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ABSTRACT: It is very important to clarify the mechanism of high-temperature superconductivity in strongly correlated 
electron systems.  The mechanism of superconductivity in high temperature cuprate superconductors has been studied 
extensively since their discovery.  We investigate the properties of correlated electron systems and mechanism of supercon-
ductivity by using the optimization quantum variational Monte Carlo method.  The many-body wave function is con-
structed by multiplying by correlation operators of exponential type.  We show that d-wave superconducting phase exists 
in the strongly correlated region where the on-site repulsive interaction is as large as the bandwidth or more than the 
bandwidth.  The d-wave pairing correlation function is shown as a function of lattice sites, showing that the long-range 
order indeed exists. 
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1. Introduction 

The physics of high-temperature superconductors have been studied intensively for more than 35 years since the 
discovery of high-temperature superconductivity [1].  It is still a challenging issue to clarify the mechanism of high-
temperature superconductivity.  Since the parent materials of high-temperature cuprates are Mott insulators when no 
carriers are doped, high-temperature cuprates are typical strongly correlated electron systems.  The strong correlation 
makes it hard to elucidate the mechanism of superconductivity.  Thus, it is important to understand the electronic 
properties of strongly correlated electron systems. 

The CuO2 plane is commonly contained in various high temperature cuprates and consists of oxygen atoms and 
copper atoms.  It is certain that the CuO2 plane plays an important role in the emergence of high-temperature super-
conductivity [2-8].  The fundamental and important model on this plane is the three-band d-p model [4-26].  The 
two-dimensional (2D) Hubbard model is regarded as an effective model where we consider only d electrons by inte-
grating out the freedom of p electrons.  The 2D Hubbard model [27-29] is also the basic model for cuprate supercon-
ductors.   

The 2D Hubbard model contains fruitful physics although it looks very simple, and it may include effective inter-
actions that induce electron pairing to bring about high-temperature superconductivity.  The Hubbard model has been 
studied intensively to clarify the pairing mechanism of high-temperature superconductivity [30-49].  One may won-
der why the effective attraction arises between electrons from the on-site repulsive Coulomb interaction.  This effec-
tive pairing interaction may originate from the effective nearest-neighbor exchange coupling and the kinetic energy 
effect.  On this subject the ladder Hubbard model (two-chain model) has also been studied [50-55]. 

The Hubbard model was first introduced to understand the metal-insulator transition [27].  Recent studies indi-
cate the possibility of existence of superconducting (SC) phase in the parameter space of the hole density, the strength 
of Coulomb interaction U and next nearest-neighbor transfer integral 𝑡′ in the ground state [47].  These three param-
eters are important and give plentiful structures of the phase diagram that include superconducting phase and antifer-
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romagnetic phase.  The transfer 𝑡′ plays an essential role in determining the stability of magnetic states.  For exam-
ple, in the case where 𝑡! = 0, the antiferromagnetic state becomes unstable when holes are doped.  The 2D Hubbard 
model is also useful to understand the appearance of inhomogeneous electronic states such as stripes [56-71] and 
checkerboard-like density of states [72-75]; the existence of these inhomogeneous states has been indeed reported for 
high-temperature cuprates.   

In the study of cuprate superconductors and also iron-based superconductors, lattice and charge effects play an 
important role.  Inhomogeneous striped states could be stabilized associated with lattice distortions [62].  Many in-
teresting properties have been reported concerning lattice effects such as an anomalous isotope effect [76-79] and a 
shape resonance in a superlattice of quantum strings [80, 81].  In the study of cuprate superconductors Bi2Sr2Ca-
CuO8+y and La2CuO4+y for which mobile oxygen interstitials by using local probes, a scenario has been shown that a 
strongly correlated Fermi liquid coexists with stripes which are made of anisotropic polarons condensed into a gener-
alized Wigner charge density wave [82-84]. 

The relation between the Hubbard model and the d-p model was investigated in the early state of the study of 
high-temperature cuprates by Feiner et al. [85]  They were able to reduce the d-p model into an effective one-band 
model by means of the cell-perturbation method.  It has also been shown by numerical calculations that the Hubbard 
model and the three-band d-p model exhibit similar electronic properties [14, 26].  

In order to explore the superconducting ground state, it is favorable to suppress magnetic correlations and mag-
netic instabilities.  For this purpose, we consider the strongly correlated region with large U.  The strong antiferro-
magnetic correlation is suppressed by doped hole carriers when U is large.  In this region we calculated supercon-
ducting properties in the 2D Hubbard model, and the existence of superconducting phase is followed.   

In section 2 we discuss the critical temperature of superconductivity in many-electron systems.  We discuss im-
proved many-body wave functions in section 3.  In section 4, we show the results obtained by the optimization varia-
tional Monte Carlo method.  We show the SC order parameter as a function of U and phase diagrams when we vary 
the hole density x.  We discuss the kinetic energy driven superconductivity in the strongly correlated region.  We 
also examine the possibility of superconductivity in nematic charge-ordered phase.  In section 5, we exhibit pair cor-
relation function as a function of lattice sites.  This shows that the pair correlation function is almost constant at long 
distances and the wave function indeed has long-range superconducting order in the strongly correlated region.  We 
also discuss the duality of strong electron correlation, which means that the strong correlation can be an origin of at-
tractive interaction of d-wave electron pairs and at the same time, it suppresses pair correlation function. 

2. Superconductivity in many-electron systems 

It is reasonable to expect that when the energy scale of an interaction is very large, we can expect superconductivity 
with high critical temperature 𝑇".  Since the energy scale of the Coulomb interaction is of the order of eV, the Coulomb 
interaction is one of candidates to give high-temperature superconductivity.  For materials shown in Table 1, we can 
confirm that the following empirical relations holds for the superconducting critical temperature: 

𝑘#𝑇" ≃ 0.1 𝑡 (𝑚∗ 𝑚%⁄ ),																																																																													(1)⁄  

where 𝑡 denotes the transfer integral, and 𝑚∗ and 𝑚% are the effective mass and bare mass of electrons, respectively.  
The Table 1 shows typical values of 𝑡, the ratio 𝑚∗ 𝑚%⁄  and 𝑇".  The order of 𝑇" for correlated electron materials 
is consistent with the formula in Eq. (1).  For high-temperature cuprates, the transfer integral t is estimated as 
𝑡~0.51eV and 𝑇&  is of the order of 100K.  Since the transfer t of iron pnictides is about five times smaller than that 
of cuprates, iron pnictides have lower 𝑇" than cuprate superconductors.  The critical temperature 	𝑇" of heavy fer-
mions is very low although heavy fermion materials are strongly correlated electron systems.  This is due to large 
effective mass of f electrons which is as large as 100 ~ 1000 times the band (bare) mass 𝑚%.  Then the characteristic 
energy scale is reduced considerably so that 𝑇" is of the order of 1K 
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Table 1.  The transfer integral t, effective mass ratio 𝑚∗ 𝑚%⁄  and critical temperature 𝑇" in correlated electron sys-
tems.  For Hydrides, the Debye frequency 𝜔'( is shown instead of t.  For heavy fermion materials, 𝑡 (𝑚∗ 𝑚%⁄ 	)⁄  
corresponds to the Kondo temperature 𝑇).  
 

          t       𝑚∗ 𝑚%⁄       𝑡 (𝑚∗ 𝑚%⁄ )⁄       𝑇"     References 

Cuprate superconductors   5000K       5           1000        100K       [85] 
Iron pnictides            1000K      ~2           500         50K       [86] 
Heavy fermion materials  10,000K    100~1000    10~100      1~10K    [87-89] 
Organic superconductors  200~500K   2~5          100         10K       [90] 

 
  𝜔'(      𝑚∗ 𝑚%⁄ 	     𝜔'( (𝑚∗ 𝑚%⁄ 	)⁄       𝑇"     Reference     

 Hydrides H3S          1000K      ~1          1000         100K      [91] 

 

 

3. Optimization variational Monte Carlo method 
 
3.1 Hamiltonian 

We consider the two-dimensional Hubbard model that is one of simplest model in correlated electron systems.  
The Hamiltonian is given by 

𝐻 =5𝑡*+𝑐*,
-

*+,

𝑐+, + 𝑈5𝑛*↑𝑛*↓
*

,																																																																											(2) 

where 𝑡*+ indicates the transfer integral which takes the value 𝑡*+ = −𝑡 when i and j are nearest-neighbor pairs and 
𝑡*+ = −𝑡′ when i and j are next nearest-neighbor pairs.  U denotes the strength of the on-site repulsive Coulomb inter-
action.  The energy is measured in units of t throughout this paper. 

 
3.2 Many-body wave functions 

3.2.1   Optimized many-body wave functions 

The wave function of non-interacting many fermions is written as a Slater determinant.  In a weakly interacting 
many-fermion system, the wave function shows a deviation from the simple Slater determinant.  In many-fermion 
systems with strong interaction between fermions, we should consider strong correlation in many-body wave functions.  
For the Hubbard Hamiltonian with large interaction U, one convincing way to construct many-fermion wave function 
is to start from the Gutzwiller wave function.  The Gutzwiller wave function is written as 

𝜓0 = 𝑃0𝜓%	,																																																																																											(3) 

where 𝜓% is one-particle state given by a Slater determinant and 𝑃0  denotes the Gutzwiller operator that is given as 

𝑃0 =	>?1 − (1 − 𝑔)𝑛+↑𝑛+↓A																																																																									(4)
+

 

Where 𝑔 is the variational parameter in the range of 0 ≤ 𝑔 ≤ 1.  We usually take 𝜓% as the Fermi sea, the BCS wave 
function or a state with some magnetic or charge orders. 

The Gutzwiller wave function can be improved by several ways.  One is the well-known Jastrow function; this is 
written as 

𝜓1 = 𝑃1𝑃0𝜓%,																																																																																										(5) 

where the Jastrow operator 𝑃1 is given by 
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𝑃1 =>D1 − (1 − 𝜂)>F𝑑+?1 − 𝑒+23A + 𝑒+?1 − 𝑑+23AI
3

J,																																(6)
+

 

where 𝑑+ is the operator for the doubly occupied site (so called doublon operator) given by 𝑑+ = 𝑛+↑𝑛+↓, and 𝑒+ is that 
for the empty site (holon operator) given as 𝑒+ = ?1 − 𝑛+↑A?1 − 𝑛+↓A.  𝜏 runs over all nearest-neighbor sites 𝑗.  𝜂 is 
introduced as the variational parameter in the range of 0 ≤ 𝜂 ≤ 1. 

The other effective way to improve the wave function is to multiply by the exponential operator 𝑒45) [46, 47,48, 
92-97]: 

𝜓5 = 𝑒45)𝑃0𝜓% = 𝑒45)𝜓0 ,																																																																									(7) 

where 𝐾 is the non-interacting part of the Hamiltonian, which is called the kinetic operator in this paper, and is given 
by 

𝐾 =5𝑡*+𝑐*,
- 𝑐+,

*+,

.																																																																																							(8) 

The variational parameter 𝜆 is introduced to minimize the expectation value of the ground-state energy.  This wave 
function can be improved further by multiplying by the Gutwiller operator and the kinetic operator again [46, 93]: 

𝜓5
(7) = 𝑃0(𝑔′)𝑒45)𝑃0(𝑔)𝜓% = 𝑃0(𝑔′)𝜓5,																																																										(9) 

𝜓5
(9) = 𝑒45!)𝑃0(𝑔′)𝑒45)𝑃0(𝑔)𝜓% = 𝑒45!)𝑃0(𝑔′)𝜓5,																																													(10) 

where 𝑃0(𝑔′) is the Gutzwiller operator with variational parameter 𝑔′.  𝜆′ and 𝑔′ are in general different from 𝜆 and 
𝑔, respectively.  We have correlated wave functions 𝜓0 , 𝜓5

(:) ≡ 𝜓5, 𝜓5
(7), 𝜓5

(9), and it is possible to generalize further. 
We discuss the stability of superconducting state and magnetically ordered states by using this kind of improved 

and optimized wave functions.  We can also discuss the metal-insulator transition on the basis of this wave function 
where the strong correlation between electrons plays an essential role [97]. 

3.2.2 Correlated superconducting wave function 

The correlated superconducting state is formulated starting from the BCS wave function.  The BCS wave function 
is written as 

𝜓#&; =>?𝑢< + 𝑣<𝑐<↑
- 𝑐4<↓

- A
<

|0⟩.																																																																				(11) 

The coefficients 𝑢< and 𝑣< appear in the ratio 𝑢< 𝑣< = ∆< Y𝜉< +[𝜉<7 + ∆<7\]]  with the gap function ∆< and 𝜉< =

𝜖< − 𝜇 where 𝜇 is the chemical potential.  For the d-wave paring, we take ∆<= ∆=?cos𝑘> − cos𝑘?A.  We usually 
first consider the BCS state with the Gutzwiller operator given by 

𝜓0ー#&; = 𝑃@"𝑃0𝜓#&;	,																																																																													(12) 

where 𝑃@" stands for the operator that extracts the state with 𝑁A electrons.  This wave function was referred to as the 
resonating valence bond state (RVB) by Anderson [98]. 

In our formulation the correlated superconducting wave function is given as 

𝜓54#&; = 𝑒45)𝑃0𝜓#&;.																																																																												(13) 

In this wave function the operator 𝑃@" is not used because of the numerical method to evaluate expectation values, 
while in the Gutzwiller BCS state 𝜓04#&;, the total number of electrons is fixed.  Because we use the auxiliary filed 
method in a Monte Carlo simulation [46, 99], we perform the electron-hole transformation for down-spin electrons: 
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𝑑< = 𝑐4<↓
- , 𝑑<

- = 𝑐4<↓, and the operator for up-spin electrons remains the same [93].  We put 𝑐< = 𝑐<↑ and 𝑐<
- = 𝑐<↑

- .  
The electron-pair operator 𝑐<↑

- 𝑐4<↓
-  is transformed to the mixing operator 𝑐<

-𝑑<.  This transformation indicates that 
𝑐* = 𝑐*↑ and 𝑑* = 𝑐*↓

-  in the real space representation.  In the real space, the d-wave anisotropic pairing order param-
eters are assigned to each bond between the site 𝑖 and its nearest-neighbor sites 𝑖 + 𝑥c and 𝑖 + 𝑦c where 𝑥c and 𝑦c de-
note the unit vectors in the  𝑥c and 𝑦c directions, respectively.  We assign the following order parameter in the real 
space representation: 

∆*,*2>C= ∆=, ∆*,*2?C= −∆=.																																																																				(14) 

3.2.3 𝑒45) and the renormalization of high-energy excitations 

Let us discuss the role of 𝑒45) introduced in improved wave functions.  It is easily seen that the operator 𝑒45) 
suppresses the weight of high-energy excitation modes because 𝑒45) becomes small for high-energy states.  Thus 
𝑒45) plays a role like the projection operator that projects out low-lying excitation modes.  This means that the role 
of 𝑒45) is analogous to that of the renormalization group procedure, where the cutoff Λ is reduced to Λ − 𝑑Λ, the 
states near the Fermi surface are magnified and their contributions increase [100].  The parameter 𝜆 controls contri-
butions from high-energy modes, which magnifies the states near the Fermi surface. 

 

4. Phase diagram by the optimization variational Monte Carlo method 

4.1 Superconductivity and antiferromagnetic state 

In this section, we discuss possible phases of the 2D Hubbard model including superconducting and antiferromag-
netic states when we vary the strength of the Coulomb interaction U.  First, we show the result obtained by using the 
BCS-Gutzwiller wave function.  The ground-state energy has a minimum at finite Δ= for the BCS-Gutzwiller function 
with d-wave symmetry in the 2D Hubbard model [35, 36].  The SC condensation energy 𝐸"D(E per site was evaluated 
in the limit of large system size 𝑁 → ∞ (where 𝑁 is the number of sites).  We obtained in this limit 

𝐸"D(E 𝑁⁄ ≃ 0.2meV.                                              (15) 

Here we set 𝑡 = 0.5eV.  We obtained the similar result for the three-band d-p model [19].  This indicates that the SC 
condensation energy per atom is approximately given by 0.2meV which is of the order of 104FeV.  In experiments, 
the condensation energy was estimated based on the result of specific heat measurements for YBCO [35, 101].  The 
result is 

𝐸"D(E 𝑁GHDI ≃ 0.17 − 0.26⁄ eV                                     (16) 

per Cu atom.  We obtain the similar value of the condensation energy from the data of critical magnetic field [102].  
Hence, we have a remarkable agreement between theoretical evaluations and experimental measurements.  We can 
say that the characteristic energy scale of cuprate high-temperature superconductors is given by this value. 

We turn to the results obtained by the improved wave function 𝜓5.  We show the antiferromagnetic and super-
conducting order parameters as a function of U/t in Fig. 1 where calculations were carried out for the 2D Hubbard 
model on a 10 × 10 lattice with 𝑡! = 0 and 𝑁A = 88.  The characteristic feature of the 2D Hubbard model is that 
the antiferromagnetic (AF) correlation is strong and the AF state is easily stabilized when U is moderately large.  We 
have also the SC phase when U is as large as the bandwidth or larger than it.  When 𝑡! = 0, the AF correlation 
weakens upon carrier doping, and it vanishes when U is very large around U/t ≃ 18 for the hole density x = 0.12.  
The SC phase can exist as a pure d-wave state when U/t is about 18.   
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Figure 1.  Antiferromagnetic and superconducting order parameters as a function of U/t where 𝑡! = 0 and 𝑁" = 88 for 
the 2D Hubbard model on a 10 × 10 lattice (figure from [47] with a slight modification).  Δ indicates the AF order parameter 
Δ#$ or the SC order parameter Δ%.  We impose the periodic boundary condition in one direction and antiperiodic boundary con-
dition in the other direction.   AF(G) indicates the result obtained by using the Gutzwiller function.  The results AF and SC show 
those for the improved wave function 𝜓&. 

 
The next nearest-neighbor transfer 𝑡′ plays a significant role concerning the stability of the AF state.  In Fig. 2 

we show the AF condensation energy as a function of the hole doping rate x for the 2D Hubbard model on a 10 × 10 
lattice.  The AF condensation energy is defined as ∆𝐸JK = 𝐸(∆JK= 0) − 𝐸?∆JK,LMNA where ∆JK is the AF order pa-
rameter and ∆JK,LMN is its optimized value.  In the case of vanishing 𝑡′, ∆𝐸JK vanishes at x = 0.1 when U is greater 
than 14t (Fig. 2(a)), while ∆𝐸JK remains finite (positive value) even for large U and large carrier density when 𝑡! =
−0.2 (Fig. 2(b)).  The instability of AF state for 𝑡! = 0 is closely related to the kinetic energy of electrons (holes).  
Since the kinetic energy gain in the AF state is suppressed as U increases, the total energy lowering due to the AF 
ordering and kinetic energy gain will get smaller for large U.  Then, in order to lower the ground-state energy, the AF 
order will be suppressed to increase the kinetic energy gain.  Finally, the AF order disappears when U becomes as 
large as the critical value.  This is the mechanism of vanishing AF order in the strongly correlated region. 

 

 
 

Figure 2.  The AF condensation energy ∆𝐸#$ per site as a function of the doping rate x for several values of U/t (where U/t 
= 12, 14 and 18) on a 10 × 10 lattice.  We put (a) 𝑡! = 0 and (b) 𝑡! = −0.2𝑡 [48]. 
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4.2 Phase diagram 

We consider the SC condensation energy defined by ∆𝐸;& = 𝐸(∆== 0) − 𝐸?∆=,LMNA where ∆=,LMN is the opti-
mized value of ∆= to give the lowest ground-state energy.  In Fig. 3, ∆𝐸;&  and ∆𝐸JK are shown as a function of the 
doping rate x for U/t = 18 and 𝑡! = 0 on a 10 × 10 lattice.  In the low doping region, there is the AF insulating (AFI) 
phase for 0 ≤ 𝑥 ≲ 0.06.  The AFI is an insulating phase because of an instability toward the phase separation where 
the charge susceptibility 𝜒" becomes negative.  𝜒" is defined as 

1
𝜒"
=
𝜕7𝐸(𝑁A)
𝜕𝑁A7

=
𝐸(𝑁A + 𝛿𝑁A) + 𝐸(𝑁A − 𝛿𝑁A) − 2𝐸(𝑁A)

(𝛿𝑁A)7
,																																		(17) 

where 𝐸(𝑁A) is the ground-state energy when the number of electrons is 𝑁A.  The negative sign of 𝜒" indicates that 
the ground state is an insulator.  The SC condensation energy ∆𝐸;&  is finite for 0.05 ≲ 𝑥 ≲ 0.2.  There is a coexistent 
metallic phase of SC and AF when 0.06 ≲ 𝑥 ≲ 0.09.  The pure d-wave SC phase is in the range 0.09 ≲ 𝑥 ≲ 0.2.  
The typical energy scale of SC state is given by ∆𝐸;&~0.005𝑡 and ∆=~0.01𝑡.  The corresponding AF values are much 
larger than those of SC values.  It has been shown that ∆𝐸JK is reduced when we improve the wave function from 
𝜓5 = 𝜓5

(:) to 𝜓5
(9) [48].  We here mention that the existence of AFI phase would depend on the value of 𝑡′.  When 

𝑡′ is negative, the AFI phase will disappear as |𝑡′| increases. 

 

4.3 Kinetic-energy driven superconductivity 

In strongly correlated electron systems, the kinetic energy effect is important in determining the stable ground state.  
The kinetic energy effect in superconductivity has been examined for electronic models [103-112].  We discuss the 
role 

 

Figure 3.  The condensation energy per site as a function of the hole doping rate x for the 2D Hubbard model on a 10 × 10 lattice 
(figure from [48] with a slight modification). The AF and SC condensation energies are shown.  We set 𝑡! = 0 and U/t = 18.  AFI 
indicates the AF insulating phase and SC shows the d-wave SC phase.  At about 𝑥 ≃ 0.06, the AF state changes from an insulator 
to a metallic state as 𝑥 increases.  We have the coexistent state of antiferromagnetism and superconductivity for 0.06 ≲ 𝑥 ≲ 0.09. 

 

of the kinetic term in this subsection.  For this purpose, we define two contributions to ∆𝐸;&  from the kinetic term and 
the potential term, respectively: 

∆𝐸<*(4=" = 𝐸<*((∆== 0) − 𝐸<*(?∆== ∆=,LMNA,																																																									(18) 

∆𝐸O4=" = 𝐸O(∆== 0) − 𝐸O?∆== ∆=,LMNA,																																																																		(19) 
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where 𝐸<*(  and 𝐸O  are expectation values of the kinetic term K and the Coulomb term 𝑈∑ 𝑛*↑𝑛*↓* , respectively.  
From the definition we have 

∆𝐸;& = ∆𝐸<*(4=" + ∆𝐸O4=" .																																																																														(20) 

In the BCS theory, the attractive interaction brings about superconductivity, and thus the interaction term 𝑉 gives the 
SC condensation energy, that is, 𝑉 in the SC state is lower than that in the normal state: 𝛿𝑉 < 0 (the variation of 𝑉 is 
negative when the interaction is introduced).  𝑉 will give the positive contribution to Δ𝐸;&    This is also the case for 
weak coupling superconductivity.  In fact, for the Gutzwiller-BCS wave function in the moderately correlated region, 
we have 

∆𝐸<*(4=" < 0,				∆𝐸O4=" > 0.																																																																											(21) 

Instead, in the strongly correlated region where U is as large as 18t, we obtain for 𝜓5 as 

∆𝐸<*(4=" > 0,				∆𝐸O4=" < 0.																																																																								(22) 

The kinetic part gives a positive contribution to ∆𝐸;& .  We also define 

∆𝐸<*( = 𝐸<*((𝜓0) − 𝐸<*((𝜓5) = 𝐸<*((𝜆 = 0) − 𝐸<*(?𝜆LMNA,																																(23) 

where 𝐸<*((𝜓0) and 𝐸<*((𝜓5) are kinetic energies for 𝜓0  and 𝜓5 , respectively.  We show ∆𝐸<*( , ∆𝐸<*(4="  and 
∆𝐸;&  as well as 𝐸O (the expectation value of the interaction term) in Fig. 4.  In Fig. 4 we put 𝑥 = 0.12 and 𝑡! = 0.  
The figure 4 shows that ∆𝐸<*( changes its sign and begins to increase as U increases when 𝑈 ≳ 8𝑡.  ∆𝐸<*(4=" be-
comes positive in the strongly correlated region and shows a similar behavior to ∆𝐸<*(.  This behavior is consistent 
with the analysis for Bi2Sr2CaCu2O8+d [103]. 

 

 

Figure 4.  The kinetic-energy difference ∆𝐸'() 𝑁⁄ , the Coulomb energy 𝐸* 𝑁⁄ (left axis), the kinetic-energy gain 
∆𝐸'()+%,/𝑁 and the SC condensation energy ∆𝐸-. 𝑁⁄  (right axis) as a function of U/t on a 10 × 10 lattice where 𝑁" = 88 and 
𝑡! = 0 [102].  We use the periodic boundary condition in one direction and antiperiodic boundary condition in the other direction.  
The vertical axis on the right side shows the SC condensation energy ∆𝐸-. 𝑁⁄  and the kinetic condensation energy ∆𝐸'()+%, 𝑁⁄ . 
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4.4 Nematic charge-ordered state and superconductivity 

The existence of striped states has been pointed out by many authors in cuprate superconductors and in the 2D 
Hubbard model [43, 56-71].  We do not take into account the lattice effect here although it helps the formation of 
charge-ordered state.  The charge and spin modulations are described as 

𝜌* = 𝜌 cos?𝑸" ∙ (𝒓* − 𝒓%)A,			𝑚* = 𝑚 sin?𝑸= ∙ (𝒓* − 𝒓%)A,																																										(24) 

where 𝜌 and 𝑚 ≡ ∆JK are variational parameters for charge and spin modulations, respectively.  𝒓% indicates the po-
sition of the domain boundary of spin modulation.  For the commensurate AF state, we take 𝑸= = (𝜋, 𝜋) and 𝜌 = 0.  
The stripe state is represented by incommensurate wave vector 𝑸= = (𝜋 ± 2𝜋𝛿, 𝜋) where 𝛿 stands for the incommen-
surability that is the inverse of the period of the AF order in the x-direction.  In this state, two adjacent AF magnetic 
domains are separated by a one-dimensional domain wall in the y-direction.  We have a 𝜋-phase shift when crossing 
a domain wall.  For the charge modulation, we put 𝑸" = 2𝑸= so that the charge modulation period is just half of the 
spin modulation period. 

We consider the region with the doping rate given by 𝑥 ⋍ 1/8.  The stripe state is usually most stable in this 
region.  We consider, however, the large-U case where the AF order disappears as described above.  In this case we 
have the ground state with charge order and without magnetic order for which 𝑚 = ∆JK= 0 and 𝜌 ≠ 0.  This state is 
called the nematic state. The calculation was carried out for U/t = 18, 𝑡! = 0 and 𝛿 = 1/4 (4-lattice charge periodicity) 
with the electron number 𝑁A = 228 on a 16 × 16 lattice.  The charge-ordered nematic state is indeed stabilized for 
this set of parameters.  We examine how superconductivity exists in the charge-ordered state.  Let us consider the 
following gap function: 

∆*,*2>C= ∆= ∙ }1 + 𝛼 cos }
1
2
𝜋𝑥 −

𝜋
4��

,			Δ*,*2?C = −Δ= ∙ }1 + 𝛼 cos }
1
2
𝜋𝑥��,																								(25) 

where the coordinate of site i is 𝒓* = (𝑥, 𝑦) and 𝛼 is a real parameter.  The hole (or electron) rich domains exist at x 
= 4, 8, 12 and 16 for 𝛼 > 0 (or 𝛼 < 0).  The gap function is spatially oscillating according to the charge modulation 
in this pairing state.  In Fig. 5 we show the ground-state energy per site 𝐸 𝑁⁄  as a function of ∆= for the uniform d-
wave state and the oscillating d-wave state.  The result shows that the oscillating d-wave pairing state is most stable 
and will be realized.  The superconducting state can coexist with inhomogeneous charge order with increased gap 

 

Figure 5.  The ground-state energy per site as a function of the SC order parameter ∆% for U/t = 18 and 𝑡! = 0 at 𝑁" = 228 
on a 16 × 16 lattice.  We used 𝑔 = 0.005, 𝜆 = 0.055 and 𝜌 = 0.01.  We compare three energy expectation values for the wave 
function with uniform d-wave symmetry with 𝜌 = 0 and 0.01, and that with partially oscillating d-wave pairing (𝛼 = −0.1). 

function.  This gives a possibility that superconductivity is enhanced with higher 𝑇" in cooperation with the inhomo-
geneous nematic charge ordering. 
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5. Superconductivity and strong correlation 
 

In this section we examine the effect of strong correlation on superconductivity.  We consider the effect of the 
Gutzwiller operator 𝑃0  on superconducting correlation function.  The BCS wave function 𝜓#&;(Δ=) clearly shows 
the long-range correlation.  In Fig. 6 we show the SC correlation function 𝐷="(ℓ) ≡ 〈Δ-(𝑖)Δ(𝑖 + ℓ)〉, as a function of 
the lattice site for 𝑁A = 88, 𝑈 = 18𝑡 and 𝑡! = 0 on a 10 × 10 lattice.  Here the pair annihilation operator ∆(𝑖) 
at the site 𝑖 is defined by 

																																																																											∆(𝑖) = ∆>(𝑖) + ∆4>(𝑖) − �∆?(𝑖) + ∆4?(𝑖)�,																																																(26) 

where 

																																																																																					∆P(𝑖) = 	 𝑐*↓𝑐*2PQ↑ − 𝑐*↑𝑐*2PQ↓,																																																																			(27) 

for 𝛼 = 𝑥 and 𝑦.  𝛼c stands for the unit vector in the 𝛼-th direction. 
The Fig. 6 shows that the pair correlation function for 𝑈 = 18𝑡 is almost constant when ℓ is large indicating that 

the ground state is superconducting.  The values of 𝐷="(ℓ) for large ℓ are suppressed considerably compared to that 
for the non-interacting BCS wave function.  This suppression is due to the strong correlation between electrons.  This 
makes it rather hard to confirm the existence of superconducting phase in numerical calculations of pair correlation 
functions by, for example, quantum Monte Carlo calculations.  In Fig. 7, we show the SC correlation function 𝐷="(ℓ) 
of 𝑃0𝜓#&;(Δ=) at the site ℓ = 𝑅IG> = (5,5) with 𝑖 = (1,1) as a function of 1 − 𝑔 for ∆== 0.05𝑡 on a 10 × 10 
lattice.  𝑅IG> is the most distant point from the site 𝑖 = (1,1).  The Fig. 7 indicates that the pair correlation function 
is suppressed by the electron correlation that is now given by the Gutzwiller on-site operator.  Thus, we can say that 
the electron correlation has duality.  This means that the electron correlation is an origin of attractive interaction be-
tween electrons and at the same time suppresses pair correlation functions. 

The electron correlation has also an effect on the superconducting order parameter ∆.  ∆ is defined by 

																																																																													∆	=
1
𝑁
5?〈𝑐*↑

- 𝑐*2>C↓
- 〉 − 〈𝑐*↑

- 𝑐*2?C↓
- 〉A

*

.																																		   																(28) 

We show ∆ as a function of 1 − 𝑔 in Fig. 8.  ∆ exhibits a similar behavior to 𝐷="(ℓ), that is, ∆ is reduced by 𝑃0  

 

 Fig. 6. The pair correlation function 𝐷="(ℓ) for 𝑁A = 88, 𝑈 = 18𝑡 and 𝑡! = 0 on a 10 × 10 lattice where 
𝑖 = (1,1) and ℓ = (1,1), (1,2), (1,3), (1,4), (1,5), (2,5), (3,5), (4,5) and (5,5).  The figure includes 𝐷="(ℓ) for 𝑈 =
0 (squares), that for the BCS wave function 𝜓#&;(Δ=) with ∆== 0.05𝑡 (open circles), and that for 𝑈 = 18𝑡 (filled 
circles). 
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Fig. 7. The pair correlation function 𝐷="(ℓ)  for ℓ = 𝑅IG> = (5,5)  of 𝑃0𝜓#&;(Δ=)  with ∆== 0.05𝑡  on a 
10 × 10 lattice.  The parameter 𝑔 is in the range of 0 ≤ 𝑔 ≤ 1 and 1 − 𝑔 = 0 corresponds to the BCS wave func-
tion. 

  
when 𝑔 < 1.  Hence the electron correlation also leads to the reduction of the SC gap ∆.  The strong electron corre-
lation has duality, which means that the electron correlation becomes an origin of attractive interaction of d-wave pairing 
and at the same time, it suppresses SC correlation function and SC gap.  One origin of this suppression is certainly the 
renormalization of the effective transfer integral and the effective mass.  The heavy effective mass 𝑚∗ 𝑚⁄  reduces pair 
correlation functions and is not favorable for superconductivity as indicated by eq. (1).  The exponential factor 𝑒+&0 
could play a role to increase pair correlation by the kinetic energy effect. 
 

 

Fig. 8. The superconducting order parameter ∆ as a function of 1 − 𝑔 for 𝑃0𝜓#&;(Δ=) with ∆== 0.05𝑡 on a 
10 × 10 lattice.   
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6. Discussion 

The many-body wave function is important in the study of strongly correlated electron systems.  We have con-
structed many-body wave functions starting from the Gutzwiller function to take into account strong correlation be-
tween electrons.  The series 𝜓0 , 𝜓5

(:) ≡ 𝜓5, 𝜓5
(7), 𝜓5

(9), ⋯	, will approach the exact wave function.   
An instability toward magnetic ordering easily occurs in the two-dimensional Hubbard model.  In particular, near 

the half-filled case with a small number of holes, the ground state has inevitably some magnetic or charge orders.  Thus, 
we considered the strong correlated region where magnetic correlations and magnetic instabilities are suppressed.   

Thus, we need a method of calculation by which we can evaluate physical properties in the strongly correlated 
region.  This was the purpose of the study in this paper.  We chose the value U/t = 18 in this paper.  Since the extreme 
strong correlation reduces the pair correlation function, it is favorable that we can choose a moderate value of U being 
less than U = 18t.  We expect that this value is reduced when we take account of further improved wave functions 𝜓5

(9), 
𝜓5
(F), ⋯.  In fact, the antiferromagnetic correlation is suppressed for the improved wave function 𝜓5

(9)[48].  We expect 
that this will lead to a superconducting state with larger gap function. 

 

7. Conclusions 

We have investigated the correlated superconducting state in the ground state of the two-dimensional Hubbard 
model based on the optimization variational Monte Carlo method.  First, we discussed that the SC condensation energy 
obtained by numerical calculations is consistent with that estimated from experimental results for high-temperature 
cuprate superconductors.  Second, we presented the phase diagram as a function of U based on improved many-body 
wave functions.  The superconducting phase exists in the strongly correlated region where U is larger than the band-
width.  When 𝑡! = 0, the AF correlation weakens upon hole doping in the strongly correlated region and the pure d-
wave SC is realized.  Third, we have also shown the phase diagram as a function of the carrier density x, where basically 
there are three phases: antiferromagnetic insulating phase, metallic antiferromagnetic phase and superconducting phase.  
Fourth, then we discussed the kinetic energy effect that would assist the appearance of superconductivity and this effect 
may play an important role in the realization of high-temperature superconductivity.  Fifth, we investigated cooperation 
of charge inhomogeneous order and superconductivity.  This indicates the possibility that the superconducting critical 
temperature 𝑇" will increase due to the coexistence with nematic charge ordering.  Lastly, we showed the pair corre-
lation function 𝐷="(ℓ).  We discussed the effect of strong electron correlation on pair correlation function and SC order 
parameter.  The pair correlation function is suppressed by the electron correlation operator 𝑃0 .  Although the correla-
tion function 𝐷="(ℓ) becomes small due to 𝑃0 , the long-range order still exists for 𝜓5. 
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