Abstract

We show that there is an interesting correlation between material parameters and critical temperature T_c in cuprate high-temperature superconductors. Our analysis is based on the d-p model, that is, the three-band Hubbard model including d and p orbitals explicitly. This model contains many parameters; the transfer integrals t_{dp} and t_{pp}, the energy levels ϵ_p and ϵ_d, and the Coulomb interaction parameters U_d and U_p. Our main results are the following: (a) T_c increases as $\epsilon_p - \epsilon_d$ is increased for $U_p = 0$, (2) T_c is lowered with increase of U_p when $\epsilon_p - \epsilon_d > 0$, (3) T_c is increased with increase of U_p when $\epsilon_p - \epsilon_d < 0$, (4) T_c has a minimum at near $\epsilon_p - \epsilon_d = 0$ as a function of $\epsilon_p - \epsilon_d$ when U_d and U_p are comparable, (5) U_d induces $d_{x^2-y^2}$ pairing while U_p induces d_{xy} pairing, (6) T_c has a peak as a function of t_{pp}. The results imply that T_c will increase if we can suppress U_p. The role of U_p is consistent with the experimental tendency that T_c increases as the relative ratio of the hole density at oxygen site to that at copper site is increased, which means that when U_p increases, the number of p holes is decreased and T_c is also decreased.

1. Introduction

The study of high-temperature superconductivity has been addressed extensively since the discovery of cuprate superconductors [1]. It is primarily important to clarify electronic states in the CuO$_2$ plane [2-5]. Electron
correlation is important in cuprates [6-13] and relationship between material parameters and critical temperature T_c is also significant in the study of cuprate high temperature superconductors. There are two kinds of material parameters. The first one is related to the band structure and the Fermi surface; they are transfer integrals t_{dp} and t_{pp} and the levels of d and p electrons. The t_{dp} is the transfer integral between nearest d and p orbitals in the CuO$_2$ plane, and t_{pp} is that between nearest p orbitals. The other is concerning with the strength of interactions such as the Coulomb interactions, U_d and U_p, and the electron-phonon interaction. In our previous studies, the transfer integrals play an important role to stabilize superconductivity and striped states [7-13] as well as to obtain a finite bulk limit of the superconducting condensation energy [14,15].

There are experimentally known correlation between material parameters and T_c. For example, T_c increases as the relative ratio of hole density at O site against that at Cu site is increased [16]. This indicates that doping hole carrier at O site is more favorable for higher T_c. The hole carrier density is determined by the relative level difference $\epsilon_p-\epsilon_d$ and Coulomb interactions U_d and U_p. Thus, T_c would crucially depend on these parameters.

The purpose of this paper is to show relationships between T_c and material parameters on the basis of the d-p model in the CuO$_2$ plane. We investigate the gap equation that is derived for the effective interaction in terms of U_d and U_p. We use a weak-coupling formulation to solve the gap equation and show correlation between T_c and material parameters.

2. Hamiltonian and gap equation

The model is the Hamiltonian that contains d and p electrons [7,8,17]:

$$
H = \varepsilon_d \sum_{i\alpha} d^\dagger_{i\alpha} d_{i\alpha} + \varepsilon_p \sum_{i\sigma} \left(p^\dagger_{i+\frac{1}{2},\sigma} p_{i+\frac{1}{2},\sigma} + p^\dagger_{i+\frac{1}{2},\sigma} p_{i+\frac{1}{2},\sigma} \right) + t_{dp} \sum_{i\sigma} \left[d^\dagger_{i\sigma} \left(p_{i+\frac{1}{2},\sigma} + p_{i-\frac{1}{2},\sigma} - p_{i-\frac{1}{2},\sigma} - p_{i+\frac{1}{2},\sigma} \right) + h.c. \right] + t_{pp} \sum_{i\sigma} \left[p^\dagger_{i+\frac{1}{2},\sigma} p_{i+\frac{1}{2},\sigma} - p^\dagger_{i+\frac{1}{2},\sigma} p_{i-\frac{1}{2},\sigma} - p^\dagger_{i-\frac{1}{2},\sigma} p_{i+\frac{1}{2},\sigma} + p^\dagger_{i-\frac{1}{2},\sigma} p_{i-\frac{1}{2},\sigma} + h.c. \right] + U_d \sum_{i} n^d_{i+\frac{1}{2}} n^d_{i-\frac{1}{2}} + U_p \sum_{i} \left(n^p_{i+\frac{1}{2}} n^p_{i+\frac{1}{2}} + n^p_{i-\frac{1}{2}} n^p_{i-\frac{1}{2}} \right),
$$

where $n^d_{i\sigma}$ and $n^p_{i\sigma}$ ($\mu=x, y$) are number operators for d and p electrons, respectively. U_d and U_p indicate the Coulomb interaction for d and p electrons, respectively. We examine the doped case within the hole picture where the lowest band is occupied up to the Fermi energy μ. The non-interacting part is written as

$$
H_0 = \sum_{k\sigma} \left(d^\dagger_{i\sigma} p^\dagger_{i\sigma} \right) \begin{pmatrix} \epsilon_d - \mu & \epsilon_{dk} & \epsilon_{jk} \\ -\epsilon_{dk} & \epsilon_p - \mu & \epsilon_{pk} \\ -\epsilon_{jk} & -\epsilon_{pk} & \epsilon_p - \mu \end{pmatrix} \begin{pmatrix} d_{i\sigma} \\ p_{i\sigma} \end{pmatrix},
$$

where $\epsilon_{dk} = 2t_{dp}\sin(k_y/2)$, $\epsilon_{jk} = 2t_{dp}\sin(k_y/2)$ and $\epsilon_{pk} = -4t_{pp}\sin(k_y/2)\sin(k_y/2)$. $p_{d\sigma}$ and $d_{d\sigma}$ are Fourier transforms of $p_{i+\frac{1}{2},\sigma}$ and $d_{i\sigma}$, respectively. The eigenvectors of this matrix give the corresponding weights of d and p electrons.

The gap equation was derived by means of the perturbation theory in terms of U_d [18,19,20]. The inclusion of U_p is recently achieved to give the effective interaction [21]:

$$
V_{kk'} = \frac{1}{N} \sum_{p}\frac{f^d_p - f^p_p}{\varepsilon^d_p(p) - \varepsilon^p_p(k + k' + p)} \left| \sum_{\mu=d,p} \sum_{p'} U_{i\sigma} z^\mu_{p'}(k') z^\mu_{i\sigma}(k + k' + p) \right|^2,
$$

where f^μ_p is the Fermi integral for p electrons.
where \(e_f(k) \) is the dispersion relation of the \(\alpha \)-th band \((\alpha = 0, 1, 2) \) and \(f_i^\alpha \) is the Fermi distribution function. We adopt that \(\alpha = 0 \) indicates the lowest band which gives a dominant contribution. The subscript \(i \) mean \(d, p_x \) and \(p_y \) components where we set \(U_p = U_{px} = U_{py} \). \(\epsilon^\alpha = (\epsilon^\alpha_{px}, \epsilon^\alpha_{py}, \epsilon^\alpha_{py}) \) indicates the eigenvector of the non-interacting Hamiltonian matrix shown above. Our gap equation is

\[
\Delta_i = -\frac{1}{N} \sum_{k} V_{i}^k \frac{\Delta_k}{2E_k},
\]

where \(\Delta_k \) is the gap function and \(E_k = \sqrt{\epsilon_k^2 + \Delta_k^2} \) for \(\xi_k = \epsilon_k^0 - \mu \).

3. Results and Discussion

The magnitude of the gap function is obtained as \(\Delta = \exp(-2t_{dp}/xU_d^2) \) in the weak-coupling formulation [22, 23] where we take \(t_{dp} \) as an energy unit. The exponent \(x \) indicates the strength of superconductivity. We first show the result for \(U_p = 0 \). With increase of \(\Delta_{dp} = e_p - e_d \), the exponent \(x \), namely \(T_c \), increases quickly as seen in Fig.1 where \(x \) is shown as a function of \(\Delta_{dp} \) using \(t_{dp} = 0 \) and \(U_p = 0 \) at the hole carrier density \(n_h = 0.13 \).

The gap functions are specified by one of irreducible representations of the square lattice. We have five irreducible representations \(A_1, A_2, B_1, B_2 \) and \(E \) [22]. The \(d_{x^2-y^2} \) symmetry is in \(B_1 \) and \(d_{xy} \) symmetry is in \(B_2 \). The Fig.1 implies that \(d_{x^2-y^2} \) pairing symmetry is realized for all the \(\Delta_{dp} \) when \(U_p = 0 \). The Fig.2 shows \(x \) as a function of \(t_{dp} \) where a sharp peak indicates a peak of the density of states due to the van Hove singularity.

Next we examine the effect of \(U_p \). The Fig.3 shows \(x \) vs \(U_p / U_d \) for \(\Delta_{dp} = e_p - e_d = 3 \) and \(t_{dp} = 0 \) at the doped hole density \(n_h = 0.13 \). This obviously indicates that \(T_c \) decreases as \(U_p \) is increased, that is, \(U_p \) suppresses \(T_c \). This is because the pairing symmetries induced by \(U_d \) and \(U_p \) are different from each other. This means that \(T_c \) will increase if we can suppress \(U_p \). Hence, when \(U_p > 0 \), \(U_p \) induces \(d_{xy} \)-symmetry paired state. In fact, when \(U_p = U_d, d_{x^2-y^2} \) pairing state changes into \(d_{xy} \) state as \(\Delta_{dp} \) is reduced from positive to negative values as shown in Fig.4. Here we mention that in this figure, \(x \) of \(A_1 \) pairing state is very close to that of \(d_{xy} \). We also found that \(T_c \) is increased with increase of \(U_p \) when \(e_p - e_d < 0 \). Lastly, we note that the role of \(U_p \) is consistent with the experiment concerning relationship between \(T_c \) and the relative ratio of hole density at O site to that at Cu site [16, 21]. This is because we have lower \(T_c \) and lower p-hole density when \(U_p \) grows large.
As a summary, we have investigated material-parameter dependence of T_c. We summarize as follows: (a) T_c increases as $\epsilon_p-\epsilon_d$ is increased for $U_p=0$, (2) T_c is lowered with increase of U_p when $\epsilon_p-\epsilon_d>0$, (3) T_c is increased with increase of U_p when $\epsilon_p-\epsilon_d<0$, (4) T_c has a minimum at near $\epsilon_p-\epsilon_d=0$ as a function of $\epsilon_p-\epsilon_d$ when U_d and U_p are comparable, (5) U_d induces $d_{x^2-y^2}$ pairing while U_p induces d_{xy} pairing, (6) T_c has a peak as a function of t_{pp}.

Acknowledgements

We thank J. Kondo for useful discussions.

References