Tetsuya Morishita's Homepage

産総研
last updated 2023.9.1
写真
Profile
Dr Tetsuya Morishita (森下徹也)
国立研究開発法人産業技術総合研究所(AIST)
機能材料コンピュテーショナルデザイン研究センター(CD-FMat)(ウェブサイト
量子化学・分子シミュレーションチーム 主任研究員
博士(理学)
〒305-8568 茨城県つくば市梅園1-1-1 中央第2
E-mail:t-morishita*aist.go.jp(*を@に変更して使用してください。)
Research Interests
  • Structural, electronic, and dynamical properties of liquids, glasses, and nanoscale materials
    古典・第一原理分子動力学計算、及び密度汎関数理論に基づく電子状態計算による液体、アモルファス、並びにナノスケール物質の物性研究
  • Methodology of molecular-dynamics (MD) calculations
    分子動力学法の方法論の研究
Recent Publications

1. Interfacial tension at supercritical CO2-water interface
M. Shiga, T. Morishita, Masao Sorai, “Interfacial tension of carbon dioxide − water under conditions of CO2 geological storage and enhanced geothermal systems: A molecular dynamics study on the effect of temperature”, Fuel 337, 127219 (2022).

2. Ab initio MD simulations for SiC surfaces
T. Morishita, M. Kayanuma, T. Nakamura, and T. Kato, “Cooperative Reaction of Hydrogen-Networked Water Molecules at the SiC−H2O2 Solution Interface: Microscopic Insights from Ab Initio Molecular Dynamics”, J. Phys. Chem. C 126, 12441 (2022).

3.Extension of PCA for enhanced sampling in phase space
T. Morishita, “Time-dependent principal component analysis: A unified approach to high-dimensional data reduction using adiabatic dynamics”, J. Chem. Phys. 155, 134114 (2021).【Editor’s Pick】

4. Development of a method for accelerated dynamics
T. Morishita and A. M. Itoh, “Travelling without dwelling: Extending the time scale accessible to molecular dynamics simulation”, Phys. Rev. Research 1, 033032 (2019).

Selected Publications

1.LogMFD and relevant methods for enhanced sampling

“Time-dependent principal component analysis: A unified approach to high-dimensional data reduction using adiabatic dynamics”, J. Chem. Phys. 155, 134114 (2021).

“Travelling without dwelling: Extending the time scale accessible to molecular dynamics simulation”, Phys. Rev. Research 1, 033032 (2019).

“Isokinetic approach in logarithmic mean-force dynamics for on-the-fly free energy reconstruction”, Chem. Phys. Lett. 706, 633 (2018).

“Free energy reconstruction from logarithmic mean-force dynamics using multiple nonequilibrium trajectories”, J. Chem. Theory. Comput. 13, 3106 (2017).

“Free energy calculation via mean force dynamics using a logarithmic energy landscape”, Phys. Rev. E 85, 066702 (2012).


2.Silicene and other 2D materials

“First principles study of two-dimensional gallium-nitrides on van der Waals Epitaxial Substrate”, Appl. Phys. Lett. 119, 203101 (2021).

“On hydrogenated Bilayer GaN: New stable structures along the c -Plane, m -Plane, or a -Plane”, J. Phys. Chem. C 124, 16888 (2020).

“Uncovering New Buckled Structures of Bilayer GaN: A First-Principles Study”, J. Phys. Chem. C, 123, 1939 (2019).

“Silicene: structure, properties and applications” Springer Series in Materials Science Volume 235 (2016).

“Monolayer-to-bilayer transformation of silicenes and their structural analysis”, Nature Com. 7, 10657 (2016).

“How silicene on Ag(111) oxidizes: microscopic mechanism of the reaction of O2 with silicene”, Sci. Rep. 5, 17570 (2015).

“A new surface and structure for silicene: Polygonal silicene formation on the Al(111) surface”, J. Phys. Chem. C 117 22142 (2013).

“Reconstruction and electronic properties of silicon nanosheets as a function of thickness”, Nanoscale 4, 2906 (2012).

“Surface reconstruction of ultrathin silicon nanosheets”, Chem. Phys. Lett. 506, 221 (2011).

“The electronic and structural properties of novel organomodified Si nanosheets”, Phys. Chem. Chem. Phys. Communication 13, 15418 (2011).

“First-principles study of structural and electronic properties of ultrathin silicon nanosheets”, Phys. Rev. B 82, 045419 (2010).

“Formation of single- and double-layer silicon in slit pores”, Phys. Rev. B 77, 081401(R) (2008).


3.Liquid and amorphous Si

“Compressed exponential relaxation in liquid silicon: Universal feature of the crossover from ballistic to diffusive behavior in single-particle dynamics”, J. Chem. Phys. 137, 024510 (2012).

“Multiple Amorphous-Amorphous Transitions” ADVANCES IN CHEMICAL PHYSICS vol. 143, p.29 - 82 John Wiley & Sons Inc. (2009).

“Structural, electronic, and vibrational properties of high-density amorphous silicon: A first-principles molecular-dynamics study”, J. Chem. Phys. 130, 194709 (2009).

“Structural and dynamical heterogeneity in deeply supercooled liquid silicon”, Phys. Rev. E 77, 020501(R) (2008).

“How does tetrahedral structure grow in liquid silicon upon supercooling?”, Phys. Rev. Lett. 97, 165502 (2006).

“Anomalous diffusivity in supercooled liquid silicon under pressure”, Phys. Rev. E 72, 021201 (2005).

“High density amorphous form and polyamorphic transformations of silicon”, Phys. Rev. Lett. 93, 055503 (2004).


4.Thermostatted dynamics and relevant topics

“From Nosé-Hoover chain to Nosé-Hoover network: design of non-Hamiltonian equations of motion for molecular-dynamics with multiple thermostats", Mol. Phys. 108, 1337 (2010).

“Enhanced sampling via strong coupling to a heat bath: Relationship between Tsallis and multicanonical algorithms”, J. Chem. Phys. 127, 034104 (2007).

“Generalilzed coupling to a heat bath: Extension of the Gaussian isokinetics dynamics and effect of time scaling”, J. Chem. Phys. 119, 7075 (2003).

“Fluctuation formulas in molecular dynamics simulations with the weak coupling heat bath”, J. Chem. Phys. 113, 2976 (2000).


5.Liquid-liquid transition of phosphorus

“Polymeric liquid of phosphorus at high pressure: First-principles molecular dynamics simulations”, Phys. Rev. B 66, 054204 (2002).

“Liquid-liquid phase transitions of phosphorus via constant-pressure first-principles molecular dynamics simulations”, Phys. Rev. Lett. 87, 105701 (2001).

CV (経歴)
  • 2000年10月 ~2003年3月 理化学研究所 基礎科学特別研究員
  • 2003年4月 ~2003年9月 日本学術振興会 特別研究員 (PD)
  • 2004年10月 ~現在 産業技術総合研究所 主任研究員
  • この間
  • 2009年4月 ~2010年3月 王立メルボルン工科大学 客員研究員
  • 2012年4月 ~2014年3月 自然科学研究機構分子科学研究所 客員准教授