
Journal of Superconductivity and Novel Magnetism
https://doi.org/10.1007/s10948-020-05487-1

ORIGINAL PAPER

Phase Diagram andMechanism of Superconductivity
in Strongly Correlated Electrons

Takashi Yanagisawa1 ·Mitake Miyazaki2 · Kunihiko Yamaji3

Received: 24 January 2020 / Accepted: 14 March 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
We investigate the phase diagram of two-dimensional (2D) Hubbard model by employing the optimization variational Monte
Carlo method. The 2D Hubbard model is the most simple electronic model for cuprate high-temperature superconductors.
The phase diagram consists of three regions; they are antiferromagnetic insulator region, superconducting region, and the
coexistent region of superconductivity and antiferromagnetism. The phase diagram obtained by numerical calculations well
agrees with the experimental phase diagram for high-temperature cuprates.
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1 Introduction

The mechanism of high-temperature superconductivity has
been studied intensively for more than 30 years [1]. It
is important to clarify the phase diagram of strongly
correlated electron states in the study of high-temperature
superconductivity [2–6]. The purpose of this study is to
understand the phase diagram of cuprate high-temperature
superconductors since the mystery of the phase diagram in
cuprates has never been resolved. The electron correlation
between electrons plays an important role in cuprate
superconductors because the parent materials without
carrier doping are Mott insulators and the Cooper pairs have
the d-wave symmetry. It is very important to clarify the
electronic properties of electrons in the CuO2 plane [7–14].
The model for the CuO2 plane has d electron in copper
atoms and p electrons in oxygen atoms. We often examine
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the simplified model, by neglecting oxygen sites in the
CuO2 plane, which is called the (single-band) Hubbard
model [15–19]. It is an important subject whether the two-
dimensional (2D) Hubbard model has a superconducting
phase or not [20–29]. The variational wave functions have
been improved intensively recently [30–35]. Recent results
on the 2D Hubbard model are now supporting the existence
of superconductivity in the ground state [32–35].

A variational Monte Carlo method is a suitable method
to investigate electronic properties of strongly correlated
electron systems [17, 36, 37]. A variational wave function
is improved and optimized by introducing new variational
parameters to control the electron correlation. We have
proposed correlated wave functions by multiplying an initial
wave function by exp(−S)-type operators [33, 34, 38, 39],
where S is a correlation operator. The wave function is
further optimized in a systematic way by multiplying by
the exponential-type operators repeatedly [33]. The ground-
state energy evaluated by our wave function is much lower
than that by previous wave functions.

2Model Hamiltonian

The CuO2 plane consists of oxygen atoms and copper atoms
(shown in Fig. 1). The basic model for this plane is the three-
band d-p model which explicitly contains both oxygen p

electrons and copper d electrons. When we neglect oxygen
atoms in this model, we have the two-dimensional Hubbard
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Fig. 1 Lattice of the CuO2 plane with oxygen and copper atoms

model that consists of only d electrons on a lattice shown in
Fig. 2. The Hubbard model is given as

H =
∑

ijσ

tij c
†
iσ cjσ + U

∑

i

ni↑ni↓, (1)

where {tij } are transfer integrals and U(> 0) is the on-
site Coulomb energy. The transfer integral tij for nearest-
neighbor pairs 〈ij〉 is denoted as tij = −t and that for
next-nearest neighbor pair 〈〈ij〉〉 is tij = −t ′. Otherwise,
tij vanishes. We denote the number of sites as N and the
number of electrons as Ne. The energy unit is given by t .
niσ refers to the number operator: niσ = c

†
iσ ciσ . The second

term in the Hamiltonian represents the on-site repulsive
interaction between electrons with opposite spins.

One may understand the appearance of inhomogeneous
states reported for high-temperature cuprates based on the
Hubbard model [26, 40–42]. Concerning the existence of

Fig. 2 Lattice of copper atoms in the CuO2 plane

superconducting phase in the 2D Hubbard model, quantum
Monte Carlo studies have given negative results and do not
support high-temperature superconductivity in the Hubbard
model [20–22]. The recent results based on elaborated
optimized wave functions, however, have provided a support
for superconductivity [33, 34], especially in the strongly
correlated region [33]. In our opinion, it seems evident that
the 2D Hubbard model has a superconducting phase in the
ground state. There is, however, still an issue that should be
clarified. This is the competition between superconducting
and antiferromagnetic states.

3 OptimizedWave Functions

We use an ansatz for the wave function and evaluate
the expectation values using the variational Monte Carlo
method. A starting wave function to take account of the
electron correlation is given by the Gutzwiller ansatz:

ψG = PGψ0, (2)

where PG is the Gutzwiller operator PG = ∏
j (1 − (1 −

g)nj↑nj↓) with the parameter g in the range of 0 ≤ g ≤ 1.
ψ0 is a trial function of one-particle state. To investigate a
stability of the superconducting (SC) state, we use the BCS
wave function ψBCS for ψ0 with the gap parameter �SC .
The condensation energy is defined as Econd = E(�SC =
0) − E(�SC = �SC,opt ) for the optimized gap function
�SC,opt . The antiferromagnetic (AF) one-particle state ψAF

is given by the eigenstate of the AF trial Hamiltonian given
by

HAF =
∑

ijσ

tij c
†
iσ cjσ − �AF

∑

iσ

σ (−1)xi+yi niσ , (3)

where ri = (xi, yi) are the coordinates of the site i. �AF

indicates the AF order parameter.
Our wave function is obtained by multiplying ψG by an

off-diagonal correlation operator to take account of intersite
correlation. The wave function is written as [33, 38, 39,
43–47]

ψλ = e−λKψG, (4)

where K indicates the kinetic term of the Hamiltonian
K = ∑

ijσ tij c
†
iσ cjσ and λ is a real constant which

is the variational parameter chosen to lower the ground-
state energy [33, 34, 39, 43]. The initial wave function
ψ0 is written by Slater determinants in the real space
representation. The basis states are given by Slater
determinants. The operator e−λK produces off-diagonal
elements between different basis states and lowers the
ground-state energy.
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This wave function is easily generalized to multi-band
models and appears to be a good wave function for the
three-band d-p model [34, 48].

4 Phase Diagram and the Effect of t′

We consider the phase diagram as a function of the doping
rate (hole density) and examine the effect of the nearest-
neighbor transfer t ′ on it. The common feature of the
phase diagram of high-temperature cuprates is that the
antiferromagnetic insulator phase exists when the hole
density x is small near half-filling and there is the d-wave
SC phase when the hole density is larger than the critical
value xc where xc ∼ 0.05. The SC phase vanishes when x

becomes as large as about 0.25.
We show the phase diagram in Fig. 3 where the

condensation energy is shown as a function of the hole
density x. The condensation energy is defined as the energy
difference given as

�E = E(� = 0) − E(� = �opt ), (5)

where� is the order parameter for SC (�SC) and AF (�AF )
and �opt indicates the optimized value of �. In Fig. 3,
calculations were performed for U/t = 18 and t ′ = 0
on a 10 × 10 lattice and we include the results for the
AF state for U/t = 14 and 12. There occurs the phase
separation when x < 0.06, and the AF state in this region
is an insulating state [34, 35]. When x > 0.06, the ground
state becomes d-wave superconducting. In the region near
the AF boundary given as 0.06 < x < xdSC , the AF order
and superconductivity coexist where xdSC is approximately

Fig. 3 The condensation energy as a function of the hole density x for
t ′ = 0

Fig. 4 The condensation energy as a function of the hole density x for
t ′ = −0.1

xdSC ∼ 0.08 − 0.09. The pure d-wave state is realized
for x > xdSC . When U decreases, the AF order parameter
increases.

We investigate the effect of t ′ here. The AF condensation
energy is shown as a function of the hole density x in
Fig. 4 for t ′/t = −0.1 and U/t = 18. The AF region
becomes large as −t ′ increases, and thus the t ′ = 0 is
most favorable for the pure d-wave SC state. The phase-
separation region decreases, that is, the antiferromagnetic
insulator (AFI) region decreases due to t ′. Figure 5 presents
the phase separation (PS) region on the x-t ′ plane. The PS
region disappears when t ′ is as large as −0.2.

Fig. 5 Phase-separation region in the plane of x and t ′
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To summarize the results, the t ′ increases antiferro-
magnetic correlation and decreases insulator region near
half-filling.

5 Summary

We have investigated the ground state of the 2D Hubbard
model on the basis of the optimization variational Monte
Carlo method. We employ the optimized wave function by
introducing new variational parameters to go beyond the
Gutzwiller ansatz. The ground-state energy is greatly low-
ered by our wave function. The metal-insulator transition is
also well described by our optimized function [48].

We mainly focused on the effect of t ′ on the AF
correlation and the phase separation. The area of the AF
phase increases when we include t ′ and thus the pure d-
wave SC phase decreases. The AFI phase near half-filling
decreases as |t ′| increases.

The electron pairing interaction is induced due to spin
and charge fluctuations in the strongly correlated region.
There is a crossover between weakly and strongly corre-
lated region as the strength of the Coulomb interaction
U increases. Crossover phenomena have also been inves-
tigated in the study of cuprate superconductors [49]. This
kind of crossover may be universal which occurs with
a singularity in the intermediate region as in the Kondo
effect, QCD, and BCS-BEC crossover [50–53]. The kinetic
energy induced by the operator exp(−λK) may drive the
electron pairing and helps to bring about high-temperature
superconductivity.
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