Group 9

J symbol (hash): \#

Monadic case:

Name: tally/count

Rank: _(infinity/unbounded) - applies to entire array
Definition: \# \mathbf{y} returns the number of the items of \mathbf{y}.
Please also include explanations for your answers to some of the following questions:
What is the result when y is a vector, or a matrix?
What is the result when y is an empty vector (e.g., \# 0\$0), or an empty matrix (e.g., \# $04 \$ 0$)?
Why is the \# $04 \$ 0$ not the same as \# $40 \$ 0$?

Dyadic case:

Abstract

Name: copy Rank: 1 (left); _(right) - applies to a vector on the left and the entire array on the right Definition (scalar x): $\mathbf{x} \# \mathbf{y}$ returns x copies of the items of y. Definition (vector \mathbf{x}): $\mathbf{x} \# \mathbf{y}$ returns xi copies of the yi items of y , where i is the position of element in x and the item in y . (In this case, the length of the vector x must be the same as the number of items in y.) If x is a complex number $a j b$, then the result is a copies of item y and b copies of the fill element. The fill element is 0 for numeric arrays, space for literal arrays, and box for box arrays.

Please also include explanations for your answers to some of the following questions:
What is the result when x is a number and y is a vector?
What is the result when x is a number and y is a matrix?
What is the result when x is a vector and y is a vector?
What is the result when x is a vector and y is a matrix?
What is the result when x is a complex number?

