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1 Introduction

When, in 1909, physicists Hans Geiger and Ernest Marsden fired charged
particles into gold foil, they observed that the distribution of deflections
followed an unexpected pattern. This pattern afforded an important insight
into the nature of atomic structure. Analogously, when cognitive scientists
probe mental ability, they note that the distribution of cognitive capacities
is not arbitrary. Rather, the capacity for certain cognitive abilities correlates
with the capacity for certain other abilities. This property of human cogni-
tion is called systematicity, and systematicity provides an important clue
regarding the nature of cognitive architecture: the basic mental processes
and modes of composition that underlie cognition—the structure of mind.

Systematicity is a property of cognition whereby the capacity for some
cognitive abilities implies the capacity for certain others (Fodor and Pyly-
shyn 1988). In schematic terms, systematicity is something's having cogni-
tive capacity ¢, if and only if it has cognitive capacity ¢; (McLaughlin 2009).
An often-used example is one’s having the capacity to infer that John is
the lover from John loves Mary if and only if one has the capacity to infer
that Mary is the lover from Mary loves John.

What makes systematicity interesting is that not all models of cognition
possess it, and so not all theories (particularly, those theories deriving
such models) explain it. An elementary theory of mind, atomism, is a case
in point: on this theory, the possession of each cognitive capacity (e.g.,
the inferring of John as the lover from John loves Mary) is independent
of the possession of every other cognitive capacity (e.g., the inferring
of Mary as the lover from Mary loves John), which admits instances of
having one capacity without the other. Contrary to the atomistic theozy,
you don't find (English-speaking) people who can infer John as the lover
(regarding the above example) without being able to infer Mary as the lover
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(Fodor and Pylyshyn 1988). Thus, an atomistic theory does not explain
systematicity.

An atomistic theory can be augmented with additional assumptions so
that the possession of one capacity is linked to the possession of another.
However, the problem with invoking such assumptions is that any pair of
capacities can be associated in this way, including clearly unrelated capaci-
ties such as being able to infer John as the lover and being able to compute
27 as the cube of 3. Contrary to the augmented atomistic theory, there are
language-capable people who do not understand such aspects of number.
In the absence of principles that determine which atomic capacities are
connected, such assumptions are ad hoc—"free parameters,” whose sole
justification is to take up the explanatory slack (Aizawa 2003).

Compare this theory of cognitive capacity with a theory of molecules
consisting of atoms (core assumptions) and free parameters (auxiliary
assumptions) for arbitrarily comhining atoms into molecules. Such auxil-
iary assumptions are ad hoc, because they are sufficiently flexible to
account for any possible combination of atoms (as a data-fitting exercise)
without explaining why some combinations of atoms are never observed
(see Aizawa 2003 for a detailed analysis).

To explain systematicity, a theory of cognitive architecture requires a
(small) coherent collection of assumptions and principles that determine
only those capacities that are systematically related and no others. The
absence of such a collection, as an alternative to the classical theory
(described below), has been the primary reason for rejecting connectionism
as a theory of cognitive architecture (Fodor and Pylyshyn 1988; Fodor and
McLaughlin 1990).

The classical explanation for systematicity posits a cognitive architec-
ture founded upon a combinatorial syntax and semantics. Informally, the
common structure underlying a coilection of systematically related cogni-
tive capacities is mirrored by the common syntactic structure underlying
the corresponding collection of cognitive processes. The common semantic
structure between the John and Mary examples (above} is the loves relation.
Correspondingly, the common syntactic structure involves a process for
tokening symbols for the constituents whenever the complex host is
tokened. For example, in the John loves Mary collection of systematically
related capacities, a common syntactic process may be P — Agent loves
Patient, where Agent and Patient subsequently expand to John and Mary.
Here, tokening refers to instantiating both terminal (no further processing)
and nonterminal (further processing) symbols. The tokening principle
seems to support a much needed account of systematicity, because all

A Category Theory Explanation for Systematicity 229

capacities involve one and the same process; thus, having one capacity
implies having the other, assuming basic capacities for representing con-
stituents John and Mary. :

Connectionists, too, can avail themselves of an analogous principle. In
neural network terms, computational resources can be distributed between
task-specific and task-general network components (e.g., weighted connec-
tions and activation units) by a priori Specification and/or learning as a
form of parameter optimization. For instance, an intermediate layer of
weighted connections can be used to represent commeon components of a
series of structurally related tasks instances, and the outer connections (the
input—output interface) provide the task-specific components, so that the
capacity for some cognitive function transfers to some other related func-
tion, even across completely different stimuli (see, e.g., Hinton 1990).
Feedforward (Rumelhart, Hinton, and Williams 1986), simple recurrent
(Elman 1990), and many other types of neural network models embody a
generalization principle (see, e.g., Wilson, Marcus, and Halford 2001). In
connectionist terms, acquiring a capacity (from training examples) trans-
fers to other capacities (for testing examples).

Beyond the question of whether such demonstrations of systematicity,
recast as generalization (Hadley 1994), correspond to the systematicity of
humans (Marcus 1998; Phillips 1998), there remains the question of articu-
lating the principle from which systematicity (as a kind of generalization)
is a necessary, not just possible consequence. To paraphrase Fodor and
Pylyshyn (1988), it is not sufficient to simply show existence—that there
exists a suitably configured model realizing the requisite capacities; one
also requires uniqueness—that there are no other models not realizing the
systematicity property. For if there are other such configurations, then
further (ad hoc) assumptions are required to exclude them. Existence/
uniqueness is a recurring theme in our explanation of systematicity.

Note that learning, generally, is not a principle that one can appeal to
as an explanation of systematicity. Learning can afford the acquisition of
many sorts of input-output relationships, but only some of these corre-
spond to the required systematic capacity relationships. For sure, one can
construct a suitable set of training examples from which a network acquires
one capacity if and only if it acquires another. But, in general, this principle
begs the question of the necessity of that particular set of training exam-
ples. Connectionists have attempted to ameliorate this problem by showing
how a network attains some level of generalization for a variety of training
sets. However, such attempts are far from characteristic of what humans
actually get exposed to.
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Some authors have claimed to offer “alternative” nonclassical compo-
sitionality methods to meet this challenge whereby complex entities are
tokened without tokening their constituents. The tensor product network
formalism (Smolensky 1990) is one (conmnectionist} example. Another
(nonconnectionist) example is Godel numbering (van Gelder 1990).
However, it’s unclear what is gained by this notion of nontokened com-
positionality (see Fodor and McLaughlin 1990). For example, any set of
localized orthonormal vectors (a prima facie example of classical tokening)
can be made noniocal (i.e., nonclassical, in the above sense) with a
change of basis vectors. Distributed representations are seen as more robust
against degradation than local representations—the loss of a single unit
does not result in the loss of an entire capacity. In any case, the local-
distributive dimension is orthogonal to the classical-nonclassical tokening
dimension—a classical system can also be implemented in a distributed
manmner simply by replicating representational resources.

Classicists explicitly distinguish between their symbols and their imple-
mentation via a physical instantiation function (Fodor and Pylyshyn 1988,
n. 9). Though much has been made of the implementation issue, this
distinction does not make a difference in providing a complete explanation
for systematicity, as we shall see. Nonetheless, the implementation issue is
important, because any explanation that reduces to a classical one suffers
the same limitations. We mention it because we alsc need to show that
our explanation (presented shortly) is not classical—nor connectionist {(nor
Bayesian, nor dynamicist), for that matter.

The twist in this tale of two theories is that classicism does not provide
a complete explanation for systematicity, either, though classicism argu-
ably fares better than connectionism (Aizawa 2003). That the classical
explanation also falls short seems paradoxical. After all, the strength of
symbol systems is that a small set of basic syntax-sensitive processes can
be recombined in a semantically consistent manner to afford all sorts of
systematically related computational capacities. Combinatorial efficacy
notwithstanding, what the classical theory fails to address is the many-to-
many relationship between syntax and computational capacity: more than
one syntactic structure gives rise to closely related though not necessarily
identical groups of capacities. In these situations, the principle of syntactic
compositionality is not sufficient to explain systematicity, because the
theory leaves open the (common) possibility of constructing classical cog-
nitive models possessing some but not all members of a collection of
systematically related cognitive capacities (for examples, see Aizawa 2003;
Phillips and Wilson 2010, 2011, 2012). For instance, if we replace the
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production P —» Agent Ioves Patient with productions P, — Agent loves John
and P, — John loves Patient, then this alternative classical system no longer
generates the instance Mary loves Mary. The essential challenge for classi-
cism echoes that for connectionism: explain systematicity without exclud-
ing models admitted by the theory just because they don’t support all
systematically related capacities—why are those models not realized (cf.:
why don't some combinations of atoms form molecules)?

So far, none of the major theoretical frameworks in cognitive sclence—
classicist, connectionist, Bayesian, nor dynamicist—has provided a theory
that fully explains systematicity. This state of affairs places cognitive
science in a precarious position—akin to physics without a theory of
atomic structure: without a stable foundation on which to build a theory
of cognitive representation and process, how can one hope to scale the
heights of mathematical reasoning? In retrospect, the lack of progress on
the systematicity problem has been because cognitive scientists were
working with “models” of structure (i.e., particular concrete implementa-
tions), where systematicity is a possible consequence, rather than “theories”
of structure from which systematicity necessarily follows. This diagnosis led
us (Phillips and Wilson 2010, 2011, 2012} to category theory (Eilenberg and
Mac Lane 1945; Mac Lane 2000), a theory of structure par excellence, as
an alternative approach to explaining systematicity.

The rest of this chapter aims to be, as much as possible, an informal,
intuitive discussion of our category theory explanation as a complement

_-to the formal, technical details already provided (Phillips and Wilson 2010,

2011, 2012). To help ground the informal discussion, though, we also
include some standard formal definitions (see Mac Lane 2000 for more
details) as stand-alone text, and associated commutative diagrams, in which
entities (often functions) indicated by paths with the same start point and
the same end point are equal. An oft-cited characteristic feature of category
theory is the focus on the directed relationships between entities (called
arrows, morphisms, or maps) instead of the entities themselves—in fact,
categories can be defined in arrow-only terms (Mac Lane 2000). This
change in perspective is what gives category theory its great generality. Yet,
category theory is not arbitrary—category theory constructs come with
formally precise conditions (axioms) that must be satisfied for one to avail
oneself of their computational properties. This unique combination of
abstraction and precision is what gives category theory its great power.
However, the cost of taking a category theory perspective is that it may
not be cbvious how category theory should be applied to the problem at
hand, nor what benefits are afforded when doing so. Hence, our purpose
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in this chapter is threefold: (1) to provide an intuitive understanding of
our category theory explanation for systematicity; (2) to show how it
differs from other approaches; and (3) to discuss the implications of this
explanation for the broader interests of cognitive science.

2 What Is Category Theory?

Category theory was invented in the mid-1940s (Eilenberg and Mac Lane
1945) as a formal means for comparing mathematical structures. Originally
it was regarded as a formal language for making precise the way in which
two types of structures are to be compared. Subsequent technical develop-
ment throughout the twentieth century has seen it become a branch of
mathematics in its own right, as well as placing it on a par with set theory
as a foundation for mathematics (see Marquis 2009 for a history and phi-
losophy of category theory). Major areas of application, outside of math-
ematics, have been computer science (see, e.g., Arbib and Manes 1975; Barr
and Wells 1990) and theoretical physics (see, e.g., Baez and Stay 2011;
Coecke 2006). Category theory has also been used as a general conceptual
tool for describing biological (Rosen 1958) and neural/cognitive systems
{Ehresmann and Vanbremeersch 2007), yet applications in these fields are
relatively less extensive. .

Category theory can be different things in different contexts. In the
abstract, a category is just a collection of objects (often labeled A, B, ...), a
collection of arrows (often labeled f; g, ...) between pairs of objects (e.g.,
f:A— B, where A is called the domain and B the codomain of atrow f},
and a composition operator (denoted ) for composing pairs of arrows into
new arrows (e.g., fog=h), all in a way that satisfies certain basic rules
(axioms). When the arrows are functions between sets, the composition is
ordinary composition of functions, so that (f o g}(x) = f{g(x)). To be a cat-
egory, every object in the collection must have an identity arrow (often
denoted as 1, : A — A); every arrow must have a domain and a codomain
in the collection of objects; for every pair of arrows with matching codo-
main and domain objects there must be a third arrow that is their composi-
tion (i.e., if f: A—> Band g: B— C, then gof : A— C must also be in the
collection of arrows); and composition must satisfy associafivity, that is,
(hog)ef =he(gef), and identity, that is, 1z o f = f = f = 1,, laws for all arrows
in the collection. Sets as objects and functions as arrows satisfy all of this:
the resulting category of all (“small”} sets is usually called Set. In this
regard, category theory could be seen as an algebra of arrows (Awodey
2006).
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For a formal (abstract) category, the objects, arrows, and composition
operator need no further specification. A simple example is a category
whose collection of objects is the set {4,B} and collection of arrows is the
set {l,:A—> A,1;:B—>B,f:A— B, g:B— Al Since there are no other
arrows in this category, compositions feg=1, and gef =1 necessarily
hold. Perhaps surprisingly, marny important results pertain to this level and
hence apply to anything that satisfies the axioms of a category.

Tor particular examples of categories, some additional information is
provided regarding the specific nature of the objects, arrows, and composi-
tion. Many familiar structures in mathematics are instances of categories.
For example, a partially ordered set, also called a poset, (P,<) is a category
whose objects are the elements of the set P, and arrows are the order rela-
tionships @ < b, where a4, b € P. A poset is straightforwardly a category,
since a partial order < is reflexive (i.e., a £ a, hence identities} and transitive
(i.e., @ £ b and b < c implies a < ¢, hence composition is defined). Checking
that identity and associativity laws hold is also straightforward. The objects
in a poset considered as a category have no internal parts. In other catego-
ries, the objects may also have internal structure, in which case the arrows
typically preserve that structure. For instance, the category Pos has posets
now considered as objects and order-preserving functions for arrows, i.e.,
a < b implies f{a) < fib). For historical reasons, the arrows in a category may
also be called morphisms, homomorphisms, or maps ot functions when spe-
cifically involving sets.

Definition (Category). A category C consists of a class of objects |C|={4, B,
...}; and for each pair of object A, B in C, a-set C(A,B) of morphisms (also
calied arrows, or maps) from A to B where each morphism f: A— Bhas A
as its domain and B as its codomain, including the identity morphism
1,: A — A for each object A; and a composition operation, denoted ¢, of
morphisms f:A— B and g: B — C, written gof : A— C that satisfies the
laws of: ‘

» identity, where f o1y =f =1gf, forall f : A— B; and

» associativity, where (Hog)of =ho(gef), for all f:A— B, §:B—>C and
h:C—D. :

Int the context of computation, a category may be a collection of types for
objects and functions (sending values of one type to values of another, or
possibly the same, type) for arrows, where composition is just composition
of functions. In general, however, objects need not be sets, and arrows need
not be functions, as shown by the first poset-as-a-category example. For
our purposes, though, it will often be helpful to think of objects and arrows
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as sets and functions between sets. Hence, for cognitive applications, one
can think of a category as modeling some cognitive (sub)system, where an
object is a set of cognitive states and an arrow is a cognitive process
mapping cognitive states.

2.1 “Natural” Transformations, Universal Constructions

To a significant extent, the motivations of category theorists and cognitive
scientists overlap: both groups aim to establish the principles underlying
particular structural relations, be they mathematical structures or cognitive
structures. In this regard, one of the central concepts is a natural transfor-
mation between structures. Category theorists have provided a formal
definition of “natural,” which we use here, This definition builds on the
concepts of functor and, in tarn, category. We have already introduced the
concept of a category. Next we introduce functors before introducing
natural transformations and universal constructions.

Functors are to categories as arrows (morphisms) are to objects. Arrows
often preserve internal object structure; functors preserve category struc-
ture (i.e., identities and compositions). Functors have an object-mapping
component and an arrow-mapping component.

Definition (Functor). A functor F:C — D is a map from a category C to a
category D that sends each object A in C to an object F(A) in D; and each
motphism f:A— B in C to a morphism F(f): F(A) - F(B) in D, and is
structure-preserving in that F(l1.)= 1. for each object A in C, and
F(goc f)=F(g)ep F(f) for all morphisms f : A~ B and g: B~ C, where oc
and °p are the composition operators in C and D.

There is an intuitive sense in which some constructions are more natural
than others. This distinction is also important for an explanation of sys-
tematicity, as we shall see. The concept of a natural transformation makes
this intuition formally precise.

Natural transformations are to functors as functors are to categories. We
have already seen that functors relate categories, and similarly, natural
transformations relate functors. Informally, what distinguishes a natural
transformation from some arbitrary transformation is that a natural trans-
formation does not depend on the nature of each object A. This indepen-
dence is also important for systernaticity: basically, the cognitive system
does not need to know ahead of time all possible instances of a particular
transformation.
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F(4) 2> G(4)

F(f)l lG(f)

F(B) =z G(B)

Figure 9.1
Commutative diagram for natural transformation.

X ¥ . F(B) 1|B
]
| (k) kIl
\\ ¥ ¥
F(Y) v
Figure 9.2

Commutative diagram fot universal construction.

Definition (Natural transformation). A natural transformation n:F—> G
between a domain functor F:C — D and a codomain functor G:C— D
consists of D-maps 7, : F(A) > G(A) for each object A in C such that
G(f)ona = nz=F(f). (See figure 9.1.)

For the purpose of explaining systematicity, we need something more than
just that constructions are natural in this sense; constructions are also
required to be universal, in a technical sense to be introduced next. A uni-
versal construction is basically an arrow that is “part” of every arrow in
the category that models the (cognitive) domain of interest.

Definition (Universal construction). Given an object X € [C| and a functor
F:B — C, a couniversal morphism from X to F is a pair (B, '¥) where B is an
object of B, and ¥ is a morphism in C, such that for every object ¥ € |B|
and every morphism f : X — F(Y), there exists a unique morphismk: B =Y
such that F(k)ow = f. (See figure 9.2.)

A universal construction is either a couniversal morphism, or (its dual) a
universal morphism (whose definition is obtained by reversing all the
arrows in the definition of “couniversal”). 7

At first it may not seem obvious how universal constructions are related
to matural transformations. Note that, given a category of interest D and
an object X in D, X corresponds to a constant functor X : C — D from an
arbitrary category C to the category of interest I, where functor X sends
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every object and arrow in C to the object X and identity 1, in D, thus
yielding a natural transformation 7: X — F.

3 Systematicity: A Category Theory Explanation

All major frameworks assume some form of compositionality as the basis
of their explanation for systematicity. In the classical case, it's syntactic;
for the connectionist, it's functional (as we have already noted in section
1). In both cases, systematic capacity is achieved by combining basic pro-
cesses. However, the essential problem is that there is no additional con-
straint to circumscribe only the relevant combinations. Some combinations
are possible that do not support all members of a specific collection of
systematically related capacities. So, beyond simply stipulating the accept-
able models (i.e., those consistent with the systematicity property), addi-
tional principles are needed to further constrain the admissible models.

Our category theory explanation also relies on a form of compositional-
ity, but not just any form. The additional ingredient in our explanation is
the formal category theory notion of a universal construction. The essen-
tial point of a universal construction is that each and every member of a
collection of systematically related cognitive capacities is modeled as a
morphism in a category that incorporates a common universal morphism
in a unique way. From figure 9.2, having one capacity f; : A — F(Y]) implies
having the common universal morphism w : X — F(B), since fi = F(k)ow.
And, since the capacity-specific components F(k)) are uniquely given (con-
structed) by functor F: B — C, and the atrows k, in B, one also has capacity
f2 1 A= F(Y,), since f; = F(k;)ow. That is, all capacities (in the domain of
interest) are systematically related via the couniversal morphism w. Our
general claim is that each collection of systematically related capacities is
an instance of a universal construction. The precise nature of this universal
morphism will depend (of course) on the nature of the collection of sys-
tematically related capacities in question. In this section, we illustrate
several important examples.

3.1 Relations: (Fibered) Products

We return to the John loves Mary example to illustrate our category theory
explanation. This and other instances of relational systematicity are cap-
tured by a categorical product (Phillips and Wilson 2010). A categorical
product provides a universal means for composing two objects (A and B)
as a third object (P) together with the two arrows (p: and p;) for retrieving
information pertaining to A and B from their composition P. The require-

A Category Theory Explanation for Systematicity 237

Figure 9.3
Commutative diagram for product.

ment that such a construction be universal is critical for explaining the
systematicity property. :

Definition (Product). A product of objects A and B in category C is an object
P (also denoted AxB) together with two morphisms (sometimes called
projections) pi:P— A and p, : P — B, jointly expressed as (P, pi, p2) such
that for every object Z e |C| and pair of morphisms z,: Z - Aandz;: Z — B
there exists a unique morphism #: Z — P, also denoted (z;, z;}, such that
Zy= pyou and z, = P, ou. (See figure 9.3).

Suppose A and B correspond to the set of representations for the possible
agents and patients that can partake in the loves relation, which includes
instances such as John loves Mary and Mary loves John, and the product
object P, which is the Cartesian product AxB (in the case of products of
sets, as in this example), corresponds to the representations of those rela-
tional instances. Then any requirement to extract components A (B) from
some input Z necessarily factors through p(p.} uniquely.

As a universal construction, products are constructed from the product
functor. Informally, the product functor sends pairs of objects (4, B) to the
product object AxB and pairs of arrows (f; g) to the product arrow fxg. In
this way, all possible combinations must be realized. The universality
requirement rules out partial constructions, such as a triple {Q, 41, g2) where
the object Q contains just three of the four possible pair combinations of
John and Mary (and g1 and g, return the first and second item of each pair),
because this triple does not make the associated diagram (see figure 9.3)
commute. Thus, o further assumptions are needed to exclude such cases,
in contrast with the classical (or connectionist) explanation, which admits
such possibilities.

One can think of the product functor as a way of constructing new
wholes (i.e., AxB) from parts (4, B). The product functor is seen as the
“conceptual inverse” to the diagonal functor which makes wholes into parts
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by making copies of each object and morphism: that is, object A and mor-
phism fare sent to pairs (4, A) and (f, f). Together, diagonal and product
functers constitute an adjunction, a family of universal constructions (Mac

* Lane 2000). Adjunctions are important to our explanation of systematicity
because they link representation and access {(inference) without relying on
the assumption that such processes be compatible. A classical explanation
simply assumes compatibility between syntactically compositional repre-
sentations and the processes that operate on them. Yet, as we've seen, there
is more than one way of syntactic composition, and not all of them
support systematicity. By contrast, in our category theory explanation, the
commutativity property associated with an adjunction enforces compati-
bility (Phillips and Wilson 2010, 2011).

‘We further contrast our explanation with a proposed alternative illus-
trated by Gddel numbering (van Gelder 1990). This scheme depends on
careful construction of a suitable transformation function that depends on
the values of all possible elements (past, present, and future} that can
partake in the relation. However, in general, a cognitive system cannot
have knowledge of such things. At best, a cognitive system can update a
set of representations to accommodate new Instances to maintain correct
transformation. But such allowances admit nonsystematicity: at the point
prior to update, the cognizer is in a state of having some but not all sys-
tematically related capacities. Thus, such schemes do not account for
systematicity.

Products address systematic capacity where there is no interaction
between constituents A and B. Another case addresses quasi systematicity,
where capacity extends to some but not all possible combinations of con-
stituents. In this sitvation, the interaction between A and B is given by
two artows f : A— Cand g : B — C to a common (constraint) object C. The
universal construction for this situation is called a pullback (or fibered
product, or constrained product). The explanation for systematicity in this
case essentially parallels the one given for products: replace product with
pullback (see Phillips and Wilson 2011},

3.2 Recursion: F-(co)algebras

Our explanation for systematicity with regard to recursive domains also
employs a universal construction, albeit with a different kind of functor,
called an endofinctor, where the domain and codomain are the same cat-
egory (Phillips and Wilson 2012), hence its importance for recursion. A
motivating example is that the capacity to find the smallest item in a list
implies the capacity to find the largest item, assuming a basic capacity for
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distinguishing the relative sizes of items. For example, you don't find
people who can select the lowest card from a deck without being able to
select the highest card, assuming they understand the relative values of
cards. Yet, classical theory admits recursive and nonrecursive composi-
tional methods, for realizing these two capacities, without there being any
common component processes. If one capacity is realized by a recursive
method and the other by a nonrecursive method, then the two capacities
are not intrinsically connected in any way—the tokening principle on
which classical theory depends is no longer in play. Thus, classical theory

‘also fails to fully explain systematicity with regard to recursively definable

capacities (Phillips and Wilson 2012).

In recent decades, computer scientists have turmned to category theory
to develop a systematic treatment of recursive computation (see, e.g., Bird
and Moor 1997). We have adapted this theory for an explanation of sys-
tematicity in regard to recursive cognitive capacities. Conceptually, recur-
sive capacities are decomposed into an invariant component, the recurrent
part, and a variant component, with the capacity-specific computation
taking place at each iterative step. The invariant component corresponds
to the underlying recursive data structure (e.g., stepping through a deck of
cards) underpinning the group of systematically related capacities. The
variant component corresponds to the computation at each step (e.g,
comparing cards for the smaller or larger card). In category theory terms,
every recursive capacity is an algebra, called an F-gigebra, built using an
endofuncter F. Under very general conditions, a category of such F-algebras
has a universal construction called an initial F-algebra, and hence provides
an explanation for systematicity with regard to recursive capacities.

Definition (F-algebra, initial algebra, catamorphism). For an endofunctor
F:C — C, an F-algebra is a pair (A,a), where A is an object and a: F(A) — A
is a morphism in C.

An initial algebra (A, in) is an initial object in the category of F-algebras
Alg(F). That is, in: F(A) — A is a morphism in C, and there exists a unique
F-algebra homomorphism from (4, in} to every F-algebra in Alg(F).

A catamorphism h:(A,in) — (B, ) is the unigue F-algebra homomorphism
from initial F-algebra (4, in) to F-algebra (B,). That is, hein= Bo F(h) and
the uniquely specified & for each such is denoted cata (i.e., h = cata). (See
figure 9.4.)

The dual constructions: F-coalgebra, final coalgebra, and anamorphism are
also used to explain related instances of systematicity (see Phillips and
Wilson 2012 for details).
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F(a) 24
F(cata ﬁ)l cata 8
F(B)——B

Figure 9.4
Commutative diagram for catamorphism.

In each case, the recursive capacity depends only on the common arrow
in: F(A) - Aand the unique arrow cataf : A — B (see figure 9.4). In outline,
searching for the smallest number in a list of numbers is given by fold(e,
lower) 1, where fold is the common recursive part, (e, lower) is the task-
specific component, == applies to empty lists, lower returns the lower of two
numbers, and / is a list of numbers. For example, fold(0, lower)[3,2,5] =
lower(3, lower(2, lower(5, «=))) = 2. Searching for the largest number in a list
is given by fold(0, higher) I, where (0, higher) is the task-specific component,
0 applies to empty lists, and higher returns the higher of two numbets. For
example, fold(0, higher)[3,2,5] = higher(3, higher(2, higher(5, 0))) = 5.

4 Category Theory in Context

The abstract and abstruse nature of category theory may make it difficult
to see how our explanation relates to other theoretical approaches, and
how if should make contact with a neural level of analysis. For all of the
theoretical elegance of category theory, constructs must also be realizable
by the underlying brain system. The relationship between our category
theory explanation and a classical or connectionist one is analogous to the
relationship between, say, an abstract and concrete specification of a group
in mathematics: particular classical or connectionist architectures may be
models of our theory. Here, we sketch some possibilities.

4.1 Classical Models

Qur category theory explanation overlaps with the classical one in the
sense that the common constituent of a collection of complex cognitive
capacities is “tokened” (i.e., imparted or executed) whenever each complex
cognitive capacity is. Notice, however, that tokening in the category theory
sense is the tokening of arrows, not objects; analogously, tokening is of
processes, not symbols. Classical systems also admit symbols as processes.
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Nonetheless, our explanation goes significantly beyond the classical one
in that we require not just any arrow, but rather, an arrow derived from a
universal construction. Thus, no further assumptions are required to guar-
antee that each and every capacity is uniquely constructed from it. More-
over, the virtue of this arrow-centric perspective is that, contra classicism,
our explanation extends io nonsymbolic domains, such as visual cogni-
tion, without further adjustment to the theory.

Universal constructions such as adjunctions and F-(co)algebras as the
basis for a theory of cognitive architecture are unique to our theory, and
go significantly beyond the widespread use of isomorphism (cf. analogy
models, including Suppes and Zinnes 1963; Halford and Wilson 1980} in
cognitive science generally. From a category theory perspective, two
systems that are isomorphic are essentially the “same” up to a change of
object and arrow labels. An adjunction i$ more general and potentially
more useful: two systems (involving different sorts of processes) in an
adjoint relationship need not be isomorphic, while still being in a system-
afic relationship with each other.

4.2 Nonclassical Models

For conciseness, we treat connectionist and Bayesian models in the same
light, despite some significant advances in Bayesian modeling (see, e.g.,
Kemp and Tenenbaum 2008). By regarding connectionist and Bayesian
networks as graphs (with additional structure), one could consider a cat-
egory of such graphs as objects and their homomeorphisms as morphisms.
That additional structure could include “coloring” graph nodes to distin-
guish corresponding input, output and internal network activation units,
and functions corresponding to propagation of network activity. The cat-
egory Grph of graphs and graph homomorphisms has products, suggesting
that a suitable category of graphs with additional structure can be devised
that also has products. In these cases, systematicity is realized as a functor
from the product (as a category) into a category of connectionist/Bayesian
networks, thus guaranteeing an implementation of the systematicity prop-
erty within a connectionist/Bayesian-style framework.

A similar approach also applies to dynamic systems models. In a simple
(though not exhaustive) case, one class of dynamic systems can be treated
as a finite state machine. A category of such machines and the structure-
preserving morphisms also has products (see Arbib and Manes 1975). Thus,
again, systematicity is implemented as a functor from the product (as a
category) into this category of finite state machines.
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5 Testing the Theory

Our theory can be tested using a series of tasks, where each task instance
is composed of an invariant component corresponding to the (co)universal
arrow and a variant component corresponding to the unique arrow of the
underlying universal construction (see Phillips and Wilson 2012, text $2).
An example of this kind of design is familiar in the form of so-called learn-
ing set paradigms (see, e.g., Kendler 1995).

5.1 Nonrecursive Example

A series of simple classification tasks illustrates one kind of experimental
design that can be used to test for systematicity in terms of universal con-
structions. For the first task, suppose participants are given stimuli to be
classified into one of two classes. Let § be the set of stimuli, and R the set
of (two) responses associated with each class. Hence, the morphism?t: § — R
is the stimulus-response process for the first task instance. Next, suppose
the task is modified (for the next task instance), say by changing the
responses to each stimulus class from left and right to up and down. Let
R’ be the set of responses associated with the new task, and ¢t : § — R’ the
assoclated stimulus-response process. Since the responses are determined
by the classes rather than directly by the stimuli, each task instance t
decomposes into the task-invariant classification component ¢:5— G,
where C is the set of classes, and the task-variant response mapping com-
ponent r: C — R uniquely. That is, ¢ corresponds to ¥, the couniversal
arrow, in figure 9.2 for a universal construction.

A test of systematicity for this example is whether participants can cor-
rectly predict the stimulus response classification on new task trials after
receiving sufficient trials to determine r, the response mapping. In the
general case that there are n possible responses, so # trials are needed to
determine the correct mapping {one trial for each possible response), but
no more. Thus, systematicity is evident on correct prediction for the
remaining m — » stimulus-response trials, assuming there are more stimuli
than responses (i.e., m > n). (See Phillips and Wilson 2010 for a further
example.)

5.2 Recursive Example

Phillips and Wilson (2012) provide an example of systematicity with
respect to recursively definable concepts in the form of finding the small-
est/largest item in a list. Here, we illustrate how this kind of systematicity
can be directly tested. Suppose participants are given pairs of stimuli (e.g.,
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shapes) from which they must predict the “preferred” (or rewarded)
shape—essentially, a discrimination task. This preliminary task allows par-
ticipants to learn the total order associated with the set of stimuli. Upon
completion of the discrimination task, participants are presented with a
list of stimuli, selected from the set used in the preliminary task, and asked
to find the most preferred stimulus in that list. Upon completion of this
second task, participants are then required to identify the unpreferred
stimulus from a pair of stimuli, and then the least preferred stimulus in a
list. Evidence of systematicity in this example is correct determination of
the least preferred stimulus without further feedback. This paradigm could
be further extended by changing the set of stimuli between task instances.
(See Phillips and Wilson 2012 for another example.)

6 Beyond Systematicity

Beyond systematicity are other questions that a general (category} theory
of cognitive architecture should address. We round out this chapter by
considering how a categorial theory of cognitive architecture may address
such issues.

6.1 Systematicity and Nonsystematicity: Integration

Not all cognitive capacities are systematic, as we mentioned in the first
section. The classical proposal (Fodor and Pylyshyn 1988), and so far ours
too, speak only to the systematic aspects of cognition, while leaving non-
systematic aspects unaddressed. Fodor and Pylyshyn (1988) recognized the
possibility of some kind of hybrid theory: say, a classical architecture fused
with some nonclassical (e.g., connectionist) architecture to address cogni-
tive properties beyond the scope of (or unaccounted for by} classical theory.
Aizawa (2003) warns, however, that hybrid theories require a higher
explanatory standard: not only must each component theory account for
their respective phenomena, but there must also be a principled account
for why and when each component theory is invoked. Here, we sketch
how our category theory approach could be extended to incorperate non-
systematic aspects of cognition.

As Phillips and Wilson {2012) suggest, if we regard a category as a model
of a cognitive subsystem, then combining two categories by taking a fibered
(co)product can be regarded as the integration of two subsystems into a
larger combined system. Clark, Coecke, and Sadrzadeh (2008) provide an
example of how subsystems can be combined categorically for modeling
aspects of language. Their example is a hybrid symbolic-distributional
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model of grammar as the fibered product of a symbolic and a distributed
(vector-based) component. In our case, one category realizes systematicity,
another realizes nonsystematicity, and the category derived from- their
fibered (co)product realizes both.

For our purposes, though, we must also consider the principle dictating
which component is to be employed and under what circumstances. We
have suggested (Phillips and Wilson 2012) that a cost-benefit trade-off may
be the basis of such a principle. For instance, there are at least two ways
to add numbers such as 3 and 5. One can employ a systematic counting
procedure by counting from the first number (3) the number of increments
indicated by the second number (5). This procedure has the benefit of
working for any two numbers (systematicity), but at the cost of being slow
when the numbers are large. Alternatively, one can simply recall from
memory the sum of the given numbers. This second procedure has the
benefit of speed, but the cost of unreliability (unsystematic): the sums of
some pairs may not have been memorized, and moreover, time and effort
are required to memorize each pair.

To accommodate such possibilities, we further suggest here that our
category theory approach can be extended by associating a cost with each
morphism within the framework of enriched category theory (Kelly 2005).
Enriched category theory considers categories whose hom-sets (i.e., sets of
arrows between pairs of objects) have additional structure. For example, by
defining a partiai-order over a set of arrows each hom-set becomes a poset
(i.e., a set with the extra order structure)—the category is enriched over the
category. of posets, Pos, the category of partially ordered sets and order-
preserving functions. In this way, a choice between arrows (alternative
cognitive strategies) can be based on an order principle—choose the strat-
egy with the lower associated cost, when the alternatives are comparable.

Note, however, that we are not yet in a position to provide such prin-
ciples. One could, of course, simply fit data by assigning adjustable param-
eters to each morphism, akin to a connectionist network. However, this
maneuver merely affords compatibility with the data. What we really
require is a principle necessitating when a particular subsystem is employed,
lest we also succumb to the kinds of ad hoc assumptions that have bedev-
iled other approaches to the systematicity problem (Aizawa 2003).

6.2 Category Theory, Systematicity, and the Brain
Any theory of cognitive architecture must ultimately be reconcilable with
the underlying neural architecture. Ehresmann and Vanbremeersch (2007)
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have provided a general description of how biological, neural, and cogni-
tive systems may be cast within a category theory framework, though their
work was not intended to address the systematicity problem.

Our category theory approach to the systematicity problem suggests
an intriguing connection between the implied components of a categorial
cognitive architecture (universal constructions) and brain structure. Note
that the universal constructions we have employed to address various
instances of systematicity involve endofunctors. The composition of
adjoint functors is necessarily an endofunctor, and F-(co)algebras are based
on endofunctors. An analogue of recurrency in the brain is the reciprocat-
ing neural connections within and between brain regions. Thus, one place
to look for a correspondence between cognitive and neural architectures,
at least in regard to the systematic aspects of cognition, are recurrent
neurally connected brain regions. These kinds of connections are preva-
lent throughout the brain. Conversely, brain regions lacking such con-
nections suggest corresponding cognitive capacities lacking systematicity.
Of course, reciprocal neural connections may have other functional roles,
and the computational connection to adjunctions is only speculation at
this point.

We have begun investigating the relationship between category theory
constructs and the brain (Phillips, Takeda, and Singh 2012). A pullback
(fibered product), which featured as the kind of universal construction in
our explanation of quasi systematicity (Phillips and Wilson 2011), also
corresponds to integration of stimulus feature information in visual atten-
tion. By varying the “arity” (unary, binary, ternary} of the fibered product
matching the number of feature dimensions (color, frequency, orientation)
needed to identify a target object, we observed significantly greater EEG
synchrony (phase-locking) between frontal and parietal electrodes with
increasing arity. These results also provide a category theory window into
development, discussed next.

6.3 Development and Learning

Cognitive development, in some cases, can also be seen as instances
of systematicity. The capacity for inferential abilities,” such as transitive
inference and class inclusion are consistently enabled around the age of
five years (see Halford, Wilson, and Phillips, 1998). Children who have
the capacity to make transitive inferences typically also have the
capacity to make inferences based on class inclusions. Conversely, chil-
dren who fail at class inclusion also fail at transitive inference. Thus,
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we can see this equivalence as another instance of the systematicity
schemata: capacity ¢ if and only if capacity ¢z, all else being equal
(McLaughlin 2009).

We have given a category theory explanation for these data (Phillips,
Wilson, and Halford 2009) to overcome some difficulties with our earlier
relational complexity approach (Halford et al. 1998). This common inferen-
tial capacity was explained in terms of the arity of the underlying (co)
product. Older children (above age five years) have the capacity for binary
(co)products, whereas younger children do not. Thus, as an instance of a
universal construction, and a special case of our systematicity explanation,
having the capacity for transitive inference implies class inclusion because
the underlying categorical structures are dual to each other. In the dual
case, the constructions are related by reversal of arrow directions via con-
travarignt functors, where each object is mapped to itself, and each arrow
to an arrow whose domain and codomain are respectively the codomain
and domain of the source arrow.

Learning is also of central importance to cognitive science. A universal
construction is a kind of optimal solution to a problem: a {co)universal
morphism is an arrow that is a factor (in the sense of function composi-
tion) of all arrows to/from a particular construction (functor), To the
extent that learning (and evolution) is a form of optimization, universal
constructions may provide an alternative perspective on this aspect of
cognition.

7 Conclusion

We began this chapter with the distribution of deflected charged particles
affording an important insight into the structure of the atom as an
analogy to the importance of the distribution of cognitive capacities to
understanding the nature of cognitive architecture. We end this chapter
with the insight that systematicity affords cognitive science; the atomic
components of thought include universal constructions (not symbols,
connections, probabilities, or dynamical equations, though these things
may be part of an implementation) insofar as the systematicity property
is evident.
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