
Proceedings of the Sixteenth Annual Conference of the Cognitive Science Society 1

Strong Systematicity within Connectionism: The Tensor-Recurrent Network

Steven Phillips
Department of Computer Science

The University of Queensland
Brisbane QLD 4072 Australia
stevep@cs.uq.oz.au

Abstract

Systematicity, the ability to represent and process structurally
related objects, is a significant and pervasive property of cogni-
tive behaviour, and clearly evident in language. In the case of
Connectionist models that learn from examples, systematicity
is generalization over examples sharing a common structure.
Although Connectionist models (e.g., the recurrent network and
its variants) have demonstrated generalization over structured
domains, there has not been a clear demonstration of strong sys-
tematicity (i.e., generalization across syntactic position). The
tensor has been proposed as a way of representing structured
objects, however, there has not been an effective learning mech-
anism (in the strongly systematic sense) to explain how these
representations may be acquired. I address this issue through
an analysis of tensor learning dynamics. These ideas are then
implemented as the tensor-recurrent network which is shown
to exhibit strong systematicity on a simple language task. Fi-
nally, it is suggested that the properties of the tensor-recurrent
network that give rise to strong systematicity are analogous to
the concepts of variables and types in the Classical paradigm.

Introduction
Systematicity is the ability to represent and process struc-
turally related objects such as sentences in the language do-
main (Fodor & Pylyshyn, 1988). In the case of Connectionist
models that learn from examples, systematicity is generaliza-
tion over objects sharing a common structure. The capacity
to generalize over structurally related objects is clearly evi-
dent in language where such a vast number of sentences are
understood from relatively few examples.

The Classical explanation for systematicity is that cogni-
tion is a process of constructing and manipulating symbol
structures. Thus, the ability to process a particular symbol
structure extends automatically to all sentences conforming
to that structure.

Connectionism, by contrast, attempts to explain cognitive
behaviour as an emergent property of numeric (non-symbolic)
processes. It has been the preoccupation of Connectionists
with trying to find the ‘right’ numeric processes that has lead
to the strong criticism of Connectionism as a valid framework
for cognitive theories (Fodor & Pylyshyn, 1988). Essentially,
the Classical argument is that, without symbol structures and
structure sensitive processes one cannot demonstrate system-
aticity and therefore, one cannot provide an adequate account
of cognitive behaviour. See Fodor and Pylyshyn (1988) and
Fodor and McLaughlin (1990) for the details of this argument.

Despite this pessimistic conclusion, Connectionists have
provided models that generalize over structured domains.

For example, Elman’s (1990) simple recurrent network and
Pollack’s (1990) recursive auto-associative memory correctly
process sentences not present in the training set. The question
is, does this degree of generalization constitute systematicity?

Hadley (1994) concludes No. His conclusion was based on
a closer examination of six models, which included: McClel-
land and Kawamoto (1986), Chalmers (1990), Elman (1990),
Pollack (1990), Smolensky (1990), and St. John and McClel-
land (1990). All six models failed to provide clear demon-
strations of what Hadley terms, strong systematicity (gener-
alization across syntactic position)1, for two reasons. Either,
the training sets in all probability contained words in all po-
sitions; or, representations of words were such that the model
presupposes knowledge of syntactic categories, which begs
the question of where did this knowledge come from in the
first place. See (Hadley, 1994) for more detailed arguments.
This second point can also be made with regard to the work
of Niklasson (1993).

Although in each case, with the exception of Niklasson,
the modelers were not attempting to demonstrate strong sys-
tematicity, the result suggests a common limitation of these
models. Subsequent, analysis of the information required to
correctly position hyperplanes in first-order feedforward and
recurrent networks2 showed that such networks were unlikely
to demonstrate strong systematicity when given no a priori
assumptions about word level similarity (Phillips, 1994). In
both cases, there is an independence between the weights
that map component objects occurring in one position and the
weights that map the same objects occurring in other posi-
tions. Consequently, to learn the mapping the networks must,
in general, see component objects in all positions. This result
also applies to the above models, except the tensor, and the
models of Brousse and Smolensky (1989) and Phillips and
Wiles (1993).

Given the lack of strong systematicity with current network
models, it is therefore important to investigate alternative net-
workarchitectures with a goal of exhibitingstrong systematic-
ity. In this paper, the tensor-recurrent network is presented
with the motivation of addressing the issue of strong sys-
tematicity. The tensor-recurrent network is tested for strong
systematicity on a simple language task. The properties of
the network that allow strong systematicity are discussed, and
finally, some concluding remarks are made regarding the re-
lationship of the network to the Classical paradigm.

1For example, correct processingof the sentence Mary loves John
having only ever seen John in the agent position.

2Networks without multiplicative weight terms.



The tensor-recurrent network
The simplest task where it is possible to demonstrate gener-
alization across position requires a network to recover upon
request the first or second argument of a binary relation (or-
dered pair). Mathematically, performing this task correctly
means implementing a function (f) defined as:

f(Q1; (xi; xj)) ! xi;

f(Q2; (xi; xj)) ! xj;

where Q1 and Q2 are question vectors requesting the first and
second arguments respectively; and xi and xj are elements
of a set of atomic objects (i.e., no internal structure nor a
priori similarity) that together form an ordered pair. If there
are N atomic objects then there are N2 distinct ordered pairs,
and therefore the domain of f is a set of 2N 2 objects. A
network is said to exhibit strong systematicity if it can learn
to represent the function without having seen every object in
both positions. Subsequent analysis of network properties for
demonstrating strong systematicity will refer to this function,
however, the analysis is easily extended to relations (tuples)
of higher order.

Smolensky (1990) showed how a tensor can be used to rep-
resent structured objects by the sum of the outer products of
vector pairs, the first of which represents a component ob-
ject, and the second of which represents the role (or relation-
ship) of that component to the structured object. Furthermore,
provided the choice of role vectors is orthogonal, each com-
ponent may be extracted from the tensor representation by
performing the inner product of the corresponding role vector
with the tensor vector. However, Smolensky’s (1987) recir-
culation algorithm for determining the roles is essentially a
three-layer feedforward network similar to the networks of
Brousse and Smolensky (1989) and Phillips and Wiles (1993)
which Phillips (1994) showed was unlikely to exhibit strong
systematicity.

If one assumes the tensor as part of the network’s architec-
ture then there are three learning issues that must be addressed.
They are, an account of how component representations, role
representations and access representations (i.e., the vectors
that when applied to the tensor by an inner product return
the desired component representation) are acquired through
learning. In each case, these three issues are addressed in
the tensor-recurrent network by the principle of error back-
propagation (Rumelhart, Hinton, & Williams, 1986). That is,
by backpropagating an error signal which is a function of the
difference between the desired output and the actual output.
The novel feature of this network is that by backpropagating
the error signal through the tensor units component, role and
access vector representations are learnt in response to the de-
mands of the task. The explanation for the motivation for this
network that follows refers to the graphical description of the
network which is given in Figure 1.

Component representations
The tensor scheme assumes some representation of compo-
nents which are bound (by an outer product) to a representa-
tion of their associated roles. The outer product of vectors ~V
and ~W is defined as: Tij = Vi:Wj, where Tij is the ith-row
jth-column element of the resulting rank-2 tensor ~T ; and Vi

and Wj are the ith and jth elements of vectors ~V and ~W ,
respectively. By applying the inner product of the role vector
and the tensor representation, the original component repre-
sentation can be extracted. The inner product of tensor ~T

with vector ~W is defined as: Vi =
PN

j Tij :Wj, where Vi is

the ith element of the resulting vector ~V ; Tij is the ith-row
jth-column element of tensor ~T ; and Wj are the jth element
of the N -dimensional vector ~W .

A tensor representation scheme assumes that the input and
output modalities (i.e., object representations) are the same.
However, the input representation of an object, for example
John, could be a string of letters, whereas the output repre-
sentation could be a sequence of phonemes.

This issue is addressed in the tensor-recurrent network by
requiring the network to auto-associate3 the input. Auto-
association is achieved by mapping the input to a set of hidden
units; performing the outer product of the resulting vector
with the generated role vector; adding the result to the current
representation held in the tensor units; performing the inner
product of the resulting tensor representation with the same
role vector; and finally, mapping the result represented at the
inner product units to the output units. In the case where the
role vectors are mutually orthogonal and of length 1, then by
the two mathematical laws: (~v 
 ~w) � ~w = ~v, if k~wk = 1,
and (~v 
 ~w) � ~z = ~0, if ~w ? ~z, the vector representation at
the hidden units will be the same as the vector representation
at the inner product units. Consequently, the network will
act like a three-layer feedforward network, which will, in
principle, allow any mapping from input to output (i.e., be
modality independent) when error is backpropagated from
the output units through the tensor units to the input units. It
is therefore possible to address situations where the input and
output representations of an object are different, which is the
case when subjects are asked to provide verbal descriptions
of scenes, for example.

Role representations
The use of a tensor also assumes the existence of role vectors
which must be made orthogonal for the components to be
subsequently extracted without interference. Rather than rely
on external agents (which ultimately must be explained) each
role vector in this network is generated by an input vector (via
some transformations) and the previous state vector (which is
currently held in the context units)4. Suppose the network has
already been given the first component x1, and is currently
required to auto-associate the second component x2 (i.e., x2
is the current target). Then, the error at the output layer is:

E = k~x2 � g((f(~x1) 
 ~R1 + f(~x2) 
 ~R2) � ~R2)k

E = k~x2 � g(�f(~x1) + f(~x2))k;

where f is the function from input to hidden units; g is the
function from inner product to output units; ~x 1 and ~x2 are the
input/output representations of the first and second compo-
nent objects, respectively; ~R1 and ~R2 are the respective role

3In the sense that it is associating the same object, but with
potentially different input and output representations.

4Essentially, this part of the network is the same as Elman’s
(1990) simple recurrent network.



vectors; and, � is just the dot product of ~R1 and ~R2, respec-
tively. Thus, error E goes to zero (E ! 0) when � ! 0.
That is, when the two role vectors are orthogonal, assuming
g(f(~x2)) = ~x2 (i.e., the network has learnt to auto-associate
the x2 component).

Access representations
Given that the tensor holds a representation of a structured
object there remains the issue of extracting component repre-
sentations. Typically, the access vector is provided by some
external agent as the role vector to which the desired compo-
nent was associated. However, if the role vectors are generated
internally, then there is no reason to expect the access vectors
(supplied as input) will be the same. Here, the information
requesting one of the components presented at the question
units is mapped to the cue units. The inner product of vectors
at the cue and tensor units results in a vector at the inner prod-
uct units which is then mapped to the output units. Again,
using the principle of error backpropagation, the appropriate
access vectors (at the cue units) are learnt by backpropagating
the error at the output layer through the tensor units to the
question layer. Suppose the tensor currently holds a represen-
tation of the ordered pair (x1; x2) and a request is made for
the first component. Then, the error at the output layer is:

E = k~x1 � g((f(~x1) 
 ~R1 + f(~x2) 
 ~R2) � ~Q1)k

E = k~x1 � g(�f(~x1) + �f(~x2))k;

where ~Q1 is the question vector at the cue units; and, � and
� are the dot products of ~Q1 with ~R1 and ~R2, respectively.
Error E goes to zero (E ! 0) when �! 1, and � ! 0 (i.e.,
when the question vector is collinear with the first role vector,
assuming g(f(~x1)) = ~x1.

Evaluating the network
The analysis in the previous section assumed various learning
principles (e.g., auto-association of inputs and orthogonaliza-
tion of role vectors). In this section, these principles are tested
on a simple language task.

Task
In this task, simple sentences conform to the structure agent-
action-patient. Each component is presented to the network
one per time step after which the network is given one of three
possible questions: Who performed the action?; What was the
action?; and What was affected by the action?, from which the
network should respond with the agent, action, and patient,
respectively. For example, the input John loves Mary. Who is
loved? would be a sequence of four vectors representing John,
loves, Mary, Who is loved? (respectively), and presented in
that order to the network. At the fourth time step the correct
response is a vector representing Mary at the output layer.

The action and patient components are drawn from the set
fBill, John, Karen, Mark, Viviang, and the action component
is drawn from the set fcalls, chases, lovesg. All components
are encoded locally (i.e., by orthogonal vectors where one
unit has a value of 1 and the rest 0). The network is said to
have demonstrated strong systematicity if having only seen,
for example, Mary in the agent position in the training set
generalize to cases where Mary is in the patient position in
the test set.
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Figure 1: The tensor-recurrent network architecture. Dotted
arrows indicate completely connected modifiable weights. In
this case, the destination units have tanh as their activation
function. Solid arrows indicate fixed connections of weight
1. In this case, the activation function of the destination units
is the identity function. The connectivity of the fixed, weight
1 connections is such as to implement the operator as shown
(i.e., inner product, outer product, and copy). Parenthesized
values indicate number of units used in simulations.

Method

Each trial, starting from a randomly initialized set of
weights, consisted of training on 20 randomly generating sen-
tence/question sequences, and testing on a separate set of 100
randomly generated sequences. Importantly, since general-
ization across position is being tested, the training and testing
distributions are not the same (i.e., some nouns should not
appear in both positions in the training set, but should appear
in the test set). Each word or question was presented one per
time step with the network activations being reset to zero at
the beginning of each sentence. The network was trained us-
ing the standard backpropagation algorithm (Rumelhart et al.,
1986) using the sum of squares error function with a learning
rate of 0.1, until the activation of every outputunits was within
0.4 of the target output for all patterns in all sequences. Two
criteria were used on the test sequences. A correct response
to the question vector was considered when 1) the maximally
activated output unit corresponded to the unit with target 1
(maximum criterion); and 2) all output units were within 0.5
of their target activations. The amount of overlap between
the agent and patient positions was varied from 0 (no noun
appeared in both positions) to 5 (every noun appeared in both
positions). On each trial the number of correct responses to
the question in the test set was recorded. (NB. During the
test phase performance on the auto-association of input was
not considered. Its purpose was to encourage the formation
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Figure 2: Percentage correct with varying degrees of overlap
each averaged over 5 trials.

of internal representations during training, as discussed in the
previous section.)

Results
The percentage of correct responses to the question vector on
the test set averaged over 5 trials is given in Figure 2, where
the bottom dotted line indicates chance level response. The
graph shows results only for noun-position combinations that
did not occur in the training set. For example, when no noun
appeared in both agent and patient positions in the training
set, the network achieved 92% accuracy (maximum criterion)
and 83% (0.5 criterion) on the test set. When three or more of
the possible five nouns appear in both positions in the training
set, the network was 100% accurate on the test set.

Discussion
The point of the simulation was to demonstrate a network
that could exhibit strong systematicity (i.e., generalization
across position). The simulation results showed that it was
not necessary for the network to have seen every noun in both
positions in the training set (i.e., the tensor-recurrent network
is strongly systematic with respect to this task).

Strong systematicity was a consequence of separating the
responsibility for representing component and position infor-
mation. Partly, this separation was due to the architecture
whereby component information was represented (indepen-
dent of its position) at the hidden units and position infor-
mation was represented (independent of its component value)
at the role units. The component-independence of position
information was encouraged by the bottleneck units which
attenuate the affect of the current input on the state.

However, the separation of component and position infor-
mation was also a result of the network’s learning dynamics.
Crucial for correct extraction of components is the orthogonal-
ization of the role vectors. Table 1 shows how with learning
the role vectors become progressively more orthogonal. (The
measure being one minus the dot product so that zero implies
collinear and one implies orthogonal for non-zero vectors.)

Even after 1000 epochs of training the action and patient role
vectors were collinear. However, they were sufficiently close5

to orthogonal by epoch 4900. This table shows that before
training the network was not systematic. The collinearity
of the agent and patient role vectors, for example, means
that the network could not extract the associated verb with-
out extracting the noun in the patient position. Therefore,
the strong systematicity exhibited by the network was also a
consequence of training.

The performance of the network on training sets where
less than three objects appeared in both positions was well
above chance level, but it was not perfect. The likely cause of
these errors was that the generated role vectors were sensitive
to the input value, as well as the position. For example, if
the role vector resulting from John in the first position was
significantly different from the role vector resulting from Mary
in the first position, then correct extraction would require two
different first positioncue vectors. But it is not possible for the
network to generate two different vectors for the first position
cue from the same input question.

The lack of perfect generalization raises the question of just
what degree of generalization across position is desirable. For
example, how much overlap should there be in the training
set before one can expect generalization across position, and
what level of generalization should we then expect? In the
case of the tensor-recurrent network, a high degree of gener-
alization occurred when there was no overlap between agent
and patient positions. The network also generalized to nouns
that appeared in the verb position, which suggests that the
network was too systematic.

These questions, which fall into the domain of natural lan-
guage acquisition, are not addressed by Hadley’s strong sys-
tematicity definition. The importance of Hadley’s work has
been to identify and specify a qualitative degree of generaliza-
tion that is evident in people, but not in previous Connectionist
models, and thereby suggesting that there is some common
property lacking in these models.

Phillips (1994) argued that these models lacked a depen-
dency between the weights that implement the mapping of
objects in their various positions. This dependency property
was implemented in the tensor-recurrent network by using
the same set of weights that map between objects and in-
ternal representations in all positions, and by presenting the
component objects temporally. Presenting all components
spatially, such as in the feedforward networks of Brousse and
Smolensky (1989) and Phillips and Wiles (1993), requires a
different set of units and weights. The independency between
these weights means the network must see all objects in all
positions.

Concluding remarks
The properties sufficient to demonstrate strong systematicity
with respect to this sentence-question task were: 1) multi-
ple copies of internal representation subspaces provided by
the tensor so that learning to represent a component in one
subspace automatically transfers to all other subspaces, since

5It is not necessary that the role vectors be perfectly orthogonal
since the non-linear activation function at the output layer masks out
residual vectors. Similarly, the access vectors at the cue units were
not the same as the role vectors.



these subspaces are the domain and co-domains of functions
realized by the same set of weights; and 2) the facility, pro-
vided by the inner product operator, to select a subspace in-
dependent of the representation it currently contains. In the
Classical paradigm, the second property is analogous to a
variable where vectors in the tensor-recurrent network’s role
space are like variable identifiers, and the first property is
analogous to a type (i.e., the set of allowable instances).

Traditionally, variable identifiers have been discrete objects
serving only to distinguish one variable from another. Dis-
crete objects are, in general, not learnable by a hill-climbing
strategy which requires a continuously differentiable surface.
What is interesting about the tensor-recurrent network solu-
tion is that by defining variable identifiers (role vectors) over
a continuous space the identifiers were learnable by a hill-
climbing stategy which is characteristic of the Connectionist
approach to the acquisition of behaviour. It suggests how
symbolic structures may arise, in part (as the inner and outer
product operators were built-in), out of structure insensitive
processes such as gradient-descent. However, the task used
here was very simple. The extent to which this is possible
will depend on exhibiting properties like strong systematicity
in more complex domains.

Table 1: Orthogonality between agent, action and patient role
vectors measured as one minus the dot product.

Update agt-act agt-pat act-pat aver.
0 0.32 0.22 0.02 0.19

1000 0.89 0.96 0.00 0.61
4900 0.70 0.59 0.71 0.67
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