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We have performed a variational Monte Carlo simulation to study the ground state of a two-dimensional
Hubbard model on a square lattice in the strong coupling region. The energy gain of possible inhomogeneous
electron states are computed as a function of U when the hole density ǫ = 1/8 and next nearest-neighbor
hopping t′/t = −0.30. The bond-centered ferromagnetic diagonal stripe state is stabilized in the strong coupling
region (U/t ≥16), which is due to the gain of both kinetic energy and on-site Coulomb interaction energy due
to the holon moving over the ferromagnetic domain and the gain of kinetic-exchange-interaction energy at the
antiferromagnetic domain wall.

1 Introduction

The ground state of the simple two-dimensional square
lattice Hubbard model at half-filling is an antiferromag-
netic (AF) Mott insulator for any finite positive value of
U/t (for t′ = 0). At U = ∞, doping only one hole dras-
tically changes the AF insulator state to a ferromagnetic
(FM) metallic state. This state is known as Nagaoka fer-
romagnetism [1] which is driven by the motion of a hole.
It is very interesting to investigate the electronic states
that appear when the number of holes is increased or U
is decreased in this system. In the U and finite-doping
region, many numerical and theoretical studies have been
conducted to determine whether fully polarized FM state
persists [2] [3], or whether partially polarized states (e.g.,
magnetic polarons [4]) due to competing Nagaoka fer-
romagnetism and AF exchange interactions are stable,
or whether other states such as spin-spiral states [5–7]
and phase-separation replace Nagaoka ferromagnetism as
ground states.
On the other hand, we focus our attention around

the 1/8-doping in the middle U case. The Hartree-
Fock calculations [8–11] and numerical simulations
such as the density matrix renormalization group [12],
the constrained-path auxiliary-field quantum Monte
Carlo [13], the variational Monte Carlo (VMC) [14–16],
etc. [17, 18] indicated the existence of stripe order with
spatially non-uniform spin and charge density. This is
a state in which holes doped in the AF Mott insula-
tor do not disrupt the AF order and are arranged one-
dimensionally on the domain wall between the two AF
domains, forming incommensurate electronic states. In
fact, the existence of the stripe-ordered state has been
confirmed by neutron scattering experiments in cop-

per oxide superconductors [19, 20], for which the two-
dimensional Hubbard model is considered to be a valid
model. The formation mechanism of the stripe state is
thought to be due to the kinetic energy gain of the hole
on the domain wall and the antiferromagnetic exchange
interaction gain on the AF domain. Similarly, it has
been discussed that superconductivity in strongly corre-
lated cuprate superconductors may be driven by a gain
in hole kinetic energy, unlike the usual BCS-type super-
conductivity [21–28]. The kinetic energy gain is thought
to play an important role in strongly correlated systems.
Now, it is a very interesting question to investigate

what kind of electronic state can be changed from a fully
polarized FM state with U = ∞ with a hole in the AF
Mott insulator to the stripe states with U ∼ W (W
: band width) and 1/8 doping. Therefore, we use the
VMC method that allows us to calculate a wide range of
ground states from weakly correlated to strongly corre-
lated states in order to search for stable ground states.
As a clue, we investigate the energetic stability of the
stripe states in the strongly correlated region.

This paper is organized as follows. Section 2 presents
the model Hamiltonian and the trial wave function in
variational Monte Carlo calculations. In Section 3, we
present the energy difference between the normal and
stripe states and spin and charge distributions for the
striped wave function. In Section 4, we summarize and
discuss the results obtained for FM diagonal stripe states.

2 Model and Method

The present study was undertaken to determine possi-
ble non-uniform charge distribution states in the two-
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dimensional (2D) t-t′-U Hubbard model,

Ĥ = Ĥk + ĤU

= −
∑

i,j,σ

tij(ĉ
†
iσ ĉjσ + h.c.) + U

∑

i

n̂i↑n̂i↓, (1)

where the transfer energy tij = t, t′, and 0, if sites i
and j are nearest-, next-nearest neighbor and otherwise,
respectively. In the following, we consider t as the unit of
energy. ĉ†iσ (ĉiσ) is the creation (annihilation) operator of
the electron with spin σ (↑ or ↓) at site i (i = 1 ∼ Nsite)

and n̂iσ = ĉ†iσ ĉiσ. U is the on-site Coulomb interaction
energy.
In the VMC calculation, the variational energy is

written as, Evar = 〈Ψ|Ĥ |Ψ〉/〈Ψ|Ψ〉. The trial wave
function |Ψ〉 is defined by |Ψ〉 = P̂Ne

P̂GP̂JP̂DH|φMF〉,
where P̂Ne

is a projection operator that extracts only
the components with a fixed total number of electrons
Ne. P̂G is the Gutzwiller projection operator given by
P̂G =

∏
i(1 − (1 − g)n̂i↑n̂i↓), where g is a variational

parameter in the range from 0 to unity, which con-
trols the on-site electron correlation. P̂J is the Jastrow-
type projection operator P̂J =

∏
〈ij〉 h

n̂in̂j , which allows
the occupancy of the nearest-neighbor sites to be mod-
ified by adjusting h in the neighborhood of 1. P̂DH =∏

i(1− (1−η)
∏

τ d̂i(1− êi+τ)) is a correlation factor [29]
between the double occupied site (doublon) and empty
site (holon) on nearest-neighbors, where 0 ≤ η ≤ 1,

d̂i = n̂i↑n̂i↓, êi = (1 − n̂i↑)(1 − n̂i↓), and τ runs over
all nearest-neighbor sites. |φMF〉 is a mean field (MF)
wavefunction for non-uniform electron states, which is
obtained from the following MF Hamiltonian,

ĤMF = −
∑

ijσ

tij ĉ
†
iσ ĉjσ +

U

2

∑

iσ

(ρi − sgn(σ)mi) n̂iσ. (2)

where tij is defined as that in eq. (1). The charge mod-
ulation ρi and the spin modulation mi are described as

ρi = ρ cos(q · (ri − r0)), (3)

mi = m sin(Q · (ri − r0)), (4)

where ρ and m are variational parameters. The charge
and spin configuration are characterized by incommen-
surate wave vectors q and Q, respectively. QAF

VS =
(π±2πδ, π) produces the AF vertical stripe state in which
two adjacent AF magnetic domains are separated by a
one-dimensional domain wall along the y-direction, re-
sulting in a π-phase shift between the domain walls. δ
is the incommensurability defined as the inverse of the
period of the spin-stripe in the x-direction. The charge
modulation period is fixed to half of the spin modulation
period; q = 2Q, where we deal only with stripes with
even wavelength. r0 denotes the position of the domain
boundary; rSC0 = (0, 0) corresponds to the site-centered
(SC) type and rVBC

0 = (1/2, 0) corresponds to the verti-
cal bond-centered (BC) type.

The AF diagonal stripe state, where the domain wall
appears diagonally on the lattice, is represented by QAF

DS

(= (π ± 2πδ, π ± 2πδ)). When the domain boundary
is located at the center of the diagonal bond, rDBC

0 =
(1/2, 1/2), the phase shifts on both sides, resulting in FM
spin configurations on both sides of the domain boundary
(Fig. 1(a)). Therefore, the AF diagonal stripe state is
expected to gain the kinetic energy from the free move-
ment of holes at the FM domain walls. As shown in
Fig. 1(b), we assume a BC-FM diagonal stripe state
with a diagonal wave vector QFM

DS (= (±2πδ,±2πδ)) and
rDBC
0 , which consist of the diagonal FM magnetic do-
main and the diagonal AF domain boundary. (Similarly,
a FM vertical stripe state with QFM

VS (= (±2πδ, 0)) can
also be considered.) This configuration is advantageous
for free moving holes to gain kinetic energy compared to
Fig. 1(a). Furthermore, the energy gain due to the ki-
netic energy exchange interaction also occurs at the AF
domain walls.

!"# !$#

Figure 1: Typical diagonal striped non-uniform electron
configurations studied in this paper. The length of ar-
rows is proportional to the spin-density. These patterns
have period-8 on both axes with regard to the spin. (a)
Antiferromagnetic (AF) diagonal stripe state; the dark
gray areas indicate ferromagnetic (FM) antiphase do-
main walls between AF diagonal striped domains. (b)
FM diagonal stripe state; the light gray areas denote AF
antiphase domain walls between FM diagonal striped do-
mains.

The energy expectation by the VMC method is opti-
mized for a total number of Monte Carlo steps greater
than 3 × 107. To calculate the variational energy of the
period-1/δ diagonal stripe states as shown in Fig. 1,
the commensurability with δ is needed to guarantee the
spin-periodicity along both x- and y-direction; the calcu-
lations are performed on a square lattice L×L (L = 8, 16
and 24). The periodic boundary conditions are applied
in both directions. The hole density ǫ is fixed at 1/8-
doping, namely ǫ = 1 − Ne/Ns = 1/8, where Ns is to-
tal number of sites. The stripe state satisfying the re-
lations δ = ǫ and δ = ǫ/2, (i.e. period-8 and period-
16 spin-stripe state, respectively) is assumed to examine
the effective domain region when U is large. We assume
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t′ = −0.30 being suitable for cuprates [30] such as Bi-
2201 in which the stripe state has been observed. It is
thought that the next-nearest hopping t′ induces disor-
der in the strongly correlated system and produces in-
homogeneous electronic states. Numerical works show
that the next-nearest neighbor hopping term makes the
stripe state more stable [31,32] and no phase separation
appears in the 1/8-doped region [33].

3 Results

3.1 Energy difference between Normal

and Stripe states

In Fig. 2, the energy difference per site between the nor-
mal and stripe states, ∆E = (Enormal − Estripe)/Ns, of
various stripe states at 1/8-doping is shown as a function
of U . The calculations were performed on the 16 × 16
sites. The results show that FM stripe states (open sym-
bols) are more energetically stable than AF-stripe states
(filled symbols) at U ≥ 16. The stripe energy gain of
the site-centered AF-vertical stripe state increases from
weak-correlated region toward U ∼ 10 and decreases
with increasing U as the AF correlation (∼ O(t2/U)) be-
comes weaker. On the other hand, the stripe energy gain
of the period-8 bond-centered FM diagonal stripe state
increases with increasing U , and the period-16 bond-
centered FM diagonal stripe state is the most stable at
U ∼ ∞. Although the bond-centered AF-diagonal stripe
state with period-8 behaves similarly with FM domain
wall, the stripe energy gain is smaller than that for the
FM diagonal stripe state. In addition, the bond-centered
FM vertical stripe state (not shown in the Fig. 1) also
has finite stripe energy gain in the strong correlation re-
gion. However, the FM diagonal stripe state has a larger
the energy gain than the FM vertical stripe state, be-
cause the kinetic energy gain at the domain boundary is
greater for the diagonal configuration than that for the
vertical one.

The stripe energy gain of the FM stripe state is not sig-
nificantly affected by the setting of boundary conditions.
It also decreases with decreasing t′, but finite values are
obtained even at t′ = 0. The system size dependence of
the energy gain per site of bond-centered FM diagonal
stripe state with period-8 at U = 100 is shown in in-
set of Fig. 1, where the energy gain does not decrease
with increasing system size within statistic error. There
is likely to be no size dependence for period-16 FM diag-
onal stripe as well as that for period-8 one. It should be
noted that the fully polarized FM state is not stabilized
in our system with U ∼ ∞ unlike previous variational
QMC results [2]. We expect this state to be sensitive to
the lattice structure.
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Figure 2: Optimized energy difference per site between
the normal and stripe states ∆E = (Enormal−Estripe)/Ns

as a function of U . The data is from 16 × 16 lattices
where electron number Ne = 224 (i.e., 1/8-doping) and
t′ = −0.30. Filled squares indicate the period-8 site-
centered AF vertical stripe state (8-period SC-AF-VS).
Filled circles denote the period-8 bond-centered AF di-
agonal stripe state (8-period BC-AF-DS). Open squares
(circles) denote the bond-centered FM diagonal stripe
state (BC-FM-DS) with period-8 (period-16). Inset fig-
ure shows the system-size dependence of the optimized
energy difference per site for the period-8 BC-FM-DS
state with U = 100 at 1/8-doping. The error bars are
smaller than the size of symbols.

3.2 Three components of Energy differ-

ence

In the following, to discuss the relative stability of the
three states (the site-centered AF vertical stripe state,
the bond-centered AF diagonal stripe state and the
bond-centered FM diagonal stripe state) with period-8,
we examine the stripe energy gain separately with contri-
butions from the Coulomb interaction energyEU = 〈ĤU 〉
and the kinetic energy Ek = 〈Ĥk〉. In addition, as il-
lustrated in Fig. 3(a), Ek is divided into contributions
from processes in which the total number of double occu-
pied sites changes (left panel) and does not change (right
panel) when electrons hop from i site to j site. [34] The
former represents the intermediate process (∼ O(t/U)) of
kinetic exchange interaction , and the latter expresses the
motion of holes or doublons. In other words, the former
provides more kinetic energy in the AF spin background
and the latter in the FM one; Ek = EAF

k + EFM
k .

In Fig. 3(b), (c) and (d), we show the three compo-
nents, ∆EAF

k /Ns (filled circles), ∆EU/Ns (open circles)
and ∆EFM

k /Ns (filled squares) of the energy difference
per site between the normal and stripe states as a func-
tion of U . Figure 3(b) for the period-8 site-centered AF
vertical stripe state indicates that ∆EAF

k /Ns increases
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with increasing U up to U = 12 and then decreases (with
respect to ∼ O(t/U)). ∆EU/Ns changes from positive
to negative at U ∼ 11 and then approaches zero. Con-
versely, ∆EFM

k /Ns goes from negative to positive and
then has a constant value. Thus, U ∼ 11 is considered
to be the turning point from a weakly correlated sys-
tem to a strongly correlated system as U increases. The
stripe states are stabilized by interaction energy in the
weakly correlated region and by kinetic energy gain in the
strongly correlated region. These behaviors are similar
to the results shown by Yokoyama et al. [35] in the su-
perconducting state and uniform AF states, except that
∆EFM

k changes to a positive value (This difference is due
to the stripe state earning more the kinetic energy on the
domain wall).
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Figure 3: (a) Illustration of an electron hopping from
site i to site j. The left (right) panel: The hopping with
(without) changing the number of double occupied sites
contributing to the kinetic energy part, EAF

k (EFM
k ). (b)

The 3-components of energy difference between the nor-
mal state and the period-8 site-centered AF-VS, ∆EFM

k

(filled squares), ∆EAF
k (filled circles) and ∆EU (open

circles), as a function of U . (c) and (d) are same as (b)
but for the period-8 bond-centered AFDS and for the
period-8 bond-centered FMDS, respectively.

For the bond-centered AF diagonal stripe state (Fig.
3(c)), ∆EU/Ns is positive; due to FM arrangement on
the domain wall, the double occupancy probability is
smaller than in the normal state, energetically more fa-
vorable than in the normal state. As U increases, the
total number of doublon number of double occupied sites
decreases and ∆EU/Ns approaches zero. On the other
hand, ∆EAF

k /Ns is almost zero because the gain on the
AF domain cancels the loss on the FM domain wall.
∆EFM

k /Ns has a U -independent kinetic energy contri-
bution on the FM domain. These features are more pro-
nounced in the bond-centered FM diagonal stripe state
as shown in Fig. 3(d). Although the loss of kinetic ex-
change interaction energy is large, but decreases with
increasing U . ∆EFM

k /Ns and ∆EU/Ns are largest for
the FM diagonal stripe state with FM domains. There-
fore, in the strong coupling region, the bond-centered
FM stripe state with extended FM domain are further
stabilized, as shown in Fig. 2.

3.3 Staggered magnetization, Charge

density and Doublon density

Here, we compare the optimized spatial electron distri-
bution for the period-8 site-centered AF vertical stripe
state at U = 16, the period-8 bond-centered FM diag-
onal stripe state at U = 16 and the period-16 bond-
centered FM diagonal stripe state at U = 100. In Fig.4,
the expectation values of the staggered magnetization,
(−1)xi+yi〈n̂i↑ − n̂i↓〉 for AF stripe state (〈n̂i↑ − n̂i↓〉 for
FM stripe state), charge density, 〈n̂i↑ + n̂i↓〉, and dou-

blon density multiplied by U , U〈d̂i〉, are denoted by filled
squares, open circles, and filled circles, respectively. In
the period-8 site-centered AF vertical stripe state (Fig.
4(a)), holes are concentrated at the domain boundary be-

cause U〈d̂i〉 is highest at the domain boundary and acts
as more repulsive than the normal state. Aa a result, the
kinetic energy contribution along the domain wall is the
largest. There is also a finite doublon density inside the
AF domain, which contributes to the energy gain of the
kinetic exchange interaction.

On the contrary, as shown in Fig. 4(b), in the bond-
centered FM diagonal stripe state, holes are distributed
more on the FM domain and contribute to the kinetic en-
ergy gain. On the FM domain, the U〈d̂i〉 is almost zero
and little kinetic exchange interaction energy is gained,
but it is highest at the domain boundary, where the ki-
netic exchange interaction energy gain can be obtained.
At U = 100 (Fig. 4(c)), the period-16 bond-centered
FM diagonal stripe state has the same properties as the
period-8 one. However, the doublon density decreases
significantly in the strong correlation limit. A slight pe-
riodic modulation of the hole distribution is also observed
inside the FM domain. The staggered magnetization of
the FM stripe states has large values even near the do-
main boundary as shown in Figs. 3(b) and (c), and can
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be regarded as a twisted state of fully polarized FM state
than the incommensurate spin-density-wave.
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Figure 4: Profiles of the expectation values of the stag-
gered magnetization, (SM), the charge density, (CD),
and the doublon density multiplied by U , (UD), along the
xi direction at 1/8-doping are plotted by filled squares,
filled circles and filled diamonds, respectively. (a) the
period-8 bond-centered AF diagonal stripe state with
U = 16, (b) the period-8 bond-centered FM diagonal
stripe state with U = 16 and (c) with U = 100. (b) and
(c) are the most energetically stable cases at each U , as
shown in Fig. 2. As a reference, UD for the normal state
are plotted by open circles in (a) and (b).

4 Summary and Discussion

The stripe energy gain of inhomogeneous electron distri-
bution states in the two-dimensional square lattice Hub-
bard model with large U are investigated using the varia-
tional Monte Carlo method. The system parameters were
chosen to be t′ = −0.30 and 1/8-doping. We find that the
gain in the kinetic exchange interaction energy decreases
with increasing U , while in the large U region, the gain
in the kinetic energy due to the transfer of holes on the

ferromagnetic domain region and the gain in the on-site
Coulomb interaction energy exceed the loss in the kinetic
exchange interaction energy, forming an incommensurate
electron state with the ferromagnetic domain.

One possible explanation as to why large kinetic ener-
gies of holes can be obtained in incommensurate striped
ordered states is discussed below. The wave function in
equation (2) can be regarded as the wave function of the
twisted spin state with an extra factor sin(QFM ·(ri−r0))
added to the modulated fully polarized FM state rather
than that of the incommensurate density wave. Without
this phase factor, the FM state with finite Sz is not sta-
bilized. As discussed by Douçot and Wen [5], we think
that the increase in internal frustration due to finite hole
doping into the strongly correlated systems is eliminated
by twisting the spin state. They considered a spin-spiral
state with a wavelength of system size L, whereas in the
present work we assume the incommensurate spin den-
sity wave with a wavelength 1/δ. As shown in Figure 2,
the period of twists at U ∼ ∞ is δ = ǫ/2 and seems to
correlate with the hole concentration causing frustration.
As U decreases, the bond centered FM diagonal stripe
state with the relation of δ = ǫ becomes more stable
than that with the relationship δ = ǫ/2. This appears
to be due to the enhancement of AF correlations with
decreasing U and the kinetic exchange energy is gained
by shortening the twisting period.

There may be some relationship between the forma-
tion of stripes in the strongly coupled region and that in
the moderate coupling region, since the frustration due
to fermionic statistics of doped holes is a common un-
derlying problem. However, it is an open question as to
whether the twist of the spin wavefunction eliminates the
frustration in the stripe state in the moderate coupling
region.

Acknowledgements

This work was partly achieved through the use of
Hokkaido University High-Performance Intercloud at the
information initiative center, Hokkaido University, Sap-
poro, Japan.

References

[1] Y. Nagaoka, Phys. Rev. 147, (1966) 392.

[2] F. Becca and S. Sorella, Phys. Rev. Lett. 86, (2001) 3396.

[3] G. Carleo, S. Moroni, F. Becca, and S. Baroni, Phys.
Rev. B. 83, (2011) 060411(R).

[4] S. R. White and I. Affleck, Phys. Rev. B 64, (2001)
024411.
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