Phase diagram of cuprate High-temperature superconductors

> T Yanagisawa¹ M Miyazaki², K Yamaji¹

 ¹ National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
 ² Hakodate National College of Technology, Hokkaido

Outline

1. Introduction

- 2. Optimization Variational Monte Carlo method
- 3. Electronic states of 2D Hubbard model Antiferromagnetism
 Superconductivity
 Phase separation
 Stripes
 Kinetic energy driven mechanism
 Phase diagram
- 4. Summary

1. Introduction

High- T_c Cuprates

High- $T_{\rm c}$ cuprates

Correlated electron systems

- Parent materials are insulators. Mott insulator
- d-wave symmetry
- anomalous metallic phase
- near antiferromagnetic phase

B. Keimer et al., Nature 518, 179 (2015)

Electron Correlation and High $T_{\rm c}$

We can expect higher T_c if superconductivity is induced by the interaction with large energy scale.

Electron-Electron Interaction Energy scale ~ eV ~ 10,000K

Electron-phonon interaction Energy scale ~ Debye Freq. $\sim 300K$ Upper bound of $T_c \sim 30$ -40K (McMillan)

Electron-Correlation Mechanism

Kohn-Luttinger (1965)

Gap equation

$$\Delta_{k} = -\frac{1}{N} \sum_{k'} V_{kk'} \Delta_{k'} \frac{1 - 2f(E_{k'})}{2E_{k'}} \qquad E_{k} = \sqrt{\xi_{k}^{2} + \Delta_{k}^{2}}$$

$$\Delta(\theta) = \sum_{\ell} \Delta_{\ell} P_{\ell}(\cos\theta) \qquad -\frac{1}{2} N(\varepsilon_{F}) V_{\ell} = \lambda_{\ell} \qquad k_{B} T_{c} = \omega_{c,\ell} \exp(-1/\lambda_{\ell})$$

Gap equation has a solution when *l* is large even for repulsive interaction.

Energy scales and T_c

$T_{\rm c} \sim 0.1 t/({\rm m}^*/{\rm m})$		Empirical relation			
	t	m*/m = r	t/r	T _c	
Cuprates	5000K	5	1000	100K	
Fe based	1000K	~ 2	500	50K	
Heavy	10000K	100 ~ 1000	10 ~ 100	1 ~ 10K	
electrons			~ <i>T</i> _K (Ko	ondo)	
Organics	200 ~ 500K	2~5	100	10K	
YBCO	5000K	5	1000	100K	
KFe ₂ As ₂	300K	7	30	3K	
Hydrides H ₃ S	1000K	1	1000	100K	

T.Y. Condensed Matter 4, 57 (2019)

Model of High-Tc Cuprates

Two-Dimensional plane

CuO₂ plane

Copper atoms

Oxygen atoms

Model of Cuprates

Two-Dimensional Plane

(Hole picture)

Characteristics

- Two dimensional
- Low spin 1/2
- O level is very closed to Cu level.

Holes in the CuO₂ plane

Hubbard model

One-band effective model —

2. Optimization Variational Monte Carlo method

Optimized many-body wave function

Superconducting state with correlation

k 🛔

Pairing state in correlated electron systems

$$\psi_{GBCS} = P_G \prod_k (u_k + v_k c_{k\uparrow}^+ c_{-k\downarrow}^+) |0\rangle$$

Gutzwiller Projection P_G

Weight g Coulomb +U

∮ -k

Off-Diagonal Wave Function

Off-diagonal wave functions

Gutzwiller wave function

$$\boldsymbol{\psi}_{G} = P_{G} \boldsymbol{\psi}_{0}$$

Off-diagonal wave functions

$$\psi_{\lambda} = e^{-\lambda K} P_{G} \psi_{0} = \psi_{\lambda}^{(2)}$$
$$\psi_{\lambda}^{(3)} = P_{G} e^{-\lambda K} P_{G} \psi_{0}$$
$$\psi_{\lambda}^{(4)} = e^{-\lambda K} P_{G} e^{-\lambda K} P_{G} \psi_{0}$$

 $\lambda, g, ...$: parameters

The wave function approaches an exact one.

Site-diagonal operator

T. Y. et al., JPSJ 67, 3867 (1998) T. Y. JPSJ 85, 147017 (2016) T. Y. JPSJ 88, 054702 (2019)

Electron Correlation Operator

H. Yokoyama et al. JPSJ

Comparison of Variational Energy

$4 \times 4 t'/t = 0$		N = 12		
<i>N</i> _e = 16	<i>U</i> / <i>t</i> = 5	U/t = 4	<i>U</i> / <i>t</i> = 10)
$P_G \psi_{FS}$ $P_J P_{d-h} P_G \psi_{FS}$	-11.654 -11.856	-18.239	-13.960 -14.031	
$P_J P_{d-h} P_G \psi_{pair}$	-12.459	-18.406	-14.435	many-parameter wave function
$e^{-\lambda K}P_G\psi_{FS}$	-12.366	-18.481	-14.544	
$P_G e^{-\lambda K} P_G \psi_{FS}$	-12.479	-18.528	-14.647	
$e^{-\gamma K}P_Ge^{-\lambda K}P_G\psi_{FS}$	s -12.487	-18.536	-14.685	
Exact	-12.530	-18.571	-14.808	

Comparison of Variational Energy 2

10×10	t'/t = -0.3	$10 \times 10 \ t'/t = -0.0$
$N_{\rm e} = 92$	U/t = 12	$N_{\rm e} = 88 U/t = 18$
$P_{G}\psi_{FS}$	-0.3650	-0.4218
$P_G \psi_{AF}$	-0.3771	-0.4259
$P_{d-h}P_G\psi_{FS}$	-0.4259	-0.4634
$P_J P_{d-h} P_G \psi_{FS}$	-0.4265	-0.4642
$P_{d-h}P_G\psi_{AF-d}$	-0.4915	Yokoyama et al
$e^{-\lambda K} P_G \psi_{FS}$	-0.4956	-0.5115
$P_G e^{-\lambda K} P_G \psi_{FS}$	-0.5095	-0.5175

3. Electronic States of Hubbard model

Research for the Hubbard model

Two-dimensional Hubbard model

- 1. Optimized wave function kinetic energy effect
- 2. Antiferromagnetic (AF) correlation
- 3. Superconductivity (SC) d-wave
- 4. Effect of t' (nearest-neighbor transfer)
- 5. Phase separation
- 6. Phase diagram

Condensation Energy: Gutzwiller function

Superconducting Condensation Energy

SC Condensation energy $\Delta E_{SC} = \Omega_n - \Omega_s = \int_0^{T_c} (S_n - S_s) dT$ $= \int_0^{T_c} (C_s - C_n) dT$

FIG. 4. Electronic specific heat coefficient $\gamma(x,T)$ vs T for YBa₂Cu₃O_{6+x} relative to YBa₂Cu₃O₆. Values of x are 0.16, 0.29, 0.38, 0.43, 0.48, 0.57, 0.67, 0.76, 0.80, 0.87, 0.92, and 0.97.

Loram et al. PRL 71, 1740 ('93) optimally doped YBCO

SC Condensation energy ~0.2 meV/site

Off-diagonal wave function

$$\psi_{\lambda} = e^{-\lambda K} P_G \psi_0$$

$$e^{-\lambda K}$$
 lowers the energy.

Spin Correlation Function

 $10 \times 10 \ N_e = 88 \ t' = 0$

S(q) shows a peak as a function of U.

AF correlation decreases in the strongly correlated Region.

Superconducting state

SC in Strongly Correlated Region

SC state is more stabilized in strongly-correlated region

t' and AF order

AF order parameter as a function of the hole density x

$$\Delta_{AF}$$
 vs $x = 1 - n_e$

AF area is large for t' = -0.2.

AF and Phase Separation

Phase Diagram

Phase Diagram

Stripes in Cuprates

Neutron scattering experiment in Cuprates

H. Hiraka et al.: PRB 81, 144501 (2010)

One-dimensional electrons with 1/4-filling

 \Rightarrow Possible stripe state in a two-dimensional *t*-*t*'-*U*Hubbard model

Incommensurability and Stripes

Neutron scattering

Incommensurability δ can be explained by the Hubbard model.

Stripes of Improved wave function

Vertical and Diagonal stripes

Diagonal striped state is stable for large U.

Stripes in the phase diagram

Kinetic energy driven SC

Kinetic energy driven superconductivity

Pairing interaction + Kinetic energy effect

High temperature superconductivity

Possibility of kinetic-energy driven high- $T_{\rm c}$ in the large-U region

 T_c is enhanced by the kinetic-energy effect.

Kinetic energy and U

$$E = E_{kin} + E_U$$

 $E_{\it kin}$: Kinetic energy

 E_U : Potential energy

There is a large kinetic Energy gain in the improved function Ψ_{λ} .

Kinetic energy and Condensation energy

Kinetic energy difference =
$$\Delta E_{kin} = E_{kin} (\lambda = 0) - E_{kin} (\lambda = \lambda_{opt})$$

= $E_{kin} (\Psi_G) - E_{kin} (\Psi_\lambda)$

 ΔE_{kin} and ΔE_{SC} show similar behaviors.

Possibility of kinetic-energy enhancement of superconductivity

Kinetic energy and doping rate

Doping dependence of kinetic energy effect ΔE_{kin}

 ΔE_{kin} is small in the overdoped region

Phase diagram of d-p model

Level difference and Tc

 T_{c} increases as $\varepsilon_{p} - \varepsilon_{d}$ decreases

Pressure effect and Tc

Zero Resistivity $T_{\rm c} = 153$ K under pressure (Takeshita et al. JPSJ)

Pressure dependence

 $HgBa_{2}Ca_{2}Cu_{3}O_{8+\delta}$

Summary

Phase diagram of cuprate superconductors

- 1. There occurs a crossover in a hole-doped system.
- 2. AF magnetic correlation is controlled by U and t'.
- 3. Phase separation exists near half-filling.
- ^{2.5x10⁻²} 4. Stability of striped state

ΔE/N

5. Kinetic-energy enhancing of Tc.

