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We studied the ground state of the two-dimensional Hubbard model near half filling on the square
lattice. Using Variational Monte Carlo method, we show that the diagonal stripe state of bond-centered
type, in which the domain wall is located between two sites, becomes more stable than the vertical stripe
state when the doping hole density x is as low as x ’ 0:06. The inverse of stripe periodicity � and the hole
density x are observed to have the relationship � � x (� < x) for the bond-centered diagonal stripe state
(the vertical stripe state) in the light-doping region. These results are in good agreement with elastic
neutron scattering experiments in La2�xSrxCuO4.
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The influence of doping holes on the antiferromagnetic
state such as in the parent materials of high-Tc super-
conductors is one of the most interesting problems for
strongly correlated electrons. It is known that holes doped in
a half-filled square lattice lead to an incommensurate spin-
and charge-density wave (ISDW–ICDW) within the frame-
work of the Hartree–Fock theory.1) In the elastic neutron
scattering experiment on Nd-doped La2�xSrxCuO4 (LSCO)
with a hole density of approximately x � 0:125, Tranquada
et al. observed incommensurate magnetic and charge peaks
at ð1=2; 1=2� �Þ or ð1=2� �; 1=2Þ and ð2� 2�; 0Þ or ð0; 2�
2�Þ in a reciprocal space, respectively.2) This result indicated
the possibility of the ISDW–ICDW order stabilized at low
temperatures. This state is now called the ‘‘vertical-stripe
(VS) state’’ because the direction of the charge stripes is
vertical to the crystal axis. It was shown by variational
Monte Carlo (VMC) studies that the coexistent state of the
VS order and d-wave superconductivity (SC) is obtained as
the ground state in the doping region around x ¼ 0:125 not
only in the Hubbard model3,4) but also in the d–p model5)

and the t–J model6) in two dimensions (2D); all three models
take the considerably strong correlation between electrons
into account.

Recently, it has been experimentally found that the stripe
order is stabilized in a wide underdoped region of LSCO at
low temperature. From the experiment of resistivity in the
light-doping region of LSCO, the system has a metallic
behavior below the antiferromagnetic transition temperature,
which is considered to originate in the formation of metallic
charge stripes.7) In addition, the spin-glass state in the
insulating phase was found to have a well-developed stripe-
like correlation.8) The elastic neutron scattering experiment
of LSCO in the light-doping region, 0:03 < x < 0:07,
revealed that the position of incommensurate magnetic
peaks changed from ð1=2; 1=2� �Þ to ð1=2� �0; 1=2� �0Þ as
x becomes less than 0:06.9,10) This means that the stripe
direction rotates by 45�, becoming diagonal, at this
transition. In the ‘‘diagonal stripe (DS) state’’, the magnetic
peaks were observed to keep a relationship � ’ x which is
held in the VS state in the low doping region.

Our purpose in this paper is to examine if the relationship
� � x is obtained in the lower doping region or not and if the
DS state is obtained in the further lower doping region, using

a similar computation as in the previous work4) by the VMC
study on the ground state of the 2D Hubbard model. This
model is more appropriate than the t–J model for cuprates
since on-site coulomb energy U is considered to be
moderate12) and this model gives the SC condensation
energy close to the experimental one.12) We will show that
the bond-centered DS state is more stable than the VS state
when x � 1=16 and that this state holds � � x as well as in
1=16 < x < 1=8. Here, the bond-centered state implies that
the center of the stripe runs between two sites while the
conventional stripe running on the sites is called site-
centered type.

We start from the 2D Hubbard model,

H ¼ �
X
i; j;�

1

2
tij c

y
i�cj� þ h:c:

� �
þ U

X
i

ni"ni#; ð1Þ

where the transfer energy tij ¼ t; t0, if sites i and j are nearest
neighbors and next-nearest neighbors, respectively. In the
following we take t as the unit of energy. cyi� (ci�) is the
creation (annihilation) operator of the electron with spin � ("
or #) at sites i (i ¼ 1 � Ns) and ni� ¼ cyi�ci� . Ns is the
number of sites. Using the VMC method, we calculate the
variational total energy in the coexistent state, Ecoexist ¼
h�coexistjHj�coexisti=h�coexistj�coexisti. We use the trial wave
function j�coexisti as defined by j�coexisti ¼ PNe

PGj�MF
coexisti.

PG is the Gutzwiller projection operator given by PG ¼Q
ið1� ð1� gÞn̂ni"n̂ni#Þ, where g is the Gutzwiller variational

parameter in the range from 0 to unity, which controls the
on-site electron correlation. Projector PNe

assures a fixed
total electron number Ne. j�MF

coexisti is a mean-field wave
function for the coexisting SC in a stripe SDW state. The
mean-field Hamiltonian for �MF

coexist is given by

HMF ¼
X
ij

ðcyi" ci#Þ
Hij" Fij

F�
ji �Hji#

 !
cj"

cyj#

 !
; ð2Þ

where diagonal terms describe the mean field due to ISDW–
ICDW as

Hij� ¼ �tij � �þ
U

2
ni þ sgnð�Þð�1Þxiþyimi

� �
�ri ;rj ; ð3Þ

where � is the chemical potential. Following Giamarchi et
al.,5) we assume charge density ni and spin density mi are
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spatially modulated as ni ¼ 1�
P

l �= coshððyi � YlÞ=�cÞ
and mi ¼ m

Q
l tanhððyi � YlÞ=�sÞ, respectively. Here, ampli-

tude � is fixed by
P

i ni ¼ Ne. Yl denotes the position of the
domain wall, where the hole density is maximal; Yl ¼
integer (half-integer) corresponds to the site- (bond-)
centered stripe state. Stripes extend along the x-direction.
The meanings of m, �c, and �s are apparent. The DS state can
be treated in the same way by replacing yi by xi � yi. On the
other hand, the off-diagonal terms in eq. (2) are defined in
terms of the d-wave SC gap as Fij ¼

P
êe �ij�rj ;riþêe

, where
êe ¼ �x̂x;�ŷy are unit vectors. We consider the spatially
inhomogeneous SC state so that the SC amplitude takes the
maximum on the stripes as �i;iþx̂x ¼ �cosðqyðyi � YlÞÞ and
�i;iþŷy ¼ ��cosðqyðyi � Yl þ ŷy=2ÞÞÞ. Here, q ¼ ð0; 2��Þ and
� is a incommensurability given by the stripe’s period in the
y-direction with regard to the spin in the VS case. Note the
period in charge distribution is half of the spin period. The
sign of the SC gap is opposite between neighboring stripes.
It was already confirmed that this ‘‘antiphase’’ configuration
is more stable than the state where the SC gap is given by
�i;iþx̂x ¼ �j cosðqyðyi � YlÞÞj and �i;iþŷy ¼ ��j cosðqyðyi �
Yl þ ŷy=2ÞÞÞj.4,6)

In order to diagonalize the Hamiltonian, eq. (2), it is
necessary to solve the Bogoliubov–de Gennes equation,

X
j

Hij" Fij

F�
ji �Hji#

 !
u�j

v�j

 !
¼ E�

u�i

v�i

� �
; ð4Þ

with i ¼ 1; 2; . . . ;Ns. Here, we obtain Ns positive eigenval-
ues E� (� ¼ 1 � Ns) with their eigenvectors ðu�i ; v�i Þ. While,
Ns negative eigenvalues E ��� are obtained with eigenvectors
ðv ���

i ; u
���
i Þ. The coefficients u�i and v�i determine the Bogoliu-

bov transformation,

��" ¼ u�i ci" þ v�i c
y
i# ðE� > 0Þ

� ���# ¼ u ���
i ci" þ v ���

i c
y
i# ðE ��� < 0Þ;

ð5Þ

where the ��" and � ���# are quasi-particle annihilation
operators, which satisfy the anticommutation relations. Then
we obtain the expression of the trial function,4,6)

PGPNe
j�MF

coexisti � PG

X
ij

ðU�1VÞijcyi"c
y
j#

 !Ne=2

j0i; ð6Þ

with ðUÞij ¼ uij and ðVÞij ¼ vij with i; j ¼ 1; 2; . . . ;Ns.
In actual calculations, variational parameters are �, m, g,

�c, �s and �. Main efforts are made on such clusters where
there are two stripes. In this letter, we choose the system
parameters t0 ¼ �0:20 and U ¼ 8 suitable for cuprate
superconductors such as LSCO. The periodic boundary
condition is used in the x-direction, and antiperiodic one in
the y-direction. The correlated measurements and Newton
method were used for optimization of the total energy. In
each Newton step, the number of total Monte Carlo steps
was greater than 6� 106.

In Fig. 1, we show the minimized total energy per site,
Ecoexist=Ns, of the coexistent state of the VS and d-wave SC
as a function of hole density, x. We performed the numerical
calculation in the underdoped region of 0:06 < x � 0:1
where the coexisting state of vertical ISDW and SC state
was observed in LSCO.10) Filled symbols represent values
for site-centered VS states with 12-, 14-, 16- and 18-lattice

periods on square-lattices. The error bars are smaller than the
size of symbols. The period of the minimum energy state
switches from 12-lattice through to 18-lattice as x decreases.
This behavior is basically the same as that in the previous
calculation for 1=12 � x � 1=8.4) However, the hole density
dependence of the incommensurability � for the most stable
stripe state tends to deviate to smaller values from the
relation of � ¼ x as x decreases; when � ¼ x is maintained,
the hole density along a stripe is equal to 1=2 per unit length.
Such a deviation from � ¼ x was reported in the inelastic
neutron scattering experiment by Yamada et al.13) We found
also that the total energy of the bond-centered VS state is
very close to that of site-centered one. This closeness is in
agreement with the result from density matrix renormaliza-
tion group calculations by White et al.14)

Next, in Fig. 2, we show Ecoexist=Ns in the cases of both
site- and bond-centered DS states as functions of x. As a
reference, the minimum values of the VS state obtained from
Fig. 1 are plotted by open circles. We calculated in the cases
of 12-, 16-, 20- and 24-lattice period DS states on square
lattices. In this doping region, the total energy of the DS

Fig. 1. Total energy of coexistence state of the VS state and d-wave SC as

a function of hole-density x for U ¼ 8 and t0 ¼ �0:20. Filled symbols

denote the cases of site-centered VS type (SV). The bond-centered VS

cases (BV) are represented by open symbols. n�m denotes the cluster

size of n in the x-direction and m in the y-direction. m is equal to the

stripe’s period.

Fig. 2. Total energy per site of the coexistence state of DS and d-wave SC

as a function of hole-density x for U ¼ 8 and t0 ¼ �0:20. Open symbols

denote for the cases of site-centered DS type (SD). The bond-centered

DS cases (BD) are represented by filled symbols. The value of the

minimum energy for the VS state as shown in Fig. 1 are also plotted by

open circles.
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state with larger stripe period is lowered. The bond-centered
DS state with a 24-lattice period is most stable at x ¼ 1=16.
The total energy is definitely lower than that for the VS
curve by more than the error bar. Although the possibility of
the DS state with a larger stripe period is not excluded, the
24-lattice period state is very probable to be the lowest
energy state at x ¼ 1=16, since the energy difference
between the successive periodicity states are quickly
decreasing and close to zero for the 24-lattice period state.
We also found that the total energy for the bond-centered
type is lower than that for the site-centered type for the same
stripe’s period.

When we calculated the total energy for the DS state, we
employed the square-lattice because q boundary condition
with periodic spin arrangement is needed in both the x- and
y-directions. However, the numerical calculation of lattices
larger than 24� 24 sites requires too much CPU time. We
now employ the rectangular lattice (we called this config-
uration ‘‘diagonal-lattice’’ in this letter) cutting a square-
lattice along the diagonal direction as shown in the inset of
Fig. 3, which enables us to evaluate the variational energy of
the DS state in lower-doping region. Moreover, we set the
SC gap parameter at zero because this SC condensation
energy is much smaller than that for the stripe SDW part in
the present small-x region.4) The following arguments are
not influenced by the choice of the cluster lattice. We
checked that close total energies of DS states were obtained
by both the diagonal and square lattices of 16� 16 sites,
lying in the range of the statistics error bar. We show the
total energies per site of DS states for various stripe periods
with x ¼ 0:05 in Fig. 3. The calculations for the VS state
were performed on the square lattice as in Figs. 1 and 2. We
found that the bond-centered DS state with the 36-lattice
period in spin along the diagonal direction of the inset is the
most stable. This period is closer to the relation, � ¼ x, rather
than � ¼ x=2 because � is defined as the inverse of the stripe
interval in the direction perpendicular to the DS; 1=� ¼
36=

ffiffiffi
2

p
’ 0:039. The total energy is higher in the case of the

site-centered DS states than in both the VS and bond-
centered DS cases. Incidentally, the DS state with the 60-
lattice period (1=� ¼ 60=

ffiffiffi
2

p
) is the most stable in the site-

centered type. In this case, it seems that the relation of � �
x=2 is satisfied. On the other hand, the site-centered VS state
is most stable when the period is 32-lattice in a square
lattice, in which � ¼ x is not maintained.

In Fig. 4, we show the incommensurability of the most
stable stripe state as a function of x by using the results
obtained above. Open squares and triangles are values for
diagonal and vertical ISDW’s obtained in the elastic neutron
scattering experiment on LSCO, respectively. Filled squares
and triangles show our results for the DS and the VS states,
respectively. Error bars present possible deviations due to
the fact the stripe state with intermediate periods was not
treated by our calculation. While, in the light-doping region,
� starts to deviate from the relation � ¼ x in the VS state, the
relationship is approximately held there in the DS state.
These results are in a good agreement with experimental
data. We also found that the phase boundary xcritical between
DS and VS state lies at or above 0.0625 in the case of U ¼ 8

and t0 ¼ �0:2. The following factors may give rise to slight
changes of calculated xcritical: it is thought that the DS state is
stabilized in the low-temperature-orthorhombic (LTO) phase
in LSCO. We confirmed that the DS state stabilizes further
by forming a line along larger next-nearest hopping direction
due to the anisotropic t0 generated by the Cu–O buckling in
the LTO phase. On the other hand, Giamarchi et al. showed
that the DS state is stabler when U is larger.3) Therefore, the
value of xcritical is larger as U increases or in the LTO phase.
Taking these effects into consideration, a slightly smaller
value of U is considered to be more appropriate as noted in
the introduction.16)

We now discuss the relative stability of the bond-centered
and site-centered-type VS and DS states. Figure 5 shows the
expectation values of the charge density ni ¼ ni" þ ni# and
the staggered magnetization mi ¼ ð�1Þixþiy ðni" � ni#Þ along
the y-direction for the case of the 12-lattice period with x ¼
1=12. In this case the VS state is more stable than the DS

Fig. 3. Total energy for VS (square) state and bond-centered (circle) and

site-centered (triangle) DS state against x ¼ 0:05. The inset shows the

lattice configuration used only in numerical calculations for DS state.

Periodic boundary conditions are used in both the x- and y-directions in

the inset. The lattice of the inset is labeled 4� 8 denoting the cluster size

of 4 in the x-direction and 8 in the diagonal direction. The latter number is

equal to the stripe’s period with regard to the spin. Two stripes are extend

along the x-direction. The total energy for commensurate SDW state is

also plotted as a star.

Fig. 4. Incommensurability � depending on the hole density x for U ¼ 8

and t0 ¼ �0:2. Previous results for x ¼ 1=6, 1=8, 1=10 and 1=12 are

included.15) The numerical result for the VS and the bond-centered

DS state are represented by filled triangle and square symbols,

respectively. Open triangles and squares show the results of the vertical

and diagonal ISDW order observed from neutron scattering measure-

ments, respectively.10)
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state. Note that calculated values for bond-centered DS and
VS states are shifted by 0.5 along the y-direction in order to
make it easy to compare with those of the site-centered-type
states. ni and mi for both the bond-centered and the site-
centered VS states take very similar distributions, respec-
tively, which implies that the VS states of two types have
very close gains of kinetic and magnetic energies. On the
other hand, the charge amplitude of the site-centered DS
state is smaller than that of the site-centered VS state. On the
contrary, in the bond-centered DS state, the charge distri-
bution near the domain wall is close to that of the bond-
centered VS state as if it tended to earn the kinetic energy. In
addition, the magnetic domains outside the stripe region are
extended more than those of the site-centered DS state and
also more than that in the VS state, which is considered to be
advantageous in the light-doping region because the loss of
the SDW formation energy caused by hole-concentrated
stripes keep smaller. Why does the bond-centered DS state
differ from the site-centered one? There is a possibility that
these differences result from the effective hopping energy
along the diagonal stripe direction. While holes move on one
charge stripe by next-nearest-site hopping energy t0 in the
case of site-centered DS state, holes in the bond-centered
one can zigzag on the ladder-like charge stripes by nearest-
site hopping energy t (where local spin densities are
ferromagnetically arranged). The difference between site-
and bond-centered-type VS states may be smaller than that
between the site- and bond-centered-type DS states because
both of charge stripes are oriented in the vertical direction
with nearest-site hopping energy t.

More recently, it was shown by using the Hartree–Fock
theory that the diagonal stripe structure varies from the site-
centered one to the bond-centered one as hole density
decreases from x ¼ 0:05 when the period is fixed at 40
lattices.17) However, the strong electron correlations should
be taken into consideration in the doped Mott insulator. It is

particularly important in cuprates with an inhomogeneous
charge distribution.

In conclusion, we performed the VMC calculation to the
2D Hubbard model for U ¼ 8 and t0 ¼ �0:2. The VS state
switches to the bond-centered DS state as the hole density
decreases from x � 1=16. In the lower doping region, the
relationship of the hole density and the incommensurability,
� � x, is satisfied in the case of the bond-centered DS state
while � < x in the VS state. These results are in good
agreement with the experiments in the light-doped LSCO.
This supports the validity of the 2D Hubbard model for
cuprates and also the soundness of the VMC method. The
result provides the basis for clarifying the remaining
problems in the light-doping region. It would also help one
understand the stability of the static diagonal stripe in the
nickel system.
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