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Abstract

This package provides an MPI parallel framework for an easy implementation of the
block Sakurai-Sugiura eigensolver. The block Sakurai-Sugiura method calculates interior
eigenvalues of generalized eigenvalue problems, (λB −A)q = 0, for those λ in the specific
region G. Typically, G is taken as the inside of a circular path on the complex plane,
which may lie in the middle of the eigen-spectrum. In the Sakurai-Sugiura method, you
have to solve a set of linear equations, which are independent of each other, and can
be solved concurrently. Bloss is designed to help the concurrent execution of the linear
solvers, along with pre-/post-processes required for the block Sakurai-Sugiura method.
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1 Introduction

The block Sakurai-Sugiura (SS) method is a parallel solver for interior eigenproblems. It solves
generalized eigenproblems, (λB−A)q = 0, where the matrix λB−A is regular. Its main target is
large-scale sparse matrix systems, where conventional methods work less efficiently on massively
parallel computers. As an interior eigensolver, not all of the eigenvalues are calculated, but
those that reside in the interior region G are extracted. In the block SS method, the region
G is defined mathematically as the inside of a closed Jordan curve Γ, along which a contour
integral is evaluated. Typically, G is set up such that 10 ∼ 20 eigenpairs are located inside.

Conventionally, iterative methods are employed to solve large-scale eigenproblems, where
the interior eigen-subspace is refined sequentially in a build-up manner. In contrast, the block
SS method generates the eigen-subspace in one step. To generate the subspace, a set of linear
equations has to be solved along the contour path, which forms the most time-consuming step
in the block SS method. Fortunately, those equations are independent of each other, and can
be solved simultaneously. The Bloss package offers a framework to manage concurrent solution
of these linear equations, as well as the pre-/post-processes necessary for the block SS method.
Each linear equation may be solved further in parallel, where a large amount of computational
resources can be organized in a hierarchical manner. In the next section, a minimal usage of
the package is illustrated, followed by the theories behind it. References to the Bloss API are
described next, and some advanced topics are discussed last.

2 Tutorial

The Bloss package offers a framework to write block SS applications based on the MPI pro-
gramming model. In this section, an outline of a simple Bloss application is given. An overview
of the calculation is summarized in Fig. 1.

Definition of the problem The eigenproblem to be solved is (λB − A)q = 0, where
A,B ∈ Cn×n are complex matrices. What is to be calculated are those λ ∈ G, where G is
inside of a circle Γ placed on the complex plane. The center and the radius of Γ are γ and
ρ, respectively. It is assumed that you have a priori knowledge of the approximate number of
eigenvalues in G.

Parameters for the block SS method The contour integral along Γ is approximated
by the M -point trapezoidal rule. A moderate M (∼ 32) may suffice, because the accuracy of
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Figure 1: Setup of the tutorial calculation.
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the integral is not directly related to the accuracy of the results. A set of basis vectors spanning
the interior eigen-subspace is generated from L arbitrary initial vectors. During the block SS
procedure, the initial vectors are projected onto the subspace, and further multiplexed by K,
where K is the maximum order of modulation (see Sec. 3.1). The dimension of the subspace
is thus LK, at most, so that L and K have to be chosen large enough to span the interior
eigen-subspace completely.

Routines you must prepare The Bloss package requires you to provide two kinds of
operations:

1. Solve linear equations Y = (ωB − A)−1V , and

2. Operate matrix Y = AV and Y = BV ,

where V ∈ Cn×l is a multi-column matrix with l ' L, and ω ∈ C is a constant. Besides
parameters ω, V , and l, a small MPI communicator is also provided by the package, which may
be used to process the operations in parallel. The matrices A and B are accessed only via these
requests; the package does not handle the matrices directly.

Design of the parallel execution Suppose that we have N processors in the base MPI
communicator. At the inversion phase (1), a total of M linear equations have to be solved. In
this tutorial, we employ a single-threaded linear solver, so that M equations are assigned evenly
among N processors. As a result, the maximum number of processors is N ≤ M . A similar
setup is used at the mat-vec phase (2). That is, a single-threaded matrix-vector multiplier is
employed, and the total number of vectors (' LK) is divided evenly among N processors.

Sample code An example of the Bloss code needed to solve the tutorial problem defined
above is listed in Fig. 2. Different from one-step eigensolvers, such as those in LAPACK,
the problem is solved through interaction with users. Before starting the calculation, the
MPI execution environment has to be established by MPI_Init(). A base communicator Comm

(typically MPI_COMM_WORLD) that has N processors should be prepared and passed to the package.
The complete code, including pre- and post-processes, is available at examples/C/tutorial.c.

INPUT
int n dimension of the system
complex_16 A[n*n], B[n*n] input matrices
complex_16 gamma center of a contour path Γ
double rho radius of a contour path Γ
int M number of quadrature points (∼ 32)
int L number of initial vectors (∼ 8)
int K maximum order of modulation (∼ 8)
MPI_Comm Comm base MPI communicator

All the INPUT data should be MPI_Bcast-ed over all the ranks of the communicator Comm. The
type complex_16 is defined in bloss.h, and is equivalent to double complex.

OUTPUT
int *neig number of eigenpairs obtained (≤ L*K)
complex_16 (*lambda)[neig] eigenvalues
complex_16 (*q)[n*neig] eigenvectors
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#include "bloss.h"

void tutorial( int n, complex _16 *A, complex _16 *B,
complex _16 gamma, double rho, int M, int L, int K,
int *neig, complex _16 **lambda, complex _16 **q,
MPI_Comm Comm )

{
Bloss *om;
int type = 0;
double ellipse = 1.0, tolerance = 1.0e-12;

om = bloss_setup_ellipse(type, Comm, n, L, K, M, gamma, rho,
ellipse, tolerance);

while(1) {
int task, l;
complex _16 *V, *Y, omega;
MPI_Comm worker;

bloss_do(om, &task, &l, &V, &Y, &omega, &worker);
switch(task) {
case BLOSS_TASK_INVERT:

// Solve (omega B - A).Y = V for Y. V, Y ∈ Cn×l.
linear_solve( n, A, B, omega, V, l, Y );
break;

case BLOSS_TASK_MATMUL_A:
// Calculate Y = A.V. V,Y ∈ Cn×l.
mat_vec( n, A, V, l, Y );
break;

case BLOSS_TASK_MATMUL_B:
// Calculate Y = B.V. V,Y ∈ Cn×l.
mat_vec( n, B, V, l, Y );
break;

case BLOSS_TASK_DONE:
if ( 0 == bloss_get_rank(om) ) {

*neig = bloss_get_neig(om);
*lambda = bloss_get_workspace(om, BLOSS_WS_EIGVALS);
*q = bloss_get_workspace(om, BLOSS_WS_EIGVECS);

bloss_detach_ptr(om, *lambda);
bloss_detach_ptr(om, *q);

}
bloss_free(om);
return;

}
}

}

Figure 2: Code used to solve the tutorial example.
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OUTPUT data are available only on rank 0 of Comm. Note that, in addition to the eigenvalues
inside of Γ, several eigenvalues located on the periphery of Γ appear in lambda[]. Those
peripheral eigenpairs are not so accurate as the interior ones. It also must be noted that some
ghost eigenpairs, which are totally inaccurate, may appear inside of Γ. These contaminant
eigenpairs can be discriminated either by residual calculations or by reliability indices, both of
which will be described later.

During the Bloss procedure, the user interaction context is kept in Bloss *om. The context
is established by bloss_setup_ellipse(), where the contour path, the quadrature, and the
initial vectors are prepared. The parallel environments are also set up here, by dividing the base
communicator Comm. A subsequent call to bloss_do() starts the interactive session. Instructions
are given in int task, according to which users should take an appropriate action and call
bloss_do() again. Basically, users should calculate either Y = (omega*B - A)−1.V, Y = A.V, or
Y = B.V. Besides these requests, bloss_do() is returned at several hook points, which reports
the progress of the calculation and gives users a chance to access intermediate results. All these
hooks are ignored in the present example.

The Bloss procedure finishes when task == BLOSS_TASK_DONE. At this point, the eigenpairs
are stored in *om, and can be accessed by bloss_get_workspace(). These storage areas allocated
in *om are discarded when bloss_free() is called to destroy the Bloss context. To protect them
from the destruction, bloss_detach_ptr() can be called to allow the storage for eigenvalues
and eigenvectors to survive beyond bloss_free().

A small communicator, worker, which is generated by dividing Comm, is also provided by
bloss_do(). At the inversion phase, only a single processor is assigned to worker if the number
of processors N is equal to or less than M . When more processors are available, multiple
processors are assigned to worker, which can be utilized for parallel linear solvers, if available.
Note that, because a total of M tasks are assigned statically to worker, N should be taken as
either a divisor or a multiple of M for better load balance. Just as in the inversion phase, it is
also possible to assign multiple processors to worker at the mat-vec phase.

More robust examples with error checks can be found under the directory examples.

3 Theories behind Bloss

In this section, a theoretical background of the block Sakurai-Sugiura method is outlined. A
basic knowledge of this background will be of help to determine parameters to set up the Bloss
context.

3.1 Block Sakurai-Sugiura method

Let A,B ∈ Cn×n, Γ be a positively oriented closed Jordan curve, and G be the inside of Γ. The
aim of the block SS method is to determine eigenvalues λ ∈ G for the generalized eigenproblem
(λB − A)q = 0. In the block SS method, a moment operator Mk,

Mk =
1

2πi

∮
Γ

zk(zB − A)−1dz, (1)

plays an important role. The moment operator works as a projection operator (or, from the
filter-diagonalization point of view, as a filter operator).

To illustrate the properties of Mk, let’s take an Hermitian system, A = H and B = I, as an
example. Suppose that an arbitrary vector v is expanded in terms of eigenvectors as

v =
∑

i

ciqi, (2)
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Figure 3: Modulation of the eigen-spectrum by the moment operator. The eigen-spectrum of
the initial vector v is shown in a histogram, along with those of M0v and M1v.

where (λiI− H)qi = 0. When operated by Mk, the eigenspectrum of v is modulated as

Mkv =
∑

i

fk(λi)ciqi, (3)

where

fk(x) =
1

2πi

∮
Γ

zk

z − x
dz =

{
xk, x ∈ G,
0, otherwise.

(4)

By the operation of Mk, the spectrum of v is not only projected on G, but also modulated
according to λk. The modulation effect is schematically shown in Fig. 3. Thanks to the
modulation, several independent vectors can be generated from a single vector v. While the
filter function Eq. (4) is derived intuitively for an Hermitian system, the same filter concept
can be applicable for generalized eigenproblems. A thorough derivation is given in [1].

Based on the projector-modulator nature of Mk, we can construct the interior eigen-subspace
from a set of arbitrary initial vectors. Let V ∈ Cn×L be a set of L initial vectors, and nΓ be
the number of eigenvalues in G. The interior eigen-subspace can be spanned by a set of basis
vectors SR ∈ Cn×LK ,

SR = {M0V, M1V, . . . ,MK−1V }, (5)

where K and L are taken large enough that LK ≥ nΓ. Thanks to the spectral modulation,
the L-dimensional subspace V is multiplexed by a factor of K, so that the eigen-subspace
can be spanned completely even if L < nΓ. To obtain eigenpairs, we prepare arbitrary left
basis vectors SL ∈ Cn×LK , and apply the Petrov-Galerkin procedure. Let A = SH

L ASR and
B = SH

L BSR, where the superscript H indicates the complex conjugate transpose. The original
interior eigenproblem is reduced to a smaller eigenproblem,

(λB−A)q = 0, (6)

where the eigenvalue λ is identical to the original, and the corresponding eigenvector is given
by q = SRq.

Based on the above theory, the Bloss package is equipped with two approaches to construct
A and B: a Rayleigh-Ritz (RR) method and a moment-based method. Both are described in
the following two sections.

3.2 Rayleigh-Ritz method

Because LK ≥ nΓ, the basis set SR is over-complete. To obtain a minimal basis set, a singular
value decomposition is performed on SR,

SR = UsWH , (7)
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where U ∈ Cn×LK and W ∈ CLK×LK are sets of ortho-normal vectors, and s ∈ RLK×LK is a
diagonal matrix of singular values. Mathematically, only nΓ singular values are non-zero. A
new basis set Ū ∈ Cn×nΓ is then constructed by collecting non-zero singular components from
U . According to the Rayleigh-Ritz procedure, the projections are generated as A = ŪHAŪ and
B = ŪHBŪ . The eigenvalues are obtained by solving (λB −A)q = 0, and the corresponding
eigenvectors are given by q = Ūq.

3.3 Moment-based method

The moment operator satisfies the following addition theorem [2],

MiAMj = Mi+j+1, (8)

MiBMj = Mi+j. (9)

Let the left basis vectors be

SL = {MH
0 Ṽ , MH

1 Ṽ , . . . ,MH
K−1Ṽ }, (10)

where Ṽ ∈ Cn×L is an arbitrary set of vectors (typically Ṽ = V ). Then, the projections of A
and B become

A =


µ1 µ2 · · · µK

µ2 µ3 · · · µK+1
...

...
...

µK µK+1 · · · µ2K−1

 , B =


µ0 µ1 · · · µK−1

µ1 µ2 · · · µK
...

...
...

µK−1 µK · · · µ2K−2

 , (11)

respectively, where µk = Ṽ HMkV ∈ CL×L. That is, both A and B can be constructed from the
series {µk, k = 0, . . . , 2K − 1}.

The projected matrices are implicitly based on the over-complete basis set. To remove the
null space, B is singular-value decomposed as

B = UsWH , (12)

where U,W ∈ CLK×nΓ are sets of ortho-normal vectors, and s ∈ RnΓ×nΓ is a diagonal matrix
of non-zero singular values. An effective projection of A is then obtained as

Ã = s−1/2UHAWs−1/2 ∈ CnΓ×nΓ . (13)

The original interior eigenproblem is now converted to (λI− Ã)q = 0, where the eigenvalue λ
is identical to the original, and the corresponding eigenvector is given by q = SRWs−1/2q.

3.4 Numerical implementation

For numerical reasons, the modulation term zk in Eq. (1) is replaced by the shifted-and-scaled
one, ((z − γ)/ρ)k. The shift-and-scale parameters are chosen such that the modulation term
stays around unity on G. That is, a circle centered at γ with radius ρ roughly overlaps with the
contour path Γ. It must be noted that, in the moment-based method, the obtained eigenvalues
are also shifted-and-scaled. This is because the addition theorem Eqs. (8) and (9) now work
on the eigenproblem of (λ−γ

ρ
B − A)q = 0. In the Rayleigh-Ritz method, eigenvalues are not

affected by the configuration of the modulation term.
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Figure 4: Practical filter function f̄k(x) of the numerical block SS method is plotted along the
real axis. The corresponding ideal shape fk(x) is also plotted in a broken line. The number of
quadrature points is M = 16, and k = 0 ∼ 3 are shown from left to right.

The contour integral in Eq. (1) is then evaluated numerically by using an appropriate
quadrature. The approximated moment operator becomes

M̄k =
M∑

j=1

wj

(
zj − γ

ρ

)k

(zjB − A)−1, (14)

where zj and wj are the quadrature points and weights, respectively. Because of the quadrature
approximation, M̄k loses its sharpness as a filter operator. The corresponding filter function
becomes

f̄k(x) =
M∑

j=1

wj

(
zj − γ

ρ

)k
1

zj − x
, (15)

where the clear boundary of Eq. (4) is obscured.
As a demonstration, let Γ be a circle centered at γ with radius ρ. Employing the M -point

trapezoidal rule, we have zj = γ + ρ exp(2πi
M

(j − 1
2
)) and wj = (zj − γ)/M . This set of {zj, wj}

gives f̄k(x) = x̃k/(1 + x̃M), where x̃ = (x − γ)/ρ. Taking γ = 0 and ρ = 1, the shape of the
filter functions are calculated along the real axis and are plotted in Fig. 4, for k = 0 ∼ 3 and
M = 16. The sharp edges of the ideal filter function fk(x) are blunted in the practical filter
f̄k(x), where tails are protruding from G. These tails cause the contamination of peripheral
eigenpairs in the numerical block SS method.

Due to the contamination, the dimension of the constructed eigen-subspace n̄Γ is usually
larger than nΓ. The extra components originate from the peripheral eigenpairs. These compo-
nents are more or less diminished after the operation of M̄k, so that they appear as singular
components with small singular values in Eq. (7) or (12). To determine the effective dimension
n̄Γ, a threshold ε are used: those singular components with singular values less than ε are
omitted to construct the subspace. Roughly speaking, the errors of the resulting eigenvectors
are about the order of ε. Using the singular values, it is also possible to assess the soundness of
the block SS calculation: if all singular values are small, there might be no eigenvalues inside
of Γ. Similarly, if no singular value is small, the constructed subspace is not large enough and
we should increase either K or L.

Because the peripheral eigenvectors are expressed by inferior singular components, they are
calculated less accurately than the interior eigenvectors. Sometimes, they are so erroneous that
the corresponding eigenvalues appear inside of Γ as ghosts. The eigenvectors of the ghosts are
mainly composed of faint singular components near the threshold. To discriminate the ghosts,
the relative residuals,

‖(λB − A)q‖2

|λ|‖q‖2

, (16)

work best if eigenvectors q are available. It is possible, however, to give a rough estimate on the
reliability of the results, even if q is not calculated. Based on the eigenvector q of the projected
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system, the reliability index r is defined as

r =

(∑n̄Γ
j=1 s−1

j |qj|2∑n̄Γ
j=1 |qj|2

)−1

, (17)

where sj is the j-th singular value and qj is the j-th element of q. The reliability index
becomes smaller if the contribution of inferior singular components becomes larger. Note that
the mathematical meaning of r is different between the Rayleigh-Ritz method and the moment-
based method, though r works well as a ghostbuster in both cases.

The most time consuming part of the block SS calculation is the solution of the set of linear
equations, Yj = (zjB − A)−1V . Fortunately, these equations are independent of each other, so
that they can be solved concurrently. This makes the block SS method attractive for modern
distributed parallel architectures. It is also possible to omit the calculation for one half of the
equations, if A and B are real and Γ is symmetric about the real axis. By employing a real V
and a symmetric quadrature, a solution for z∗j is given by Y ∗

j , so that only the equations for
Im(zj) > 0 need to be solved.

4 Reference Manual

The Bloss package is an eigen solver for interior eigenproblems, (λB − A)q = 0, where A and
B are n-dimensional matrices and (λ, q) are eigenpairs. The use of the Bloss package is not as
simple as eigensolvers in LAPACK. You have to, at least, write some code to handle requests
from the package. Besides, the following boundary conditions have to be determined beforehand.

Type of calculation
Whether to use the moment-based method or the Rayleigh-Ritz method.

Initial vectors
The initial subspace, which will be filtered by the moment operators. The subspace is
defined by the number of basis vectors L and a set of vectors V ∈ Cn×L.

Contour path Γ and numerical quadrature
Those eigenvalues enclosed in Γ are to be calculated. Γ need not be circular, as far as
a numerical quadrature along the path is given. The quadrature (and the path Γ itself)
is defined by the number of quadrature points M , and a set of quadrature points and
weights.

Modulation term
The maximum order of modulation K. You can also specify the modulation function itself.
As mentioned in Sec. 3.4, the modulation term zk in Eq. (1) is replaced by ((z − γ)/ρ)k

for numerical reasons. Indeed, the choice of the modulation term is more flexible. For
example, a set of the Chebyshev polynomials Tk((z − γ)/ρ) is a good candidate, if all
the eigenvalues reside near the real axis. You can prepare an arbitrary set of modulation
functions m(z, k) for k = 0 . . . K−1 (or 0 . . . 2K−1 in the moment-based method). Note,
however, that an arbitrary choice of modulation functions is not allowed in the moment-
based method, because the addition theorem (Eqs. (8) and (9)) only works for the power
modulation function.

SVD tolerance ε
The cutoff threshold of the singular value. To determine the effective dimension of the
filtered subspace, a singular value decomposition is performed. Those components with
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singular values less than ε are omitted to construct the eigen-subspace. Roughly speaking,
the error in the resulting eigenvector is limited to the order of ε, if other parameters are
chosen appropriately.

Parallel environment
The base MPI communicator used by the Bloss package. In most cases, MPI_COMM_WORLD
may suffice. You should also specify how the base communicator is divided into workers
at the inversion and mat-vec phases of the calculation. In the inversion phase, the package
requests the worker to solve the linear equation Y = (ωB−A)−1V . In the mat-vec phase,
evaluations of Y = AV and Y = BV are requested.

Too much? Don’t panic. The Bloss package offers helper functions to set up those boundary
conditions. In most cases, you should choose the path Γ as well as the parameters L, K, M ,
and ε to suit to your system, and the rest of the context is set up automatically. Indeed, the
example in Fig. 2 simply calls bloss_setup_ellipse() to perform the whole setup. In the next
section, a set of functions to set up context is described, from basic setup to customization. It
is followed by the sections for running context and harvesting results.

4.1 Setup context

4.1.1 Basics

� bloss_setup_ellipse()

Bloss *bloss_setup_ellipse ( int type, MPI_Comm comm, int n, int L, int K, int M,
complex_16 gamma, double rho, double ellipse, double tol );

int type IN
Flag to select the type of the calculation. It is specified by or’ing the following values:

BLOSS_MOMENT_METHOD

Select the moment-based method. The Rayleigh-Ritz method is used by default.

BLOSS_NO_EIGVEC

Don’t calculate eigenvectors. With BLOSS_MOMENT_METHOD, the filtered subspace is
not constructed explicitly, so that less work space is allocated internally.

BLOSS_REAL_SYM

Assume a real and symmetric system for the reduced eigenproblem, (λB−A)q = 0.
For that, the matrices A and B are real-symmetric, B is positive definite, and the
BLOSS_SYM_PATH flag should be turned on. Don’t use bloss_set_left_projector()

unless you know what you are doing. Eigenpairs are returned as real values.

BLOSS_SYM_PATH

Assume the contour path (quadrature) to be symmetric about the real axis. The
matrices A, B, and initial vectors should be real. In this case, the complex conjugate
symmetry is utilized and only the upper half of the contour path is integrated. If you
use bloss_set_path() to set up quadrature, you should specify only the upper half set
of quadrature points. Eigenvalues λi are returned as complex values: if Im(λi) > 0,
λi+1 is its complex conjugate. Eigenvectors are returned as real vectors, in the
same manner as dggev() of LAPACK: if Im(λi) > 0 and λi+1 = λ∗

i , eigenvectors
corresponding to λi and λi+1 are qi + iqi+1 and qi − iqi+1, respectively.

BLOSS_CALC_RESIDUALS

Calculate absolute residuals ‖(λB − A)q‖2 of the resulting eigenpairs. The Bloss
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package requests you to calculate A.V and B.V for a given set of vectors V . Note
that the eigenvectors are always normalized to ‖q‖2 = 1.

For example, if you are to solve a complex system by using the moment-based method,
and want to calculate residuals, you should set type = BLOSS_MOMENT_METHOD | BLOSS_

CALC_RESIDUALS.

MPI_Comm comm IN
The base MPI communicator used for the Bloss procedure. In most cases, MPI_COMM_WORLD
will be passed as comm. The base communicator is automatically divided into workers.
The numbers of workers are min(M, N) and N for the inversion and mat-vec phases,
respectively, where N is the number of ranks in comm. If comm is big enough, multiple
ranks may be assigned to a worker, with which each task can be processed in parallel.

int n IN
Dimension of the eigensystem to be solved.

int L IN
Number of initial vectors. Initial vectors of n×L dimension are generated internally,
and filled by random numbers. In the case of BLOSS_SYM_PATH, real initial vectors are
generated; otherwise, they are complex.

int K IN
Maximum order of modulation. A power function with shift-and-scale is employed for
the modulation term: m(z, k) = ((z − gamma)/rho)k for k = 0 . . . K-1 (or 0 . . . 2K-1 in the
moment-based method).

int M IN
Number of quadrature points. The M-point trapezoidal rule is employed for the contour
integral.

complex_16 gamma, double rho, double ellipse IN
Define a contour path. A circular path centered at gamma and radius rho is set up, which
is then scaled by a factor of ellipse along the imaginary axis. See bloss_prepare_path_

ellipse() for the details.

double tol IN
Cutoff threshold ε of the singular value.

Bloss* Return
Pointer to the newly created Bloss context. NULL is returned on error.

The function bloss_setup_ellipse() creates and furnishes the prototypal Bloss context,
and returns a pointer to the context. The generated context may be customized further before
running the interactive session. The same context should be set up on all the ranks of the base
MPI communicator comm.

The context generated by bloss_setup_ellipse() will work for most of the interior eigen-
problems. It is also carefully designed to work well for Hermitian systems, where all eigenvalues
reside on the real axis. If you take gamma on the real axis and M as an even number, the quadra-
ture points are arranged symmetrically about, and avoiding, the real axis. And if you take
ellipse< 1, the elliptic contour path runs closer to the real axis, which usually gives better
results for Hermitian systems.

The context is actually set up by calling several setup functions described in the following
sections.

12



4.1.2 Create context

� bloss_setup()

Bloss *bloss_setup ( int type, MPI_Comm comm );

int type IN
Flag to select the calculation mode. See bloss_setup_ellipse() for the details.

MPI_Comm comm IN
The Base MPI communicator used for the present Bloss calculation. Most of the results
are accumulated on rank 0 of comm.

Bloss* Return
Pointer to the Bloss context. NULL is returned on error.

Create and initialize the Bloss context. The consistency of the type flag is checked.

4.1.3 Initial vectors

� bloss_set_initial_vector()

int bloss_set_initial_vector ( Bloss *om, int n, int L, complex_16 *V );

Bloss *om IN
Bloss context.

int n IN
Dimension of the eigensystem to be solved. This is the leading dimension of the array V.

int L IN
Number of initial vectors.

complex_16 *V IN
Complex array of n×L dimension. Initial vectors are stored in the column-major order
(i.e. FORTRAN style).

int Return
0 on success (always).

Set V to be used as the initial subspace to be filtered. V should be kept intact while om

is alive, and may be deallocated afterwards. Even in the case of BLOSS_SYM_PATH, where real
initial vectors are required, V should be supplied as a complex array with a zero imaginary part.
The same V should be set uniformly on all ranks of the base communicator.

� bloss_prepare_initial_vector()

int bloss_prepare_initial_vector ( Bloss *om, int n, int L );

Bloss *om IN
Bloss context.

int n IN
Dimension of the eigensystem to be solved. This is used as the length of the initial vectors.
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int L IN
Number of initial vectors to be generated.

int Return
0 on success, −1 on error.

Random initial vectors are generated and stored internally in the Bloss context om. If BLOSS
_SYM_PATH flag is set, the generated vectors have a zero imaginary part. Otherwise, complex
vectors are generated. An identical random sequence is used to fill the vectors, unless you
change a seed explicitly by bloss_set_random_seed_for_initial_vector(). The set of initial
vectors are statistically orthonormalized: i.e., vH

i · vj → δi,j at n → ∞ and n � L.

� bloss_get_initial_vector()

complex_16 *bloss_get_initial_vector ( Bloss *om );

Bloss *om IN
Bloss context.

complex_16* Return
Pointer to the initial vectors. The vectors are stored in the column-major order (i.e.
FORTRAN style).

Returns a pointer to the initial vectors. With this function, you can access to the initial
vectors generated internally by bloss_prepare_initial_vector(). In that case, the returned
pointer is owned by the Bloss context om, so that it is discarded on destruction of om. If you
want to keep the pointer beyond the destruction, use bloss_detach_ptr().

� bloss_set_left_projector()

int bloss_set_left_projector ( Bloss *om, complex_16 *U );

Bloss *om IN
Bloss context.

complex_16 *U IN
Pointer to a set of vectors that span the left projection subspace. The vectors are stored
in the column-major order (i.e. FORTRAN style).

int Return
0 on success (always).

In the moment-based method, U is an n×L complex array, which is used as Ṽ in Eq. (10)
to construct µk. In conjunction with bloss_set_initial_vector(), you can set V = BṼ , for
example. The same U should be set on rank 0 of every BLOSS_MPI_INVERT worker. By default,
the initial vector V is used as Ṽ . In the case of BLOSS_SYM_PATH, all the imaginary part of U

should be zero.
In the Rayleigh-Ritz method, U is an n×n̄Γ complex array, where n̄Γ is an effective dimension

of the eigen-subspace determined by the singular value decomposition (Sec. 3.4). The routine
should be called at the hook point BLOSS_HOOK_RRSVD, where n̄Γ becomes available via bloss_

get_neig(). If you set the left projector explicitly, UH is used instead of ŪH for the projection
described in Sec. 3.2; that is, A = UHAŪ and B = UHBŪ . The same U should be set on rank 0
of every BLOSS_MPI_MATMUL worker. By default, U= Ū . In the case of BLOSS_SYM_PATH, the left
projector should be a real array, and you have to pass a double* pointer as U.
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� bloss_fill_random_vectors_D()

int bloss_fill_random_vectors_D ( int n, int L, complex_16 *V );

int n IN
Dimension of a vector.

int L IN
Number of vectors.

complex_16 *V OUT
On return, V is filled by random vectors with a zero imaginary part. The vectors are
stored in the column-major order (i.e. FORTRAN style).

int Return
0 on success, −1 on error.

Random vectors are generated and stored in V. V should be allocated beforehand. The
imaginary part of V is zero. The set of vectors are statistically orthonormalized. An identical
random sequence is used to fill the vectors, unless you change a seed explicitly by bloss_set_

random_seed_for_initial_vector().

� bloss_fill_random_vectors_Z()

int bloss_fill_random_vectors_Z ( int n, int L, complex_16 *V );

int n IN
Dimension of a vector.

int L IN
Number of vectors.

complex_16 *V OUT
On return, V is filled by complex random vectors. The vectors are stored in the column-
major order (i.e. FORTRAN style).

int Return
0 on success, −1 on error.

Complex random vectors are generated and stored in V. V should be allocated beforehand.
The set of vectors are statistically orthonormalized. An identical random sequence is used to
fill the vectors, unless you change a seed explicitly by bloss_set_random_seed_for_initial_

vector().

� bloss_set_random_seed_for_initial_vector()

void bloss_set_random_seed_for_initial_vector ( const int seed );

const int seed IN
Seed for the random number generator.

Set a seed for the random number generator, which is used to generate random vectors. The
Fast Mersenne Twister random number generator dSFMT 2.1 [3] is employed. Note that the
random sequence is reset on every entry to bloss_fill_random_vectors_*(), so that the same
random vectors are generated unless the seed is changed explicitly.
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4.1.4 Contour path / quadrature

� bloss_set_path()

int bloss_set_path ( Bloss *om, int M, complex_16 *omega, complex_16 *weight,
complex_16 *tau );

Bloss *om IN
Bloss context.

int M IN
Number of quadrature points.

complex_16 *omega IN
Pointer to an array of the quadrature points.

complex_16 *weight IN
Pointer to an array of the quadrature weights.

complex_16 *tau IN
Pointer to an array of the shifted-and-scaled quadrature points.

int Return
0 on success (always).

Define a contour path Γ and a quadrature along the path. In addition to the quadrature
points omega[], a shifted-and-scaled set tau[] is also necessary, which is used to evaluate the
modulation term. The shift-and-scale factor should be chosen such that the modulation term
m(τ, k), which can be defined by bloss_set_moment(), stays around unity inside of Γ. Note
that the omega[] → tau[] conversion may not necessarily be linear; the choice of tau[] is more
flexible. The contour integral is evaluated as

M̄k =
M−1∑
i=0

weight[i]*m(tau[i], k)*(omega[i]*B − A)−1. (18)

The maximum order of k is K − 1 for the Rayleigh-Ritz method, and 2K − 1 for the moment-
based method. In the case of BLOSS_SYM_PATH, the complex conjugate symmetry is utilized and
the integral is evaluated as

M̄k =
M−1∑
i=0

2 Re(weight[i]*m(tau[i], k)*(omega[i]*B − A)−1). (19)

Only those omega[]s on the upper half of the complex plane should be given.

� bloss_set_convert_function()

int bloss_set_convert_function ( Bloss *om, Bloss_convert_func *convert, void
*RefCon );

Bloss *om IN
Bloss context.

Bloss_convert_func *convert IN
Pointer to a back-conversion function, convert( int k, void *lambda, void *RefCon ).
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void *RefCon IN
Pointer to a reference constant where data required for the back-conversion may be stored.

int Return
0 on success (always).

Set a back-conversion function for the moment-based method. As shown in Eq. (18), the
modulation term is not evaluated directly by omega[] but by tau[]. Typically, tau[] is a shifted-
and-scaled omega[], tau[i] = (omega[i]−γ)/ρ for example. In the moment-based method, the
resulting eigenvalues are also shifted-and-scaled. This function registers the back-conversion
function convert(), which is called during the moment-based method.

The function convert() receives an array of shifted-and-scaled eigenvalues lambda[0..k-1],
and should replace the content by the back-converted version. That is, if you pass tau[] as
lambda[], the content should be replaced by omega[]. The data necessary for the conversion
can be stored in an anonymous pointer RefCon, which is also passed to convert. In the case
of BLOSS_REAL_SYM, lambda is passed as a pointer to the double array. Otherwise, lambda is a
complex_16* pointer.

� bloss_prepare_path_ellipse()

int bloss_prepare_path_ellipse ( Bloss *om, int M, complex_16 gamma, double rho,
double ellipse );

Bloss *om IN
Bloss context.

int M IN
Number of quadrature points.

complex_16 gamma IN
Center of the ellipse.

double rho IN
Radius of the ellipse.

double ellipse IN
Aspect ratio of the ellipse: the radius along the complex axis is scaled by ellipse.

int Return
0 on success, −1 on error.

Set up an elliptic path for the contour integral. A circle centered at gamma and radius rho

is collapsed along the imaginary axis by a factor of ellipse to generate the path. The M-point
trapezoidal rule is employed for the quadrature. In the case of BLOSS_SYM_PATH, the complex
conjugate symmetry is utilized and the number of quadrature points is M/2, so that care must
be taken in designing the BLOSS_MPI_INVERT parallel environment.

The quadrature is actually set up as follows:

θj = 2π(j +
1

2
)/M (20)

tau[j] = cos θj + i sin θj ∗ ellipse (21)

omega[j] = rho ∗ tau[j] + gamma (22)

weight[j] = rho ∗ (cos θj ∗ ellipse + i sin θj)/M (23)

for j = 0..M-1 (or 0..M/2-1 if BLOSS_SYM_PATH is used). In the moment-based method, the
back-conversion function is also set.
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4.1.5 Modulation term

� bloss_set_moment()

int bloss_set_moment ( Bloss *om, int K, Bloss_moment_func *moment );

Bloss *om IN
Bloss context.

int K IN
Maximum order of the modulation term.

Bloss_moment_func *moment IN
Pointer to the modulation function, moment( int Kmax, complex_16 tau, complex_16

*res ).

int Return
0 on success (always).

Set the modulation function m(τ, k) used in Eq. (18). The maximum order K of the mod-
ulation term is also defined here. The shape of the filter function is modified according to
m(τ, k). In the moment-based method, only the power modulation function (bloss_moment
_power() below) is allowed as moment. The function moment() receives the maximum order
Kmax and the shifted-and-scaled quadrature point tau, and should store res[k] = m(tau, k) for
k = 0, 1, . . . , Kmax−1 on return. Kmax = K for the Rayleigh-Ritz method, and Kmax = 2K for the
moment-based method.

� bloss_moment_power()

void bloss_moment_power ( int Kmax, complex_16 tau, complex_16 *res );

The power modulation function, m(τ, k) = τ k, to be used as the moment argument of bloss
_set_moment(). It returns res[k] = cpow(tau,k).

� bloss_moment_chebyshev()

void bloss_moment_chebyshev ( int Kmax, complex_16 tau, complex_16 *res );

The Chebyshev polynomial modulation function, m(τ, k) = Tk(τ), to be used as the moment

argument of bloss_set_moment(). Tk(z) is the k-th order Chebyshev polynomial of the first
kind. It returns res[k] = Tk(tau).

4.1.6 SVD tolerance

� bloss_set_svd_tolerance()

int bloss_set_svd_tolerance ( Bloss *om, double tol );

Bloss *om IN
Bloss context.

double tol IN
Cutoff threshold ε of the singular value.

int Return
0 on success (always).
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Set a cutoff threshold ε of the singular values. As mentioned in Sec. 3.4, an effective eigen-
subspace is constructed by collecting finite singular value components from the filtered vectors.
The components with singular values less than tol are ignored. Note that, rigorously speaking,
the meaning of the singular values is not the same between the Rayleigh-Ritz method and the
moment-based method, so that the magnitude of tol may be different.

4.1.7 Parallel environment

� bloss_set_comm()

int bloss_set_comm ( Bloss *om, enum BLOSS_MPI mode, MPI_Comm worker );

Bloss *om IN
Bloss context.

enum BLOSS_MPI mode IN
Specify the phase, inversion or mat-vec, to which the divided communicator is assigned.
Either BLOSS_MPI_INVERT or BLOSS_MPI_MATMUL.

MPI_Comm worker IN
Communicator divided into workers.

int Return
0 on success, −1 on error.

Set how the base communicator is divided into workers at the inversion phase and the mat-
vec phase. The MPI communicator worker may be generated by MPI_Comm_split() from the
base communicator comm.

� bloss_prepare_comm_divide()

int bloss_prepare_comm_divide ( Bloss *om, enum BLOSS_MPI mode, int div );

Bloss *om IN
Bloss context.

enum BLOSS_MPI mode IN
Specify the phase, inversion or mat-vec, for which the base communicator is divided.
Either BLOSS_MPI_INVERT or BLOSS_MPI_MATMUL.

int div IN
Number of workers.

int Return
0 on success, −1 on error.

Split the base communicator evenly into div workers for either the inversion phase or the
mat-vec phase. The proximity of ranks in the base communicator is kept as much as possible.
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4.2 Run context

� bloss_do()

int bloss_do ( Bloss *om, int *task, int *L, complex_16 **V, complex_16 **Y,
complex_16 *omega, MPI_Comm *worker );

Bloss *om IN
Bloss context.

int *task OUT
Task selector that indicates what action you should take next.

int *L OUT
Size of the task.

complex_16 **V OUT
Input of the task. The size of the array is n×L, where n is the dimension of the eigensystem
to be solved. In the case of BLOSS_SYM_PATH, a pointer to the double array is actually given
at the mat-vec phase. The array is stored in the column-major order (i.e. FORTRAN
style).

complex_16 **Y IN
Output of the task, where the result of the task should be stored. The shape of the array
is identical to V. In the case of BLOSS_SYM_PATH, a pointer to the double array is actually
given at the mat-vec phase.

complex_16 *omega OUT
Input parameter of the task.

MPI_Comm *worker OUT
The MPI communicator that can be used to process the task.

int Return
0 on success, −1 on error.

The function bloss_do() is a step-by-step driver of the Bloss interactive session. On return,
task and other parameters are set up. You are expected to calculate Y = Op V and call bloss
_do() again, where Op is a linear operator of either (omegaB − A)−1, A, or B. The number
of columns of V (and Y) is given by L. Normally, only om and Y are necessary as inputs. You
should not modify arguments other than Y between two calls of bloss_do().

There are two kinds of tasks. One is a prerequisite task, for which you have to take an
action. The other is a hook task, from which you can snatch progress information (or you can
simply ignore it). The flow sequence of the tasks are depicted in Fig. 5. In the following, the
possible values of task and the required response are described.

4.2.1 Prerequisites

BLOSS_TASK_INVERT

The linear solution of (omegaB − A)Y = V is requested. The BLOSS_MPI_INVERT commu-
nicator is set to worker, which may be used for the solution. L is the number of initial
vectors. L and omega are bcasted over worker. The initial vectors assigned during the
context setup are passed as V. If the number of workers is less than the number of quadra-
ture points, several BLOSS_TASK_INVERT tasks with different omegas may be issued on the
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BLOSS_HOOK_INITIALIZE

BLOSS_TASK_INVERT

BLOSS_HOOK_INVERT

BLOSS_HOOK_INTEGRAL

BLOSS_HOOK_RRSVD

BLOSS_TASK_MATMUL_A

BLOSS_TASK_MATMUL_B

BLOSS_HOOK_RRPROJECTION

BLOSS_HOOK_EIGENVALUES

BLOSS_HOOK_EIGENVECTORS

BLOSS_TASK_MATMUL_A

BLOSS_TASK_MATMUL_B

BLOSS_HOOK_RESIDUALS

BLOSS_TASK_DONE

BLOSS_HOOK_MMHANKEL

BLOSS_HOOK_MMSVD

 BLOSS_MPI_MATMUL

 BLOSS_MPI_INVERT

Moment-based method

Rayleigh-Ritz method

worker:

may be visited several times

if not BLOSS_NO_EIGVEC

if BLOSS_CALC_RESIDUALS

Figure 5: Bloss task sequence issued by bloss_do().

same worker. In that case, Y contains the previous solution untouched. If more workers
exist than quadrature points, some workers do not receive BLOSS_TASK_INVERT, and are
kept idle during the inversion phase.

BLOSS_TASK_MATMUL_A

The matrix-vector multiplication of Y = A V is requested. The BLOSS_MPI_MATMUL com-
municator is set to worker, which may be used for the operation. In the case of BLOSS_
SYM_PATH, pointers to double arrays are actually returned as V and Y, so that a type cast
may be necessary. L is bcasted over worker. Although V and Y are allocated on all ranks,
V is set up only in rank 0 and Y is not zero-cleared. You should bcast V over worker, if
necessary.

This task is issued at two stages: one at the Rayleigh-Ritz procedure, and the other at
the residual calculation. A total of n̄Γ vectors are divided into workers to perform the
mat-vec operation in parallel. That is, if the number of workers exceeds n̄Γ, some workers
are left idle. This task is always followed by BLOSS_TASK_MATMUL_B.

BLOSS_TASK_MATMUL_B

The matrix-vector multiplication of Y = B V is requested. The BLOSS_MPI_MATMUL com-
municator is set to worker, which may be used for the operation. In the case of BLOSS_
SYM_PATH, pointers to double arrays are actually returned in V and Y. L is bcasted over
worker. Although V and Y are allocated on all ranks, V is set up only in rank 0 and Y is
not zero-cleared. The same L and V are returned as in the last BLOSS_TASK_MATMUL_A task,
so that bcasting V over worker may not be necessary.

BLOSS_TASK_DONE

The Bloss procedure finished successfully. Now you can move on to harvesting. But be
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careful! Even if BLOSS_TASK_DONE is returned, the results can be garbage. For example, if
your estimate of n̄Γ were too small, the calculated eigenvectors would be random linear
combinations of the true eigenvectors. You should check if LK > n̄Γ (i.e., SR of Eq. (5)
is overcomplete), and examine the residuals, the reliability indices, and other possible
indicators of trouble.

BLOSS_TASK_ERROR

Something has gone wrong. The context may not be furnished yet, the given parameters
may be inconsistent, or even memory may be insufficient.

4.2.2 Hook points

BLOSS_HOOK_INITIALIZE

Hook before starting a series of linear solver requests. The BLOSS_MPI_INVERT communica-
tor is set in worker. The first set of L and omega are prepared and bcasted over worker. L

is set to the number of initial vectors, or can be zero if the number of workers exceeds the
number of quadrature points. BLOSS_TASK_INVERT request is not sent to such workers as
L= 0. V is set to the initial vectors. V is not bcasted explicitly over worker, but the same
V may already be assigned during the context setup. Y is allocated and zero-cleared on all
ranks, unless you have assigned BLOSS_WS_SOLUTION by yourself via bloss_set_workspace(

). You may set an initial value to Y here, if iterative methods are to be used for the linear
solver.

BLOSS_HOOK_INVERT

Hook on finishing the invert requests. Here, you may release workspaces allocated for
linear solvers. It is asynchronous: other workers may still doing their tasks.

BLOSS_HOOK_INTEGRAL

Hook on finishing contour integral and cleanup. The results are accumulated on rank 0
of the base communicator.

BLOSS_HOOK_RRSVD

Hook after the singular value decomposition of SR in the Rayleigh-Ritz method. The fil-
tered basis vectors are orthonormalized by the singular value decomposition. The effective
dimension of the filtered eigen-subspace n̄Γ becomes available, and can be accessed via
bloss_get_neig(). At this stage, the raw singular values s and the singular components
U in Eq. (7) are stored in the BLOSS_WS_SINGVALS and BLOSS_WS_EIGVECS workspaces, re-
spectively, which can be accessed via bloss_get_workspace(). This is available only on
rank 0 of the base communicator.

In the present version, only rank 0 of the base communicator performs SVD, which is a
potential bottleneck.

BLOSS_HOOK_RRPROJECTION

Hook after the Rayleigh-Ritz projection.

The projected matrices A and B are now available on all rank 0 of BLOSS_MPI_MATMUL

workers.

BLOSS_HOOK_MMHANKEL

Hook after the construction of the Hankel matrices A and B (Eq. (11)) of the moment-
based method.

The Hankel matrices are available only on rank 0 of the base communicator.
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BLOSS_HOOK_MMSVD

Hook after the singular value decomposition of B in the moment-based method. At this
stage, the raw singular values s in Eq. (12) are stored in the BLOSS_WS_SINGVALS workspace,
and can be accessed via bloss_get_workspace(). It is available only on rank 0 of the base
communicator.

BLOSS_HOOK_EIGENVALUES

The reduced eigenvalue problem is solved, and eigenvalues are calculated. The BLOSS_WS

_SINGVALS workspace is replaced by the reliability indices, which are available on rank 0
of the base communicator.

BLOSS_HOOK_EIGENVECTORS

Hook after the calculation of the eigenvectors. This hook is not visited if BLOSS_NO_EIGVEC
is used.

The eigenvectors are calculated in parallel, using rank 0 of the BLOSS_MPI_MATMUL workers.

BLOSS_HOOK_RESIDUALS

Hook on finishing the residual calculation, which is visited if BLOSS_CALC_RESIDUALS is
used. To calculate residuals, a pair of BLOSS_TASK_MATMUL_A and BLOSS_TASK_MATMUL_B is
issued after BLOSS_HOOK_EIGENVECTORS. This hook comes after that.

4.3 Get results

� bloss_get_workspace()

void *bloss_get_workspace ( Bloss *om, enum BLOSS_WORKSPACE id );

Bloss *om IN
Bloss context.

enum BLOSS_WORKSPACE id IN
Select a type for the results to be retrieved.

void* Return
Pointer to the result.

Allow access to the Bloss results stored internally in om. Most of them are available only on
rank 0 of the base communicator. Possible values of id are as follows:

BLOSS_WS_EIGVECS

Pointer to the eigenvectors, which is an n×n̄Γ array of complex_16 (or double if BLOSS_
SYM_PATH is used). Vectors are stored in the column-major order (i.e. FORTRAN style).
Use bloss_get_neig() to get n̄Γ. Not available if BLOSS_NO_EIGVEC is used.

The eigenvectors are normalized to ‖q‖2 = 1. Right eigenvectors are given for generalized
eigenproblems.

BLOSS_WS_EIGVALS

Pointer to the eigenvalues, which is a complex_16 (or double if BLOSS_REAL_SYM is used)
array of length n̄Γ.

BLOSS_WS_SINGVALS

Pointer to the reliability indices. The workspace is a double array of length L×K, of which
top n̄Γ elements are valid. The same workspace is used to store the raw singular values
at the BLOSS_HOOK_RRSVD and BLOSS_HOOK_MMSVD stages.
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BLOSS_WS_RESIDUALS

Pointer to the residuals of eigenvectors, which is a double array of length n̄Γ. Only
available if BLOSS_CALC_RESIDUALS is used. The residuals are calculated as ‖(λB − A)q‖2

for eigenpairs (λ, q).

BLOSS_WS_SOLUTION

Pointer to an array Y used in bloss_do().

Please refer to bloss_setup_ellipse() for the parameters n, L, and K. You can also prepare
storage areas by yourself, outside of Bloss, and set them for the workspace: see bloss_set_

workspace().

� bloss_get_neig()

int bloss_get_neig ( Bloss *om );

Bloss *om IN
Bloss context.

int Return
Number of eigenvalues, n̄Γ.

Returns the number of eigenvalues located inside (and on the periphery of) Γ. This is an
effective dimension of the filtered eigen-subspace.

� bloss_get_nbase()

int bloss_get_nbase ( Bloss *om );

Bloss *om IN
Bloss context.

int Return
Raw dimension of the eigen-subspace, L×K.

Returns the number of basis vectors to span the eigen-subspace. If n̄Γ = L× K, it is highly
possible that the Bloss procedure will fail.

� bloss_get_rank()

int bloss_get_rank ( Bloss *om );

Bloss *om IN
Bloss context.

int Return
MPI rank in the base communicator.

Returns the MPI rank of the current process in the base communicator.
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� bloss_invert_get_index()

int bloss_invert_get_index ( Bloss *om );

Bloss *om IN
Bloss context.

int Return
Index to the quadrature points to be calculated with the present worker.

Returns an index of the quadrature point (i of omega[i]) to be calculated with the present
worker. It is available at the BLOSS_TASK_INVERT phase of bloss_do(), and only for rank 0 of
worker.

� bloss_invert_get_rest()

int bloss_invert_get_rest ( Bloss *om );

Bloss *om IN
Bloss context.

int Return
Remaining number of quadrature points to be processed with the present worker.

Returns the remaining number of quadrature points statically assigned to the present worker.
The index returned by bloss_invert_get_index() is exclusive. It is available at the BLOSS_TASK

_INVERT phase of bloss_do(), and only for rank 0 of worker.

� bloss_residuals_get_lambda()

void *bloss_residuals_get_lambda ( Bloss *om );

Bloss *om IN
Bloss context.

void* Return
Pointer to eigenvalues corresponding to eigenvectors passed at the mat-vec phase of the
residual calculation.

Returns a pointer to eigenvalues currently under the residual calculation. It is available
at the BLOSS_TASK_MATMUL_A phase of bloss_do() during the residual calculation, and only for
rank 0 of worker.

The function is prepared for the one-step residual calculation. See Sec. 6.2 for the details.

4.4 Destroy context and misc.

� bloss_free()

void bloss_free( Bloss *om );

Bloss *om IN
Bloss context to be destroyed.

Destroys the Bloss context. All the work spaces allocated internally, including storage areas
for eigenpairs, will be discarded. To allow the storage areas to survive beyond bloss_free(),
use bloss_detach_ptr().

25



� bloss_detach_ptr()

int bloss_detach_ptr ( Bloss *om, void *p );

Bloss *om IN
Bloss context.

void *p IN
Pointer to be detached from the Bloss context.

int Return
0 on success, −1 on error.

Allows the pointer to survive beyond the destruction of the Bloss context. The Bloss context
is equipped with an auto-release pool of pointers. Once a pointer p is added to the pool, free(p
) is called on destruction of the context. Workspaces such as eigenvalues and eigenvectors are
added to the pool internally, so that they are deallocated on bloss_free(). If you want those
pointers to survive beyond the destruction of the Bloss context, you should use bloss_detach_

ptr() to remove the pointer from the pool.

� bloss_attach_ptr()

int bloss_attach_ptr ( Bloss *om, void *p );

Bloss *om IN
Bloss context.

void *p IN
Pointer to be attached to the Bloss context.

int Return
0 on success, −1 on error.

Allows the pointer p to be deallocated on the destruction of the Bloss context. That is,
free(p) is called automatically on bloss_free(). Note that the deallocation is not performed
recursively: if you are to attach a pointer to a complex object, you should attach not only the
pointer itself, but also the pointers owned by the object.

� bloss_set_workspace()

int bloss_set_workspace ( Bloss *om, enum BLOSS_WORKSPACE id, void *work );

Bloss *om IN
Bloss context.

enum BLOSS_WORKSPACE id IN
Select the workspace to be assigned.

void *work IN
Pointer to pre-allocated memory to be used as a workspace.

int Return
0 on success, −1 on error.
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Assigns pre-allocated memory to a workspace used in the Bloss calculation. You should
allocate enough memory to work, and leave it untouched during the calculation. Most of the
workspaces should be aligned at a 16 byte boundary for performance reasons.

Usually, a sufficient amount of memory is allocated automatically, and you need not use
bloss_set_workspace(). This is mainly intended for the FORTRAN interface, where workspaces
should be brought from the FORTRAN world. Possible values of id and the required amount
of memory are listed below. Please refer to bloss_setup_ellipse() for the parameters n, L,
and K.

BLOSS_WS_SOLUTION

Used as Y in bloss_do(). The required size is n×L of complex_16 at the inversion phase.
At the mat-vec phase, n×ceil(n̄Γ/nwk) of complex_16 (or double if BLOSS_SYM_PATH is used)
is required, where nwk is the number of BLOSS_MPI_MATMUL workers. If nwk is larger than K

(or K/2 if BLOSS_SYM_PATH), n×L of complex_16 may suffice. Note that the mat-vec phase
is not visited in the moment-based method unless BLOSS_CALC_RESIDUALS is used.

BLOSS_WS_EIGVECS

Storage area for the eigenvectors. It is also used to accumulate filtered vectors, and its
subarray is used as V in bloss_do() during the mat-vec phase. Not used in the moment-
based method if BLOSS_NO_EIGVEC is used. Required size is n×L×K of complex_16 (or
double if BLOSS_SYM_PATH is used).

BLOSS_WS_EIGVALS

Storage area for the eigenvalues. Required size is L×K of complex_16 (or double if BLOSS
_REAL_SYM is used).

BLOSS_WS_SINGVALS

Storage area for the reliability indices. Also used to store the singular values. Required
size is L×K of double.

BLOSS_WS_RESIDUALS

Storage area for the residuals. Required size is L×K of double.

� bloss_dump_summary()

void bloss_dump_summary ( Bloss *om, FILE *fp );

Bloss *om IN
Bloss context.

FILE *fp IN
File pointer, to which the summary is dumped.

Outputs summary of the Bloss context.

� bloss_dump_quadrature()

void bloss_dump_quadrature ( Bloss *om, FILE *fp );

Bloss *om IN
Bloss context.

FILE *fp IN
File pointer, to which the quadrature data are dumped.

Outputs the quadrature data for the contour integral. The omega-weight-tau triad is dumped
in a text format.
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5 FORTRAN interface

FORTRAN interfaces are prepared in the Bloss package. Just as in the C implementation, users
have to write their own code to set up and communicate with the Bloss context. Most of the
Bloss subroutines are parallel to the C APIs, though the running context part is a bit different.
The FORTRAN code corresponding to the C tutorial (Fig. 2) is listed in Fig. 6. A complete
code, including pre- and post-processes, is available at examples/Fortran/tutorial.f.

INPUT
integer n dimension of the system
complex*16 A(n*n), B(n*n) input matrices
complex*16 gamma center of the contour path Γ
real*8 rho radius of the contour path Γ
integer M number of quadrature points (∼ 32)
integer L number of initial vectors (∼ 8)
integer K maximum order of modulation (∼ 8)
integer Comm base MPI communicator

All the INPUT data should be MPI_Bcast-ed over all the ranks of the communicator Comm.

OUTPUT
integer neig number of eigenpairs obtained (≤ L*K)
complex*16 lambda(L*K) eigenvalues
complex*16 q(n*L*K) eigenvectors

OUTPUT data are available only on rank 0 of Comm. The storage area lambda(L*K) and q(n*L*K)

should be allocated on the caller side.
The Bloss context om is set up by calling bloss_setup_ellipse(). This subroutine is almost

identical to its C counterpart, except that users have to supply workspaces V, Y, and q. Enough
memory should be allocated for them beforehand. V(n*L) is a workspace to store the initial
vectors, which is filled by random vectors in bloss_setup_ellipse(). The eigenvectors are
stored in q(n*L*K), which is also used to accumulate intermediate results. Y(*) is used to
communicate with the Bloss context. The size of Y is Y(n*L*K) for safety, but if the number of
processors is large enough, it can be as small as Y(n*L).

After setting up the context, the interactive session is started by calling bloss_do(). In
response to bloss_do(), users should store either Y = (omega*B - A)−1.V, Y = A.q(idx), or
Y = B.q(idx), depending on task, and call bloss_do() again. The leading dimension of V, Y,
and q(idx) is n, and the number of columns is num. For these operations, users can utilize a
small MPI communicator worker, which is generated by dividing the base communicator Comm.
The Bloss procedure finishes if task is returned with 5963 (=BLOSS_TASK_DONE). Eigenvalues
should be copied out from the Bloss context by bloss_get_lambda(), or they are lost on calling
bloss_free() to destroy the context. Note that, different from the C example, eigenvectors
stored in the workspace q are not touched on the destruction.

In the following, the FORTRAN APIs are documented. Because most of them are simple
wrappers of the equivalent C APIs, only the differences will be described. Please refer to Sec. 4
for the missing details. Note that some of the C APIs, such as bloss_set_moment() and bloss_

set_convert_function(), are not supported in FORTRAN. They are only accessible indirectly,
via bloss_set_workspace() and bloss_prepare_path_ellipse().
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subroutine tutorial( n, A, B, gamma, rho, M, L, K, neig, lambda,
& q, Comm )
implicit none
integer n, M, L, K, neig, Comm
real*8 rho
complex *16 A(*), B(*), gamma, lambda( *), q(*)
!
complex *16, allocatable :: V(:), Y(:)
integer, parameter :: type = 0
real*8, parameter :: ellipse = 1.0, tolerance = 1d-12
!
integer om, task, ierr, nproc, i, num, idx, worker
complex *16 omega

call MPI_Comm_size(Comm, nproc, ierr)

! Choose optimal size for Y:
! - at least L columns are required (INVERT step)
! - can be as small as L * K / nproc (MATMUL step)
i = L * K / nproc
if (i * nproc .lt. L * K) i = i + 1
if (i .lt. L) i = L
allocate( V(n*L), Y(n*i) )

call bloss_setup_ellipse( type, Comm, n, L, K, M, gamma, rho,
& ellipse, tolerance, V, Y, q, om, ierr)

do
call bloss_do( om, task, num, omega, worker, idx, ierr )

if (task .eq. 1) then ! BLOSS_TASK_INVERT
call linear_solve(n, A, B, omega, V, num, Y)

else if (task .eq. 11) then ! BLOSS_TASK_MATMUL_A
call mat_vec( n, A, q(idx), num, Y)

else if (task .eq. 12) then ! BLOSS_TASK_MATMUL_B
call mat_vec( n, B, q(idx), num, Y)

else if (task .eq. 5963) then ! BLOSS_TASK_DONE
call bloss_get_rank(om, i, ierr)
if (i .eq. 0) then

call bloss_get_neig(om, neig, ierr)
call bloss_get_lambda(om, lambda, ierr)

end if
call bloss_free(om)
deallocate( V, Y )
return

end if
end do

end

Figure 6: FORTRAN code used to solve the tutorial example.
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5.1 Setup context

5.1.1 Basics

� bloss_setup_ellipse( type, comm, n, L, K, M, gamma, rho, ellipse, tol, V, Y, q, om,

ierr )

integer type, comm, n, L, K, M, om, ierr
real*8 rho, ellipse, tol
complex*16/real*8 q(n*L*K)
complex*16 gamma, V(n*L), Y(n*L*K)

integer type IN
Flag used to select the calculation mode. It is specified by adding the following values:

1 BLOSS_MOMENT_METHOD

2 BLOSS_NO_EIGVEC

4 BLOSS_REAL_SYM

8 BLOSS_SYM_PATH

16 BLOSS_CALC_RESIDUALS

For example, if you are to solve a complex system by using the moment-based method,
and want to calculate residuals, you should set type = 17. See p. 11 for the details.

complex*16 V(n*L) IN
Workspace used to store the initial vectors. V is filled by random vectors, so that you
only need to allocate enough memory for V.

complex*16 Y(n*L*K) IN
Workspace used to store results in response to the preceding bloss_do() call. Please refer
to BLOSS_WS_SOLUTION of bloss_set_workspace() (p. 26) for the required memory. If the
number of ranks in comm is large enough, the size can be as small as Y(n*L).

complex*16/real*8 q(n*L*K) IN
Workspace used to store eigenvectors. It is also used to accumulate intermediate results.
It should be real*8 if BLOSS_SYM_PATH is used, and be complex*16 otherwise.

integer om OUT
ID of the newly created Bloss context.

integer ierr OUT
0 on success, −1 on error.

Create and furnish the Bloss context. In addition to the equivalent C API, workspaces used
in the Bloss procedure are explicitly specified here. These workspaces are used to communicate
with the Bloss context during the interactive session.

The context is actually set up by calling several subroutines described below.

5.1.2 Create context

� bloss_setup( type, comm, om, ierr )

integer type, comm, om, ierr
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integer type IN
Flag used to select the calculation mode. See bloss_setup_ellipse() for the details.

integer om OUT
ID of the newly created Bloss context.

integer ierr OUT
0 on success, −1 on error.

Create and initialize the Bloss context.

� bloss_set_workspace( om, n, L, K, V, Y, q, ierr )

integer om, n, L, K, ierr
complex*16/real*8 q(n*L*K)
complex*16 V(n*L), Y(n*L*K)

integer om IN
ID of the Bloss context.

integer n IN
Dimension of the eigensystem to be solved.

integer L IN
Number of initial vectors.

integer K IN
Maximum order of modulation.

complex*16 V(n*L) IN
Initial vectors.

complex*16 Y(n*L*K) IN
Workspace used to store results in response to bloss_do().

complex*16/real*8 q(n*L*K) IN
Workspace used to store eigenvectors. It is also used to accumulate intermediate results.
It should be real*8 if BLOSS_SYM_PATH is used, and be complex*16 otherwise.

integer ierr OUT
0 on success, −1 on error.

Assign workspaces for the Bloss context. It is not a simple wrapper of the C API of the same
name, but a mixture of bloss_set_initial_vector(), bloss_set_workspace(), and bloss_set

_moment(). You should allocate enough memory for the workspaces. The subroutine should be
called on every rank of the base communicator, where identical initial vectors should be set in
V. To prepare the initial vectors, you can use utility functions bloss_fill_random_vectors_*().

Y is a workspace used to return results in response to the preceding bloss_do() call. The
required size shown here (Y(n*L*K)) is for safety; please refer to BLOSS_WS_SOLUTION of bloss
_set_workspace() (p. 26) for the minimal size. Basically, it can be as small as Y(n*L), if the
number of BLOSS_MPI_MATMUL workers is large enough.

At the end of the Bloss procedure, eigenvectors are returned in q, which is also used to
accumulate intermediate results. An index to q is used in bloss_do() to specify a subarray,
so that q is type-sensitive: it should be real*8 if BLOSS_SYM_PATH is used, and be complex*16
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otherwise. The workspace q will not be used in the moment-based method if BLOSS_NO_EIGVEC
is used.

The modulation function m(τ, k) (Eq. (18)) is set to a simple power function. Other mod-
ulation functions are not supported in FORTRAN (i.e., bloss_set_moment() is missing).

5.1.3 Initial vectors

� bloss_set_left_projector( om, U, ierr )

integer om, ierr
complex*16 U(*)

See p. 14.

� bloss_fill_random_vectors_D( n, L, V, ierr )

integer n, L, ierr
complex*16 V(n*L)

See p. 15.

� bloss_fill_random_vectors_Z( n, L, V, ierr )

integer n, L, ierr
complex*16 V(n*L)

See p. 15.

� bloss_set_random_seed_for_initial_vector( seed, ierr )

integer seed, ierr

See p. 15.

5.1.4 Contour path / quadrature

� bloss_set_path( om, M, omega, weight, tau, ierr )

integer om, M, ierr
complex*16 omega(M), weight(M), tau(M)

See p. 16. In the moment-based method, the resulting eigenvalues are shifted-and-scaled in
the same way as the omega→tau conversion. Because the back-conversion function cannot be set
in FORTRAN (bloss_set_convert_function() is missing), you should convert eigenvalues by
yourself. BLOSS_CALC_RESIDUALS is also prohibited, because the true eigenvalues are unknown.
Note that the above rule is not applied if you use bloss_prepare_path_ellipse() (or bloss_

setup_ellipse()) to set up the path; the back-conversion function is set up there.

� bloss_prepare_path_ellipse( om, M, gamma, rho, ellipse, ierr )

integer om, M, ierr
real*8 rho, ellipse
complex*16 gamma

See p. 17.
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5.1.5 SVD tolerance

� bloss_set_svd_tolerance( om, tol, ierr )

integer om, ierr
real*8 tol

See p. 18.

5.1.6 Parallel environment

� bloss_set_comm( om, mode, worker, ierr )

integer om, mode, worker, ierr

integer mode IN
Specify the phase, inversion or mat-vec, to which the divided communicator worker is
assigned..

0 BLOSS_MPI_INVERT

1 BLOSS_MPI_MATMUL

See p. 19.

� bloss_prepare_comm_divide( om, mode, div, ierr )

integer om, mode, div, ierr

integer mode IN
Specify the phase, inversion or mat-vec, for which the base communicator is divided.

0 BLOSS_MPI_INVERT

1 BLOSS_MPI_MATMUL

See p. 19.

5.2 Run context

� bloss_do( om, task, L, omega, worker, idx, ierr )

integer om, task, L, worker, idx, ierr
complex*16 omega

integer task OUT
Task selector that indicates what action you should take next. Possible values are the
following:

1 BLOSS_TASK_INVERT

11 BLOSS_TASK_MATMUL_A

12 BLOSS_TASK_MATMUL_B

51 BLOSS_HOOK_INITIALIZE

52 BLOSS_HOOK_INVERT

53 BLOSS_HOOK_INTEGRAL

54 BLOSS_HOOK_RRSVD
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55 BLOSS_HOOK_RRPROJECTION

56 BLOSS_HOOK_MMHANKEL

57 BLOSS_HOOK_MMSVD

58 BLOSS_HOOK_EIGENVALUES

59 BLOSS_HOOK_EIGENVECTORS

60 BLOSS_HOOK_RESIDUALS

5963 BLOSS_TASK_DONE

-1 BLOSS_TASK_ERROR

See p. 20 for the details.

integer idx OUT
Index to the q workspace for which the mat-vec operation (task = 11 or 12) should be
performed.

Step-by-step driver of the Bloss interactive session. Depending on task, you should calculate
either:

task .eq. 1 ⇒ Y = (omega*B - A)−1.V,
task .eq. 11 ⇒ Y = A.q(idx), or
task .eq. 12 ⇒ Y = B.q(idx),

and call bloss_do() again. The workspaces V, Y, and q should be set beforehand via bloss_set

_workspace(). The leading dimension of V, Y, and q(idx) is n, and the number of columns is L.
See p. 20 for other details.

5.3 Get results

� bloss_get_lambda( om, lambda, ierr )

integer om, ierr
real*8 lambda(L*K)

integer om IN
ID of the Bloss context.

real*8 lambda(L*K) OUT
Eigenvalues.

integer ierr OUT
0 on success, −1 on error.

Replace the top n̄Γ elements of lambda with the calculated eigenvalues. You should allocate
enough memory for lambda.

� bloss_get_sv( om, sv, ierr )

integer om, ierr
real*8 sv(L*K)

integer om IN
ID of the Bloss context.

real*8 sv(L*K) OUT
Reliability indices.
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integer ierr OUT
0 on success, −1 on error.

Replace elements of sv with the reliability indices, of which the top n̄Γ elements are valid.
If this is called at the BLOSS_HOOK_RRSVD and BLOSS_HOOK_MMSVD stages, sv is filled by the raw
singular values. You should allocate enough memory for sv.

� bloss_get_residuals( om, residual, ierr )

integer om, ierr
real*8 residual(L*K)

integer om IN
ID of the Bloss context.

real*8 residual(L*K) OUT
Residuals of the eigenvectors.

integer ierr OUT
0 on success, −1 on error.

Replace the top n̄Γ elements of residual with the absolute residuals ‖(λB − A)q‖2 of the
eigenpairs. Only available if BLOSS_CALC_RESIDUALS is used. You should allocate enough mem-
ory for residual.

� bloss_get_neig( om, neig, ierr )

integer om, neig, ierr

See p. 24.

� bloss_get_nbase( om, nbase, ierr )

integer om, nbase, ierr

See p. 24.

� bloss_get_rank( om, rank, ierr )

integer om, rank, ierr

See p. 24.

� bloss_invert_get_index( om, idx, ierr )

integer om, idx, ierr

integer idx OUT
Index to the quadrature points to be calculated with the present worker.

integer ierr OUT
0 on success, −1 on error.

Returns an index of the quadrature point (idx of omega(idx)) to be calculated with the
present worker. This is available at the BLOSS_TASK_INVERT phase of bloss_do(), and only for
rank 0 of worker.
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� bloss_invert_get_rest( om, num, ierr )

integer om, num, ierr

See p. 25.

� bloss_residuals_get_lambda( om, L, lambda, ierr )

integer om, L, ierr
real*8 lambda(L)

integer L IN
Number of eigenvalues to copy.

real*8 lambda(L) OUT
Eigenvalues.

integer ierr OUT
0 on success, −1 on error.

Replace the top L elements of lambda with the eigenvalues under the residual calculation.
This is available at the BLOSS_TASK_MATMUL_A phase of bloss_do() during the residual calcula-
tion, and only for rank 0 of worker. You should allocate enough memory for lambda.

The subroutine is prepared for the one-step residual calculation. See Sec. 6.2 for the details.

5.4 Destroy context

� bloss_free( om, ierr )

integer om, ierr

integer om IN
ID of the Bloss context.

integer ierr OUT
0 on success, −1 on error.

Destroys the Bloss context associated with om. Memories allocated internally are deallocated,
so that eigenvalues and residuals become inaccessible. Externally assigned workspaces, such as
eigenvectors q, are not touched.

6 Advanced topics

6.1 Iterative refinement

After the BLOSS_HOOK_INTEGRAL hook point, you can set BLOSS_TASK_INITIALIZE (= 0) to task

and call bloss_do() to restart the Bloss procedure. The restart feature may be used for
iterative refinement. First, apply the zero-th order filter (K=1) on the initial vector V. At the
BLOSS_HOOK_INTEGRAL hook point, a set of filtered vectors is stored in the eigenvector workspace
(BLOSS_WS_EIGVECS), which can be set to V and enable restart of the Bloss procedure with
a larger K. If complete factorization is employed for the inversion, and the BLOSS_MPI_INVERT

parallel environment is set up appropriately, the LU factorization can be reused in the restarted
procedure. In this case, the cost for the refinement will be negligible.
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6.2 One-step residual calculation

During the residual calculation, bloss_do() issues BLOSS_TASK_MATMUL_A and BLOSS_TASK_MATMUL

_B tasks in sequence. To calculate the residuals at one step, you can supply Y = (λB −A)V for
the former request. The eigenvalues λ corresponding to V are available via bloss_residuals_

get_lambda(). To indicate that the residuals are calculated in the one-step manner, you should
return Y = NULL in the subsequent BLOSS_TASK_MATMUL_B task (or return idx = -1 in FOR-
TRAN). Note that, in the Rayleigh-Ritz method, BLOSS_TASK_MATMUL_* tasks are issued both
at the Rayleigh-Ritz procedure and the residual calculation. When using the one-step feature
in the Rayleigh-Ritz method, users should be careful to switch the action between them.

6.3 Non-linear eigenproblem

The Bloss package is also capable of solving non-linear λ-matrix eigenproblems. The λ-matrix
M(λ) is a matrix whose elements are regular functions of λ, and its eigenproblem is to find
eigenpairs (λ, q) that satisfy M(λ)q = 0. The λ-matrix eigenproblem can be solved by replacing
(zB − A)−1 in Eq. (1) by M(z)−1. See [4] for the theories behind this. Unfortunately, the
Rayleigh-Ritz method is not applicable, and only the moment-based method works. On running
the Bloss context, bloss_do() returns a BLOSS_TASK_INVERT request, where you should solve
M(omega)Y = V for Y. If you set BLOSS_CALC_RESIDUALS, bloss_do() issues BLOSS_TASK_MATMUL

_A and BLOSS_TASK_MATMUL_B requests, where you can utilize the one-step residual calculation
feature described in the previous section. That is, for the BLOSS_TASK_MATMUL_A request, you
should return Y = M(λ)V, and for the subsequent BLOSS_TASK_MATMUL_B request, return Y =

NULL.
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8 Conditions of use

The Bloss package is copyrighted by National Institute Advanced Industrial Science and Tech-
nology (AIST), and is licensed under the Apache License, Version 2.0. You may obtain a copy
of the License at

http://www.apache.org/licenses/LICENSE-2.0

, which is also included in the distribution. Unless required by applicable law or agreed to in
writing, software distributed under the license is distributed on an “AS IS” BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

You shall acknowledge (using following references [1] and [2]) the contribution of this package
in any publication of material dependent upon the use of the package.

References

[1] Ikegami, T., Sakurai, T. and Nagashima, U.: A filter diagonalization for generalized eigen-
value problems based on the Sakurai-Sugiura projection method, J. Comp. Appl. Math.,
Vol. 233, pp. 1927–1936 (2010).

37



[2] Ikegami, T. and Sakurai, T.: Contour integral eigensolver for non-Hermitian systems: a
Rayleigh-Ritz-type approach, Taiwanese J. Math., Vol. 14, pp. 825–837 (2010).

[3] http://www.math.sci.hiroshima-u.ac.jp/∼m-mat/MT/SFMT/index.html

[4] Ikegami, T., Sakurai, T. and Tadano, H.: Parallel eigensolver for large scale non-linear
systems, Proceedings of ICNAAM 2010, Rhodes, 2010/09/20.

38


