-, and 16-period
spin-DC states [these are not shown in Fig. 1(a)]. Moreover,
the trial wave function is improved on the basis of the
consideration stated later. We found that the coexistent state
of the bond-centered four-period spin-DC and four-period
spin-VC with the assumed �l ¼ 0 is the most stable, as
shown in Fig. 1(a). Note that the condensation energy of
the coexistent state is several times larger than the super-

Fig. 1. (a) Condensation energies of inhomogeneous states with the bond-

centered magnetic domain wall. The system is a 16�16 lattice in the

Hubbard model with t0 ¼ �0:32, t00 ¼ 0:22, and U ¼ 8 for the case of

� ¼ 0:875. The static error bars are smaller than the size of symbols.

(b) Expectation value of hmii measured in the four-period spin-DC–VC

solution. The length of arrows is proportional to the spin density.

J. Phys. Soc. Jpn., Vol. 78, No. 4 LETTERS M. MIYAZAKI et al.

043706-2



conducting energy calculated in the optimal doping on the
same system size.24)

This state is described by two sets of Q; the spin density is
spatially modulated as

mi ¼ mDfcos½Qs
1 � ðri � r

BC
0 Þ� þ cos½Qs

2 � ðri � r
BC
0 Þ�g

þ mVfcos½Qs
3 � ðri � r

BC
0 Þ� þ cos½Qs

4 � ðri � r
BC
0 Þ�g; ð7Þ

where mD and mV are the magnetizations of the spin-DC and
spin-VC states, respectively. The first and second terms on
the right-hand side of eq. (7) are characterized by the fQs

1 ¼
ð�� �=2; �� �=2Þ; Qs

2 ¼ ð�� �=2; �� �=2Þg and fQs
3 ¼

ð�� �=2; �Þ; Qs
4 ¼ ð�; �� �=2Þg sets, respectively. The

measured expectation value of the spin density hmii is
shown in Fig. 1(b). The four-period spin structure appears
along both x- and y-directions. It can be seen as the
checkerboard pattern consisting of 2�2 antiferromagnetic
(AF) plaquettes, where magnetic moments of each spin in
plaquettes are �0:5, 0.3, and 0.1. These values are smaller
than the maximum local spin moment (�0:8) of the vertical
stripe state with t0 ¼ �0:12 and t00 ¼ 0:08 suitable for
LSCO.

Furthermore, charge amplitudes �l are considered in order
to exhibit the appropriate charge distribution in the four-
period spin-DC–VC background. However, optimized �l
become almost zero among some inhomogeneous charge
textures. When the expectation value of the charge density
hnii is measured under the condition of �l ¼ 0, charge stripes
passing through the 2�2 AF plaquette with small magnetic
moments appear. However, the slight difference observed
among variational parameters leads to a type of inhomoge-
neous charge texture (e.g., horizontal or longitudinal charge
stripe or charge checkerboard). In addition, the charge
amplitude is very small: the deviation from the mean charge
value is �2%, compared with the VS case of t0 ¼ �0:12 and
t00 ¼ 0:08, where the charge density varies in the range of
0.80 – 0.93. Therefore, it seems that the charge order state is
energetically unstable because excess charges cannot gain
the kinetic energy so as to overcome Coulomb repulsion at
around small AF plaquettes.

To investigate the instability towards the four-period spin-
DC–VC state, the susceptibility 	0ðQÞ with U ¼ 0 is
calculated in the case of t0 ¼ �0:32, t00 ¼ 0:22, and � ¼
0:875. As shown in Fig. 2(b), the peak at ð0:45�; 0:45�Þ and
ridges linking ð�; �=2Þ and ð�=2; �Þ are observed. These
features can be understood by the nesting between parts of
the Fermi surface; the peak at ð0:45�; 0:45�Þ corresponds to
Q1 and Q2, and peaks at ð�=2; �Þ and ð�; �=2Þ correspond
to Q3 and Q4, respectively. [Fig. 2(d)]. This indicates that
the four-period spin-DC and four-period spin-VC states are
enhanced by nesting with the fQ1;Q2g and fQ3;Q4g sets,
respectively. On the other hand, as a reference, we show the
susceptibility in the case of t0 ¼ �0:12 and t00 ¼ 0:08 in
Fig. 2(a). It was already discussed in the mean field study14)

that the VS structure is driven by Fermi surface nesting, such
as that shown in Fig. 2(c). The wave vector QVS ¼ ð�; ��
�=4Þ or ð�� �=4; �Þ of the eight-period spin-VS state is
considered to come from peaks in the ridges in 	0ðQÞ, as
shown in Fig. 2(a). Although the highest point is at ð�; �Þ in
	0ðQÞ, the eight-period striped ISDW state is markedly more
stable than the commensurate SDW state in our VMC
calculation.

Figure 3 shows the t0 and t00 dependences of the
condensation energies of the most stable inhomogeneous
state at � ¼ 0:875. The radius of circles represents the
magnitude of the calculated condensation energy. The four-
period spin-DC–VC state appears in the large jt0j–t00 region
suitable for Bi-2212, where the peak around ð�=2; �=2Þ is
predominant in 	0ðQÞ, as mentioned above. For example, the
radius for the case of t0 ¼ �0:38 and t00 ¼ 0:19 corresponds
to 0.010. The VS state with single-Q is fairly stable in the
small jt0j–t00 region, and the condensation energy of the VS
state for t0 ¼ �0:12 and t00 ¼ 0:08 is �0:043. These results
can be explained from the significant enhancement of 	0ðQÞ
at incommensurate positions around ð�; �Þ. As jt0j and t00

increase, the incommensurate peak intensities of 	0ðQÞ and
the condensation energy of the VS state decrease. If we

Fig. 2. Non interacting susceptibility 	0ðQÞ with � ¼ 0:875 for the cases

of (a) t0 ¼ �0:12 and t00 ¼ 0:08, and (b) t0 ¼ �0:32 and t00 ¼ 0:22. Non

interacting Fermi surface with � ¼ 0:875 for the cases of (c) t0 ¼ �0:12

and t00 ¼ 0:08, and (d) t0 ¼ �0:32, t00 ¼ 0:22. The nesting wave vectors

QVS � ð�; 0:875�Þ and fQ1 � ð�=2; �=2Þ, Q2 � ð�=2; 3�=2Þ, Q3 ¼
ð�=2; �Þ, Q4 ¼ ð�; �=2Þg are illustrated in (c) and (d), respectively.

Fig. 3. Phase diagram on the plane of t0 and t00 obtained from the

condensation energies on the 16�16 lattices for the case of U ¼ 8 and

� ¼ 0:875. The radius of circles is proportional to the values of the

condensation energy.
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assume t00 ¼ �t0=2 following ref. 25, the phase transition
from the VS state to the four-period spin-DC–VC state
occurs at t0 � �0:32. The magnetic structure of the system is
mainly characterized by the wave vector not around ð�; �Þ
but around ð�=2; �=2Þ. In the jt0j < 0:32 region, the ex-
pectation values of both the charge and spin amplitudes of
the four-period VS state are hardly affected by the shape of
the Fermi surface. However, in the jt0j > 0:32 region, the
charge amplitude becomes zero and only spin modulation
remains accompanying the change from a 1D spin-striped
structure to a 2D spin-checkerboarded structure.

In Fig. 4, the condensation energies are shown as a
function of the hole density x. The four-period spin-DC–VC
state grows as hole doping level decreases, which can be
understood in terms of the nesting condition with Q1: The
peak around ð�=2; �=2Þ in 	0ðQÞ is enhanced by a decrease
in hole doping level. It seems that the shoulder structure
around x ¼ 0:125 in Fig. 4 originates from the nesting effect
with Q3 and Q4, since the position of the ridges in 	0ðQÞ
shifts from ð�; �=2Þ and ð�=2; �Þ when hole density changes
from 0.125. Therefore, the four-period spin-DC–VC state
changes to the four-period spin-DC state with equivalent AF
plaquettes when doping level becomes lower the under-
doped region. We also found that the system with large jt0j
and t00 values maintains the four-period spin-DC–VC state
(or four-period spin-DC state) stably in contrast to the small
jt0j–t00 phase, where the period of the stripe state with the
maximum condensation energy gradually decreases as the
hole density increases.16)

In summary, the ground state of the 2D Hubbard model
with a Bi-2212-type band was investigated by using the
VMC method. The condensation energies of some inhomo-
geneous magnetic and charge-ordered states at 1/8 hole
doping were calculated. We found that the four-period spin-
DC–VC state without charge modulation is stabilized. This

state composed of 2�2 AF plaquettes exhibits a checker-
board-like spin modulation with a 4�4 period, which comes
from the multi-Q set [i.e., Qs

1 ¼ ð�� �=2; �� �=2Þ,
Qs

2 ¼ ð�� �=2; �� �=2Þ, Qs
3 ¼ ð�; �� �=2Þ, and Qs

4 ¼
ð�� �=2; �Þ]. It can be considered that these wave vectors
correspond to the peaks in susceptibility with U ¼ 0. To our
knowledge, this multiple-Q SDW state gives the lowest
energy among variational wave functions proposed so far. It
is an interesting problem whether or not a 4�4 charge-
checkerboard pattern is induced by local spin-lattice cou-
pling associated with the spin distortion of 2�2 AF
plaquettes.
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