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Abstract

Linguists have known that adults (and perhaps even
children) are systematic to a signi�cant degree over
the language domain. However, Connectionist models
based on feedforward and recurrent architectures have
failed to give a clear demonstration of strong system-
aticity. In this paper it is shown that these models, as
they are used in the literature, cannot in fact demon-
strate strong systematicity. Furthermore, it is argued
that the critical issue in demonstrating systematicity
is not one of concatenative/functional compositional-
ity, but one of the relationship between constructive
and deconstructive processes.

Introduction

The consistent representation and process of complex
objects, constructed from the combination of simpler
objects, is termed, Systematicity [5]. How is it that
adults behave systematically over a vast (combinato-
rial) number of sentences and concepts from relatively
few examples?

Connectionism attempts to explain systematicity
through a learning mechanism embedded in some suit-
able environment. However, the major problem facing
the Connectionist approach is determining an appro-
priate learning mechanism: one that is su�ciently un-
biased to allow the acquisition of a range of behaviours,
yet su�ciently robust to acquire a particular behaviour
from a variety of possible training sets. This problem
is well known as the bias/variance dilemma [6].

Although Connectionist models have su�cient vari-
ance to approximate most functions/behaviours with
arbitrary accuracy [9] [15], the important question, is:
do the models have su�cient bias to account for sys-
tematicity?

Previous answers to this question have been an em-
phatic No, based on philosophical arguments on the
nature of internal representations and processes [5] [4],
and statistical analyses of training sets [8]. This paper
examines this question from a computational perspec-
tive.

1 Systematicity

Systematicity is the ability to represent (systematic-
ity of representation) and infer (systematicity of infer-
ence) structurally related objects [5].

Consider, for example, a domain of objects related
by the underlying structure: Subject�V erb�Object,
where Subject is the set of unstructured objects
fBill;Mary; Johng, V erb is the set flovesg, Object
is the set fBill;Mary; Johng, and � is the cartesian
product operator generating all in-order combinations,
or 3-tuples (e.g.,Mary loves Bill and John loves Mary).

The degree by which a model is systematic of rep-
resentation can be capture by its generalization per-
formance on auto-association tasks. Within a Con-
nectionist framework, auto-association requires the in-
duction of two vector functions f and g such that,
f(s) = R[s] ^ g(R[s]) = s, where f maps an external
representation of the object s 2 \D (some structured
domain) to an internal representation R[s], and g per-
forms the reverse mapping.

Similarly, within the Subject-Verb-Object domain
for example, systematicity of inference can be mea-
sured by generalization performance on the mapping:
f(s;Qi) = xi, where Qi is the question vector request-
ing the i th component xi. For example, given the
sentence John loves Mary, and the question Who loves
?, the resulting component is John. Clearly, this task
is very simple, but it contains su�cient structure to
demonstrate the de�ciencies in Connectionist models
of structured domains. Systematicity of inference can
be considered a more general case of systematicity of
representation where some component of the complex
object is recovered rather than the whole object.

Subsequent to Fodor and Pylyshyn's work, Hadley
[8] de�ned three degrees of systematicity:

� Weak systematicity - generalization from a train-
ing set contained each possible component ap-
peared in each possible position, though not nec-
essarily each possible combination of components;

� Quasi-systematicity - an extension of weak sys-
tematicity to sentences with embedded sentences



where the enclosed and embedded sentences are
structurally isomorphic; and

� Strong systematicity - an extension of weak sys-
tematicity where it is not necessary for the train-
ing set to contain components in all possible po-
sitions.

For example, a model that has only seenMary in the
Subject position, somewhere in the training set, and
that generalizes to cases where Mary is in the Object
position, is strongly systematic. Hadley's strong sys-
tematicity applies equally to systematicity of repre-
sentation and systematicity of inference, and clearly,
Fodor and Pylyshyn intended that cognitive systems
were at least strongly systematic in Hadley's sense.
Quasi-systematicity is relevant to recursive struc-

tures so need not be of concern here. (See also [12]
for further de�nitions.) The important point is that
Connectionist models have not demonstrated strong
systematicity [8]. A statistical analysis of the training
sets for models based on the recurrent network archi-
tecture, showed that in all likelihood each component
would have appeared in each position. Consequently,
there has not been a clear demonstration of strong
systematicity.
In the next two sections, the feedforward and re-

current networks are examined to determine whether
they can in fact demonstrate strong systematicity with
respect to representation and inference.

2 Systematicity of representa-

tion

Previous studies demonstrating structured processing
by feedforward networks showed a very high degree
of generalization on the auto-association of N-tuples
[2] [13]. Of importance here, is whether the degree of
generalization quali�es as strong systematicity.
The input/output representation of tuples in [2] was

such that one input unit for each component in each
position indicated the component's presence or ab-
sence in that position of the tuple. For the Subject-
Verb-Object domain this scheme requires 3 + 1 + 3
(totaling 7) input units to represent all possible tu-
ples. At the output layer, each hyperplane must sepa-
rate tuples represented in hidden unit activation space
into two groups: those tuples that contain the corre-
sponding component-position (e.g., John in Subject

position), and those where this combination is absent.
To demonstrate strong systematicity there must be

at least one component in one of the positions (e.g.,
John in Subject position) that does not appear in the
training set. With respect to the John-Subject hyper-
plane, in this case, there only exists one type of point

in the training set (i.e., John not in Subject position).
Consequently, the training set provides no information
to discriminate between the presence and absence of
John in the Subject position. Since the orientation
of this hyperplane is independent of all other hyper-
planes, the network cannot be expected to generalize
to tuples with the John-Subject component. This re-
sult, of course, applies regardless of the number of pos-
sible values in the subject (or object) position. Thus,
the feedforward architecture (as used in [2]) cannot
demonstrate strong systematicity.
In [13], the tuples at the output layer were repre-

sented using a block encoding scheme [1]. That is,
within each group of output units associated with
a given position, 50% were on consecutively, with
wraparound, and the rest o�. Components di�ered
from each other by a right-shift operation on the repre-
sentation. This encoding scheme, however, introduces
a priori an ordering over components [1]. In which
case, strong systematicity may be possible, but as a
consequence of word level structure (similarity). Sys-
tematicity, however, is a property at the sentence level
of structure, not the word level [5]. Therefore this
work cannot be considered as a valid demonstration of
strong systematicity.
The lack of strong systematicity is because the

weights that map the subject component from the in-
put to the hidden, and from the hidden to the output
are independent of the weights that perform a similar
mapping for the object component.
Dependency can be introduced by tying these

weights so that the update of one weight enforces an
update of its tied weight. This technique has been
used to introduce translational invariance for optical
character recognition. An alternative approach is to
use a recurrent network where components are pre-
sented one per time step. Thus dependency is a nat-
ural consequence of the architecture. Although either
approach may address systematicity of representation,
in the next section it is shown that they cannot address
systematicity of inference.

3 Systematicity of inference

Recurrent networks, used to demonstrate generaliza-
tion over structured domains (e.g., the architectures of
Elman [3], Jordan [10], and Pollack [14]), all share a
common feature. That is, they all additively combine
some non-linear transformation of representations at
the input and context layers. It is argued that this
feature prevents these architectures from demonstrat-
ing strong systematicity.
The argument proceeds by �rst describing an infer-

ence task, and then showing that the network can-
not represent a solution to this task with a single hy-



perplane per component at the hidden layer. Con-
sequently, it is argued that the network cannot be
strongly systematic.
The task used is a simpli�ed version of the infer-

ence task described in section 1, so that there are just
two possible components x and y, and one implicit bi-
nary relation (i.e., the name of which is not actually
presented to the network). The simpli�ed task is to
acquire the mapping:

f(R[(x; y)];Q1)! x

f(R[(x; y)];Q2)! y

f(R[(y; x)];Q1)! y

f(R[(y; x)];Q2)! x

where R[(x; y)] is a representation of the binary re-
lation (x; y), and Q1 and Q2 are the question vectors,
requesting the �rst and second arguments respectively,
and f is the function that implements the mapping.
In order to recover one of the components, say x,

by a single hyperplane at the hidden layer, the hyper-
plane must be positioned so as to satisfy the following
equations:

WI : ~Q1 +WC : ~R
C
x;y + ~B > 0 (1)

WI : ~Q2 +WC : ~R
C
x;y + ~B < 0 (2)

WI : ~Q1 +WC : ~R
C
y;x + ~B > 0 (3)

WI : ~Q2 +WC : ~R
C
y;x + ~B < 0 (4)

where ~RC
x;y is the vector representation at the con-

text layer of the binary relation (x; y). Q1 and Q2 are
the representations of the question vectors at the in-
put layer. Subtracting equation (2) from equation (1),
and equation (4) from equation (3) leaves:

WI :( ~Q1 � ~Q2) > 0 (5)

WI :( ~Q2 � ~Q1) > 0 (6)

Since there does not exist a weight matrix which sat-
is�es both equations (5) and (6), the network cannot
represent the solution with a single hyperplane for each
component. Consequently, there requires at least two
hyperplanes per component at the hidden layer, where
one plane discriminates between an x in the �rst posi-
tion and all other points, and a second plane discrimi-
nates between an x in the second position and all other
points. A third hyperplane at the next layer, combines
the results of the two hyperplanes at the hidden layer.
The positioning of the third hyperplane is dependent
on the positioning of the hyperplanes at the hidden
layer, which in turn, can only be positioned correctly
when each of these planes has seen at least one point

from each of the two classes they discriminate. That
means, at least one point where x is in the �rst posi-
tion, and one point where x is in the second position.
This reasoning applies so long as there are at least two
possible components in each position. Therefore, the
network cannot demonstrate strong systematicity.
This result is fairly general in that it holds regard-

less of the representation of the question vectors, or the
binary relation, and whatever (non)linear transforma-
tions may be applied to the representations before they
are additively combined. Consequently, the result also
applies to the feedforward network.
The limitation of the result is that it applies to net-

works where information from the input and context
spaces is brought together primarily under addition,
and extracted by hyperplanes. It does not apply for
example, to networks where representations from the
input and context are multiplied (e.g., [7]). However,
in the next section, it is argued that it is not the mode
combination, nor extraction, in itself, that is the criti-
cal issue, but the relationship between these two func-
tions.

4 Structure sensitivity

Since van Gelder's [17] distinction between two
types of compositionality: concatenative and func-
tional, Connectionists have believed that Fodor and
Pylyshyn's [5] contention (of structure sensitivity) can
be circumvented by functional compositionality. How-
ever, in what follows is an outline of an argument sug-
gesting that the functional/concatenative distinction
is a tangential issue.
Consider two constructive functions, concat (whose

mode of construction is concatenation) and multi

(whose mode of construction is multiplication), for ex-
ample:
concat (JOHN, ELSON) ! JOHNELSON

multi (3, 4) ! 12.
Now consider the two associated deconstructive func-
tions, decat and factor which must extract the
components from the compositional representation.
In both cases, the decomposition is ambiguous.
JOHNELSON could be decomposed into JOHN

and ELSON, or JOH and NELSON. Possible de-
compositions of 12 are (3, 4), (11, 1), or even (1, 2).
The ambiguity in determining the components of

a complex representation arises because the explicit-
ness of a component within a representation is rel-
ative to the deconstructive process [11]. The repre-
sentation 12, in itself, does not restrict the possible
decompositions. This illustration is e�ectively Fodor
and McLauglin's [4] point as to why Smolensky's [16]
tensor representational system, in itself, does not guar-
antee structure sensitivity. The deconstruction process



must know about the mode of construction.

However, in addition to this point, a constructive
function (such as concat and multi) must map each
distinct pair to a unique represention. This condition
can be achieved with concat by requiring a space be-
tween the two components, and with multi by mul-
tiplying the second component by a su�ciently large
factor. However, the point is that there are an in�-
nite number of such schemes, and therefore an in�nite
number of possible deconstruction functions. To en-
sure systematicity, the class of such functions must be
restricted, or in other words, the network must be bi-
ased so as to enforce this restriction.

Clearly, appropriate biases are contingent on the
modes of construction. However, the results of this
paper suggest that merely making available a su�-
ciently expressive function class does not guarantee
such structural properties as systematicity. An impor-
tant step in the development of more powerful Con-
nectionist models is the characterization of biases that
enforce such properties.
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